首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The West Pontides tectonic belt of northern Turkey comprises a Lower Ordovician–Lower Carboniferous transgressive sequence. A stratigraphic basement to this Paleozoic sequence is exposed in the Bolu area. The tectono-stratigraphy of the basement closely resemble that of the Cadomian belt of western Europe. Three rock units forming the basement imply development of an Andean-type active continental margin during the pre-Early Ordovician period. High-grade metamorphics (the Sünnice Group), granitoids (the Bolu Granitoid Complex) and evolved felsic meta-volcanic rocks (the Ça?urtepe Formation) are exposed unconformably beneath the Lower Ordovician fluvial clastics, between the Bolu-Yedigöller area, to the north of Bolu. The Bolu Granitoid Complex comprises a group of intrusive rocks of variable composition and size, generated through multiple episodes of magmatism, and is represented by two separate intrusive bodies within the study area, the Tüllükiri? Pluton in the west and the Kap?kaya Pluton in the east. Both plutons are mainly tonalite and granodiorite in composition. More felsic and mafic compositional varieties also occur. Major and trace element chemical characteristics of the granitoids, as well as biotite chemistry, indicate that these are volcanic arc-type granitoids and are products of an immature arc developed during early stages of a subduction. Furthermore, textural and chemical characteristics of the plutons show that these are subvolcanic intrusions, emplaced at shallow depths, and are calc-alkaline in composition. The granitoidic plutons intrude the Ça?urtepe Formation. The Ça?urtepe Formation is represented by arc-type volcanics and volcaniclastics. Both the Ça?urtepe Formation and the granitoids represent subduction-zone magmatism constructed on a continental crust, represented by the Sünnice Group. The history is very similar to Cadomian active margins as exposed in western Europe (i.e., the North Armorican and Bohemia massifs) and therefore the basement to the Paleozoic of the West Pontides is considered to be a preserved remnant of the Cadomian belt.  相似文献   

2.
Post‐collisional granitoid plutons intrude obducted Neo‐Tethyan ophiolitic rocks in central and eastern Central Anatolia. The Bizmişen and Çaltı plutons and the ophiolitic rocks that they intrude are overlain by fossiliferous and flyschoidal sedimentary rocks of the early Miocene Kemah Formation. These sedimentary rocks were deposited in basins that developed at the same time as tectonic unroofing of the plutons along E–W and NW–SE trending faults in Oligo‐Miocene time. Mineral separates from the Bizmişen and Çaltı plutons yield K‐Ar ages ranging from 42 to 46 Ma, and from 40 to 49 Ma, respectively. Major, trace, and rare‐earth element geochemistry as well as mineralogical and textural evidence reveals that the Bizmişen pluton crystallized first, followed at shallower depth by the Çaltı pluton from a medium‐K calcalkaline, I‐type hybrid magma which was generated by magma mixing of coeval mafic and felsic magmas. Delta 18O values of both plutons fall in the field of I‐type granitoids, although those of the Çaltı pluton are consistently higher than those of the Bizmişen pluton. This is in agreement with field observations, petrographic and whole‐rock geochemical data, which indicate that the Bizmişen pluton represents relatively uncontaminated mantle material, whereas the Çaltı pluton has a significant crustal component. Structural data indicating the middle Eocene emplacement age and intrusion into already obducted ophiolitic rocks, suggest a post‐collisional extensional origin. However, the pure geochemical discrimination diagrams indicate an arc origin which can be inherited either from the source material or from an upper mantle material modified by an early subduction process during the evolution of the Neo‐Tethyan ocean. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
Specimens from strata-bound/stratiform Kieslager, lineament-bound, and unconformity-related Pb occurrences from the NE Bavarian Saxothuringian and Moldanubian belts and samples from stibnite and polymetallic Sb-Au quartz veins were analyzed for their lead isotope composition.The strata-bound Pb at Bodenmais yielded an Upper Proterozoic 207Pb/206Pb model age which correlates with the assumed stratigraphic age of the host rock. Late Precambrian rift activity may have triggered the formation of this ore mineralization. This type of Pb was also found in the Kieslager at Waldsassen hosted by Early Paleozoic country rocks and in the fluorite veins at Kittenrain.The vein-type lineament-bound, and unconformity-related Pb occurrences show a similar isotopic pattern which suggests that this type of Pb originated from the same source. The 207Pb/206Pb model ages which are too old compared to the assumed age of formation and the accelerated 208Pb evolution indicate that the detritus of the source rock underwent a high-grade metamorphism in the Precambrian.The formation of the unconformity-related Pb concentrated in galena of fluorite-barite veins is correlated with late Variscan magmatic intrusions. The older model ages of about 100–150 Ma from the lineament-bound lead, located along deep-seated lineamentary fault zones, suggest an earlier separation of this type of Pb possibly triggered by the Caledonian A-subduction-related metamorphism.  相似文献   

4.
The Teplá–Barrandian unit (TBU) of the Bohemian Massif shared a common geological history throughout the Neoproterozoic and Cambrian with the Avalonian–Cadomian terranes. The Neoproterozoic evolution of an active plate margin in the Teplá–Barrandian is similar to Avalonian rocks in Newfoundland, whereas the Cambrian transtension and related calc-alkaline plutons are reminiscent of the Cadomian Ossa–Morena Zone and the Armorican Massif in western Europe. The Neoproterozoic evolution of the Teplá–Barrandian unit fits well with that of the Lausitz area (Saxothuringian unit), but is significantly distinct from the history of the Moravo–Silesian unit.The oldest volcanic activity in the Bohemian Massif is dated at 609+17/−19 Ma (U–Pb upper intercept). Subduction-related volcanic rocks have been dated from 585±7 to 568±3 Ma (lower intercept, rhyolite boulders), which pre-dates the age of sedimentation of the Cadomian flysch ( t chovice Group). Accretion, uplift and erosion of the volcanic arc is documented by the Neoproterozoic Dob í conglomerate of the upper part of the flysch. The intrusion age of 541+7/−8 Ma from the Zgorzelec granodiorite is interpreted as a minimum age of the Neoproterozoic sequence. The Neoproterozoic crust was tilted and subsequently early Cambrian intrusions dated at 522±2 Ma (T ovice granite), 524±3 Ma (V epadly granodiorite), 523±3 Ma (Smr ovice tonalite), 523±1 Ma (Smr ovice gabbro) and 524±0.8 Ma (Orlovice gabbro) were emplaced into transtensive shear zones.  相似文献   

5.
苏鲁仰口超高压岩石SHRIMP锆石U/Pb定年与部分熔融时限   总被引:5,自引:4,他引:1  
在大型碰撞造山带中,在陆壳物质深俯冲或快速折返早期,在超高压-高压条件下,易熔组分可能发生水致或脱水部分熔融,形成花岗质熔体。在超高压-高压条件下,苏鲁超高压岩石发生过部分熔融作用,形成长英质多晶体包裹体和不同尺度的花岗质岩石, 导致可观的地球化学效应。为确定苏鲁超高压岩石部分熔融的时限,对山东仰口超高压副片麻岩和其中平行片麻理的同构造钾质花岗岩脉进行了SHRIMP锆石U/Pb地质年代学、全岩地球化学和锆石内矿物包裹体的研究。副片麻岩的锆石具有典型的核-幔-边结构。核部锆石为碎屑锆石,206Pb/238U年龄大于282Ma,可能反映了副片麻岩的原岩包含不同成因的物质;幔部和边部的Th/U比都小于0.1,分别给出233±3Ma和214±4Ma的206Pb/238U 年龄,分别对应于超高压变质和角闪岩相退变质年龄。同构造花岗岩脉是富钾过铝质花岗岩(A/CNK=1.2),锆石也具有核-幔-边结构;核部锆石年龄与副片麻岩的核部锆石年龄相当,反映了该花岗岩脉的源区可能是变沉积岩;除幔部锆石的一个点具有206Pb/238U年龄为234.6±3.9Ma之外,其它幔部锆石位于谐和线附近,给出206Pb/238U年龄为220.8±2.9Ma, 该年龄代表着该花岗岩脉的形成年龄。上述数据表明,在仰口地区,超高压岩石的部分熔融作用早于角闪岩相退变质作用。  相似文献   

6.
Numerous intrusive rocks of varying ages and compositions exist in the Paleozoic to Tertiary periods in the Eastern Pontides. Carboniferous intrusive rocks are commonly observed in the southern part of the Eastern Pontides. The nature of the rocks in the northern part of the region has not been determined because of Upper Cretaceous and Tertiary volcano-sedimentary units. Whole-rock geochemical, isotopic and geochronological data obtained from five different mapped granitoid bodies located in the northern part of the Eastern Pontides allow for the proper reconstruction of Carboniferous magmatism and the geodynamic evolution of the region.According to laser ablation ICP-MS U–Pb zircon dating, the Özdil, Soğuksu, Seslikaya, Kızılağaç and Şahmetlik plutons have similar 206Pb/238U vs. 207Pb/235U concordia ages of 340.7 ± 1.8 Ma and 323.1 ± 1.5 Ma, 348.4 ± 1.6 Ma, 335.4 ± 1.4 Ma, 337.2 ± 0.6 Ma and 334.5 ± 1.4 Ma, respectively. The aluminium saturation index (ASI) values of all of the samples from the plutons are between 1.0 and 1.32, which indicate peraluminous melt compositions. The plutons have SiO2 contents between 59 and 79 wt.% and show low- to high-K calc-alkaline characteristics. The plutons are enriched in large-ion lithophile and light rare earth elements and are depleted in high-field strength elements. Chondrite-normalized rare earth element patterns are characterized by concave-upward shapes and pronounced negative Eu anomalies, with LaCN/YbCN = 1.9–46.8 and EuCN/Eu* = 0.19–1.76. The studied plutons show considerable variations in 87Sr/86Sr(i) (0.70255 to 0.71006) and εNd(i) values (− 4.8 to − 7.1), as well as Nd model ages (1.15 to 2.47 Ga). The Pb-isotopic ratios are 206Pb/204Pb = 17.11–18.60, 207Pb/204Pb = 15.58–15.64 and 208Pb/204Pb = 36.95–38.62. The crystallization temperatures of the melts range from 676 to 993 °C, as determined by zircon and apatite saturation thermometry.These data suggest that the Carboniferous granitic magmas were produced by the partial melting of meta-mafic to meta-felsic lower crustal source rocks, with minor contributions from the mantle. Collectively, these rocks represent a late stage of Hercynian magmatism in the northern part of the Eastern Pontides.  相似文献   

7.
The Huangtuling hypersthene-garnet-biotite gneiss at Luotian County, Hubei Provine, is a typicalgranulite-facies rock of the Dabie Group Complex in the Dabie orogenic belt. Investigations on the morphology andoccurrence of zircons and their internal structures shown in the thin sections lead to the recognition of three types ofzircons, which are in good agreement with the types identified on the basis of morphology, colour and external fea-tures from the related zircon concentrates. The observation of zircons in the rock reveals that part of type 1 zirconsshow signs of a double-layered structure. The interval part existed in the protolith prior to the granulite-facies meta-morphism. Type 2, the prismatic zircons which mainly occur in garnet and hypersthene are metamorphic minerals ofthe granulite-facies metamorphism. Type 3, the round multifaceted zircons in felsic minerals and biotite, are proba-bly attributed to a later geological event related to migmatization. The ~(207)Pb/~(206)Pb zircon dating by direct evaporationon (thermal evaporation ion mass spectrometer) yields ages ranging from 2814 Ma to 1992 Ma. The age discrepancyamong these different zircon types is conspicuous. The yellow-brown(type 1) zircons give ages of 2814±29 Ma to2527±6 Ma, the prismatic euhedral zircons (type 2), 2456±7 Ma to 2254±4 Ma, and the round multifaceted zircons(type 3), 1992±10 Ma. The results are geologically interpreted in consideration of the complicated behaviours of zir-cons during Precambrian geological evolution of the Dabie area. (1) If the protolith of the gneiss is a sedimentaryrock, then type 1 zircons are clastic ones and the ages 2814±29 Ma and 2811±27 Ma may reflect the minimum age ofthe rocks of its source region. also the first geological event in the area. Sedimentation of the protolith occurred be-tween 2814 Ma and 2527 Ma, probably close to 2814 Ma. If the protolith is a volcanic rock, then the formation age ofthe supracrustal rocks of the Dabie Group Complex is around 2814 Ma. The age 2456±7 Ma reflects the time whenthe granulite-facies metamorphism took place. The later migmatization event is dated at aboat 1992±10 Ma, and isprobably the latest early Precambrian event in the area. The present work provides geochronological evidence for the existence of the Dabie Archaean craton, whichhad probably experienced 3 or 4 geological events during its early Precambrian evolution.  相似文献   

8.
The Teplá Crystalline unit (TCU), western Bohemian Massif, proves highly suitable for studying the effects of differential metamorphic reworking on the U–Th–Pb systematics in monazite, as the overprint of Variscan regional metamorphism onto high-grade Cadomian paragneisses intensifies progressively towards the northwest. Although variably hampered by scarcity, small size, and low uranium contents of monazite, isotope dilution–thermal ionisation mass spectrometry of monazite from paragneisses from the garnet, staurolite, and kyanite zones of the TCU gives a narrow 206Pb/238U age range from 387 to 382 Ma for Variscan peak metamorphism. These data are supported by 382–373 Ma monazite ages derived from electron microprobe analyses. Inheritance of older components in grains from the central TCU imply major “resetting” of pre-Variscan monazite around 380 Ma, possibly due to widespread garnet growth during Variscan metamorphism, which led to the consumption of pre-Variscan high-Y monazite and subsequent growth of new low-Y monazite. Concordant 498–494 Ma monazite ages in a migmatitic paragneiss close to the adjacent Mariánské Lázně Complex (MLC) grew in response to metagabbro emplacement in the MLC from 503 to 496 Ma and not during either Cadomian or Variscan regional metamorphism. Backscatter imaging and electron microprobe analyses reveal that discordant monazite of the migmatite comprises a mix of various age domains that range from ca. 540 to 380 Ma. Combined evidence presented here suggests that instead of Pb loss by volume diffusion, the apparent resetting of the U–Th–Pb systematics in monazite rather involves new crystal growth or regrowth by recrystallisation and dissolution/reprecipitation.  相似文献   

9.
Monazite is extensively used to date crustal processes and is usually considered to be resistant to diffusive Pb loss. Nevertheless, fluid-assisted recrystallisation is known to be capable of resetting the monazite chronometer. This study focuses on chemical and isotopic disturbances in monazite grains from two microgranite intrusions in the French Central Massif (Charron and Montasset). Petrologic data and oxygen isotopes suggest that both intrusions have interacted with alkali-bearing hydrothermal-magmatic fluids. In the Charron intrusion, regardless of their textural location, monazite grains are sub-euhedral and cover a large domain of compositions. U–Pb chronometers yield a lower intercept age of 297 ± 4 Ma. An inherited component at 320 Ma is responsible for the scattering of the U–Th–Pb ages. The Montasset intrusion was later affected by an additional F-rich crustal fluid with crystallisation of Ca-REE-fluorocarbonates, fluorite, calcite and chloritisation. Pristine monazite is chemically homogeneous and displays 208Pb/232Th and 206Pb/238U concordant ages at 307 ± 2 Ma. By contrast, groundmass monazite shows dissolution-recrystallisation features associated with apatite and thorite precipitation (Th-silicate) and strong chemical reequilibration. 208Pb/232Th ages are disturbed and range between 270 and 690 Ma showing that the Th/Pb ratio is highly fractionated during the interaction with fluids. Apparent U–Pb ages are older due to common Pb incorporation yielding a lower intercept age at 312 ± 10 Ma, the age of the pristine monazite. These results show that F-rich fluids are responsible for Th mobility and incorporation of excess Pb, which thus strongly disturbed the U–Th–Pb chronometers in the monazite.  相似文献   

10.
《Chemical Geology》2003,193(1-2):81-92
We report Pb–Pb whole rock and uraninite CHemical Th–U–total Pb Isochron MEthod (CHIME) ages of carbonaceous black slates from the Ogcheon metamorphic belt, South Korea. The Pb isotopic data of whole rock samples yield 207Pb/206Pb ages of 283±33 and 291±13 Ma for two outcrops from the northeastern part of the belt. The uraninite CHIME age is estimated at 283±26 and 281±27 Ma for the northeastern and the middle part of the belt, respectively. All of the above ages are identical within error ranges, and represent the timing of peak metamorphism after the late Precambrian intraplate rifting. On the other hand, the 207Pb/206Pb whole rock age for the southwestern part of the belt is estimated at 194±27 Ma, probably representing the timing of contact thermal metamorphism associated with the intrusion of Jurassic granitic plutons. Rb–Sr isotopic data of the black slates do not define any meaningful isochron. The early Permian metamorphic age of this study does not support any tectonic scheme in favor of major tectonometamorphism at either the Silurian–Devonian or the Triassic time. Instead, it corroborates the probability that the two zones in the Ogcheon belt, the Ogcheon metamorphic belt and the Taebaegsan zone, were separated from each other before the development of major structural framework in the former. Our data do not support an idea that the Ogcheon belt corresponds to the continuation of the Triassic collision belt in east central China.  相似文献   

11.
U-Pb zircon and rutile multigrain ages and 207Pb/206Pb zircon evaporation ages are reported from high-pressure felsic and metapelitic granulites from northern Bohemia, Czech Republic. The granulites, in contrast to those from other occurrences in the Bohemian Massif, do not show evidence of successive HT/MPLP overprints. Multigrain size fractions of nearly spherical, multifaceted, metamorphic zircons from three samples are slightly discordant and yield a U-Pb Concordia intercept age of 348 ± 10 Ma, whereas single zircon evaporation of two samples resulted in 207Pb/206Pb ages of 339 ± 1.5 and 339 ± 1.4 Ma, respectively. A rutile fraction from one sample has a U-Pb Concordia intercept age of 346 ± 14 Ma. All ages are identical, within error, and a mean age of 342 ± 5 Ma was adopted to reflect the peak of HP metamorphism. Because rutile has a lower closing temperature for the U-Pb isotopic system than zircon, the results and the P-T data imply rapid uplift and cooling after peak metamorphism. The above age is identical to ages for high-grade metamorphism reported from the southern Bohemian Massif and the Granulite Massif in Saxony. It can be speculated that all these granulites were part of the same lower crustal unit in early Carboniferous, being separated later due to crustal stacking and subsequent late Variscan orogenic collapse.  相似文献   

12.
Tin mineralisation is closely related to rhyolite stocks and dykes which occur in the endo- and exocontact of the Eibenstock granite, Erzgebirge, Germany. The same structures which cut the granite control the rhyolite emplacement and the location of ore-bearing greisen bodies. Albitisation and greisenisation related to tin mineralisation as well as sericitisation and argillic alteration may be traced by changes in chemical and mineralogical composition of both rhyolite and granite wall rock. Comprehensive zircon studies by scanning electron microscopy (secondary and backscattered electron as well as cathodoluminescence imaging; EDX measurements) reveal that zircon from rhyolite and from the enclosing granite shows significant changes in chemical composition and crystallinity, including distortion of the U-Pb isotope system when affected by greisenisation. Single evaporation analysis of zircon from rhyolite with little or no greisenisation gave a 207Pb/206Pb age of 290±5 Ma, whereas zircon from little altered granite gave a 207Pb/206Pb age of 320±8 Ma. The single evaporation age of zircon from rhyolite is confirmed by 238U/206Pb SHRIMP ages of 297±8 Ma. The significant time gap of at least 20 Ma between granite intrusion and rhyolite formation suggests that the late magmatic evolution of the Eibenstock granite cannot be regarded as a source for tin-ore forming fluids as previously assumed.  相似文献   

13.
大别山东部花岗片麻岩的锆石U-Pb年龄   总被引:29,自引:0,他引:29  
花岗片麻岩是大别山区除超高压变质杂岩外的另一种重要岩石类型,本文测得南大别二长花岗片麻岩中单颗粒锆石U-Pb不一致线的上交点年龄为789±43 Ma.位于五河一水吼韧性剪切带南缘的糜棱岩化二长花岗片麻岩中锆石的207Pb/206Pb表面年龄接近一致年龄,为715~777 Ma,平均757 Ma,U-Pb不一致线的上交点年龄为815±70 Ma,下交点年龄为482±167 Ma.北大别石英二长片麻岩中锆石207Pb/206表面年龄的变化范围较广,介于594~700 Ma,平均为649 Ma,U-Pb不一致线的上、下交点年龄分别为814±97 Ma和477±77 Ma.这说明这些正片麻岩的侵位时间范围大致为750~850 Ma的晚元古代;南、北大别正片麻岩中的锆石年代学显示它们可能具有相似的形成与演化历史;约480 Ma前后的加里东运动对大别山地区可能也有影响.  相似文献   

14.
大兴安岭扎兰屯地区前寒武纪变质岩系年龄及其构造意义   总被引:2,自引:0,他引:2  
大兴安岭扎兰屯地区出露较多的前寒武纪变质岩系,包括先前认为是古元古代的兴华渡口群、新元古代的佳疙瘩组和新元古代—早寒武世的倭勒根岩群,但一直缺少精确的年代学依据。通过LA-ICP-MS锆石U-Pb同位素测年,对这3个变质岩群的原岩时代进行了厘定。结果显示,兴华渡口群中绿泥石白云母片岩的锆石~(206)Pb/~(238)U年龄加权平均值为520.1±4.3Ma(n=11,MSWD=1.6),佳疙瘩组中长英质糜棱岩锆石~(206)Pb/~(238)U年龄加权平均值为512.0±2.9Ma,倭勒根岩群中绿泥绢云片岩最年轻锆石~(206)Pb/~(238)U年龄加权平均值为491.7±11.9Ma,年龄最密集区加权平均值为516.7±4.5Ma。锆石图像特征及Th/U值均显示岩浆型锆石特征。综上所述,扎兰屯地区出露的兴华渡口群、佳疙瘩组和倭勒根群形成时代均为早古生代早期,而非先前认为的"前寒武纪"。同时,上述年龄谱系表明,该地区在480~500Ma和500~530Ma存在2期强烈的岩浆活动,应与东北地区晚泛非期岩浆-变质事件有关。  相似文献   

15.
In situ U-Pb isotopic measurements were carried out by ion microprobe on the Zr-rich accessory minerals zirconolite [CaZrTi2O7], tranquillityite [Fe82+(ZrY)2Ti3Si3O24] and baddeleyite [ZrO2] in low-K, high-Ti mare basalt 10047 collected during the Apollo 11 mission. The analysed minerals are concentrated in pockets of late-stage mesostasis that comprises an intergrowth of silica, barian K-feldspar and Si-Al-K glass, from a phaneritic, subophitic, basalt comprising mainly pyroxene, plagioclase, ilmenite, cristobalite and troilite. Most Zr-rich minerals are unaltered, however, some tranquillityite is replaced by a complex intergrowth of zirconolite, baddeleyite, ilmenite and fayalite, suggesting that the mineral became unstable during crystallization. Several baddeleyite crystals have also undergone alteration to secondary zircon. Zirconolite was analysed in thin section 10047,11 and tranquillityite and baddeleyite in 10047,227, using a ∼6 μm primary ion beam. Both zirconolite and tranquillityite have significant U and low initial Pb contents, and are highly suitable for Pb/Pb dating. Fifteen analyses of zirconolite give a 207Pb/206Pb age of 3708 ± 7 Ma (207Pb/206Pb:204Pb/206Pb isochron; 95% confidence, including renormalisation of ratios) and twenty-five analyses of tranquillityite give 3710 ± 6 Ma. The 207Pb/206Pb dates are consistent with each other and refine results from an earlier study. Baddeleyite data were less precise, mainly due to lower secondary ionisation efficiency. Our results show that zirconolite and tranquillityite can provide precise isotopic dates and, given their presence in other samples, they represent important U-Pb chronometers for refining lunar geology.  相似文献   

16.
1 Introduction Much attention has been paid to the structure, magmatism and sedimentation associated with the Indosinian Orogeny within the South China Block (SCB) since Deprat (1914) and Fromagat (1932) proposed the term “Indosinian movement” based on two unconformities between pre-Norian and pre-Rhaetian times during the early Triassic in Vietnam. However, this timing has been debated in terms of the Indosinian tectonic evolution within the SCB (Guo et al., 1983; Hsü et al., 1990…  相似文献   

17.
A camptonite dike swarm (Agardag alkali-basalt complex) in the western part of the Sangilen Upland abounds in mantle xenoliths. Mineralogical, petrographic, and petrochemical studies show that the dikes are composed of lamprophyres of two groups, basic and ultrabasic. Ar/Ar dating of amphibole and phlogopite megacrysts gives an intrusion age for the dikes of 443.0 ± 1.3 Ma. 206Pb/238U dating of zircon from a glomeroporphyritic intergrowth in camptonite from one of the dikes yielded a core age of 489.0 ± 5.4 Ma. This corresponds to the time of formation of the Chzhargalanta granite–leucogranite complex (489.4 ± 2.6 Ma). The 206Pb/238U age of the zircon rim is 444.0 ± 7.5 Ma. The ages obtained by Ar/Ar dating of amphibole and biotite megacrysts and by U/Pb dating of the magmatic rim of zircon crystal from the camptonite coincide within the dating error, which indicates that the camptonite dikes formed in the Late Ordovician. These dikes are the oldest-known example of mantle-derived xenoliths in mafic volcanic rocks from an off-craton setting. These are samples of the Upper Ordovician lithospheric mantle.  相似文献   

18.
The La Hague region of northwest France exposes Palaeo-Proterozoic Icartian gneisses which were reworked and intruded by calc-alkaline plutonic rocks during the Cadomian Orogeny (about 700–500 Ma). 40Ar/39Ar mineral cooling ages have been determined to clarify the timing of the regional metamorphism of orthogneisses and the emplacement of quartz diorite plutons in this region. Metamorphic amphiboles within Icartian gneisses display discordant 40Ar/39Ar apparent age spectra interpreted to result from limited Variscan (about 350–300 Ma) overprinting of intracrystalline argon systems which initially cooled through post-metamorphic hornblende closure temperatures during the Cadomian at about 600 Ma. Igneous hornblendes from the weakly foliated Jardeheu and Moulinet quartz diorites record isotope correlation ages of 599 ± 2 and 561 ± 2 Ma, respectively. Igneous hornblende and biotite from foliated quartz diorite on the nearby Channel Island of Alderney record isotope correlation ages of about 560 Ma. The results imply that metamorphic and plutonic events in the La Hague-Alderney region were approximately contemporaneous with those recorded on Guernsey and Sark, which are thus likely to have formed part of the same tectonic block during the Cadomian Orogeny.  相似文献   

19.
A variety of pre-Variscan granitoids and two Variscan monzogranites occurring in the central and western parts of the Lusatian Granodiorite Complex (LGC), Saxonia were dated by the single zircon evaporation method, complemented by whole rock Nd isotopic data and Rb-Sr whole rock and mineral ages. The virtually undeformed pre-Variscan granitoids constitute a genetically related, mostly peraluminous magmatic suite, ranging in composition from two-mica granodiorite, muscovitebearing biotite quartz diorite (tonalite) and granodiorite to biotite granodiorite and monozogranite. 207Pb/206Pb isotopic ratios derived from the evaporation of single zircons separated from 13 samples representing the above rock types display complex spectra which document significant involvement of late Archaean to late Proterozoic continental crust in the generation of the granitoid melts. Mean 207/Pb/206Pb ages for zircons considered to reflect the time of igneous emplacement range between 542 ± 9 and 587 ± 17 Ma, typical of the Cadomian event elsewhere in Europe, whereas zircon xenocrysts yielded ages between 706 ± 13 and 2932 ± Ma. Detrital zircons from greywackes intruded by the granitoids and found as xenoliths in them provided ages between 1136 ± 22 and 2 574 ± Ma. Rb-Sr whole rock data display good to reasonable linear arrays that, with one exception, correspond to the emplacement ages established for the zircons. Two post-tectonic Variscan monzogranites yielded identical 207/Pb/206Pb single zircon ages of 304 ± 14 Ma and record the end of Variscan granitoid activity in the LGC.The variations in Nd and Sr isotopic data of the Cadomian granitoids are consistent with an origin through the melting and mixing of Archean to early Proterozoic crust with variable proportions of mantle-derived, juvenile magmas. Such mixing may have occurred at the base of an active continental margin or in an intraplate setting through plume-related magmatic underplating. The LGC is interpreted here as a Cadomian (Pan-African) terrane distinct from adjacent Variscan and pre-Variscan domains, the origin of which remains obscure and which probably became involved in Palaeozoic terrane accretion late in the Variscan event.  相似文献   

20.
Correct interpretation of zircon ages from high-grade metamorphic terrains poses a major challenge because of the differential response of the U–Pb system to metamorphism, and many aspects like pressure–temperature conditions, metamorphic mineral transformations and textural properties of the zircon crystals have to be explored. A large (c. 450?km2) coherent migmatite complex was recently discovered in the Bohemian Massif, Central European Variscides. Rocks from this complex are characterized by granulite- and amphibolite-facies mineral assemblages and, based on compositional and isotopic trends, are identified as the remnants of a magma body derived from mixing between tonalite and supracrustal rocks. Zircon crystals from the migmatites are exclusively large (200–400?μm) and yield 207Pb/206Pb evaporation ages between 342–328?Ma and single-grain zircon fractions analysed by U–Pb ID-TIMS method plot along the concordia curve between 342 and 325?Ma. High-resolution U–Pb SHRIMP analyses substantiate the existence of a resolvable age variability and yield older 206Pb/238U ages (342–330?Ma, weighted mean age?=?333.6?±?3.1?Ma) for inner zone domains without relict cores and younger 206Pb/238U ages (333–320?Ma, weighted mean age?=?326.0?±?2.8?Ma) for rim domains. Pre-metamorphic cores were identified only in one sample (206Pb/238U ages at 375.0?±?3.9, 420.3?±?4.4 and 426.2?±?4.4?Ma). Most zircon ages bracket the time span between granulite-facies metamorphism in the Bohemian Massif (~345?Ma) and the late-Variscan anatectic overprint (Bavarian phase, ~325?Ma). It is argued that pre-existing zircon was variously affected by these metamorphic events and that primary magmatic growth zones were replaced by secondary textures as a result of diffusion reaction processes and replacement of zircon by dissolution and recrystallization followed by new zircon rim growth. Collectively, the results show that the zircons equilibrated during high-grade metamorphism and record partial loss of radiogenic Pb during post-peak granulite events and new growth under subsequent anatectic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号