首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Preliminary mission design for planetary satellite orbiters requires a deep knowledge of the long term dynamics that is typically obtained through averaging techniques. The problem is usually formulated in the Hamiltonian setting as a sum of the principal part, which is given through the Kepler problem, plus a small perturbation that depends on the specific features of the mission. It is usually derived from a scaling procedure of the restricted three body problem, since the two main bodies are the Sun and the planet whereas the satellite is considered as a massless particle. Sometimes, instead of the restricted three body problem, the spatial Hill problem is used. In some cases the validity of the averaging is limited to prohibitively small regions, thus, depriving the analysis of significance. We find this paradigm at Enceladus, where the validity of a first order averaging based on the Hill problem lies inside the body. However, this fact does not invalidate the technique as perturbation methods are used to reach higher orders in the averaging process. Proceeding this way, we average the Hill problem up to the sixth order obtaining valuable information on the dynamics close to Enceladus. The averaging is performed through Lie transformations and two different transformations are applied. Firstly, the mean motion is normalized whereas the goal of the second transformation is to remove the appearance of the argument of the node. The resulting Hamiltonian defines a system of one degree of freedom whose dynamics is analyzed.  相似文献   

2.
This article provides a method for finding initial conditions for perturbed frozen orbits around inhomogeneous fast rotating asteroids. These orbits can be used as reference trajectories in missions that require close inspection of any rigid body. The generalized perturbative procedure followed exploits the analytical methods of relegation of the argument of node and Delaunay normalisation to arbitrary order. These analytical methods are extremely powerful but highly computational. The gravitational potential of the heterogeneous body is firstly stated, in polar-nodal coordinates, which takes into account the coefficients of the spherical harmonics up to an arbitrary order. Through the relegation of the argument of node and the Delaunay normalization, a series of canonical transformations of coordinates is found, which reduces the Hamiltonian describing the system to a integrable, two degrees of freedom Hamiltonian plus a truncated reminder of higher order. Setting eccentricity, argument of pericenter and inclination of the orbit of the truncated system to be constant, initial conditions are found, which evolve into frozen orbits for the truncated system. Using the same initial conditions yields perturbed frozen orbits for the full system, whose perturbation decreases with the consideration of arbitrary homologic equations in the relegation and normalization procedures. Such procedure can be automated for the first homologic equation up to the consideration of any arbitrary number of spherical harmonics coefficients. The project has been developed in collaboration with the European Space Agency (ESA).  相似文献   

3.
We describe an approximate numerical-analytical method for calculating the perturbations of the elements of distant satellite orbits. The model for the motion of a distant satellite includes the solar attraction and the eccentricity and ecliptic inclination of the orbit of the central planet. In addition, we take into account the variations in planetary orbital elements with time due to secular perturbations. Our work is based on Zeipel’s method for constructing the canonical transformations that relate osculating satellite orbital elements to the mean ones. The corresponding transformation of the Hamiltonian is used to construct an evolution system of equations for mean elements. The numerical solution of this system free from rapidly oscillating functions and the inverse transformation from the mean to osculating elements allows the evolution of distant satellite orbits to be studied on long time scales on the order of several hundred or thousand satellite orbital periods.  相似文献   

4.
Gravity-gradient perturbations of the attitude motion of a tumbling tri-axial satellite are investigated. The satellite center of mass is considered to be in an elliptical orbit about a spherical planet and to be tumbling at a frequency much greater than orbital rate. In determining the unperturbed (free) motion of the satellite, a canonical form for the solution of the torque-free motion of a rigid body is obtained. By casting the gravity-gradient perturbing torque in terms of a perturbing Hamiltonian, the long-term changes in the rotational motion are derived. In particular, far from resonance, there are no long-period changes in the magnitude of the rotational angular momentum and rotational energy, and the rotational angular momentum vector precesses abound the orbital angular momentum vector.At resonance, a low-order commensurability exists between the polhode frequency and tumbling frequency. Near resonance, there may be small long-period fluctuations in the rotational energy and angular momentum magnitude. Moreover, the precession of the rotational angular momentum vector about the orbital angular momentum vector now contains substantial long-period contributions superimposed on the non-resonant precession rate. By averaging certain long-period elliptic functions, the mean value near resonance for the precession of the rotational angular momentum vector is obtained in terms of initial conditions.  相似文献   

5.
The Hamiltonian of three point masses is averaged over fast variablel and ll (mean anomalies) The problem is non-planar and it is assumed that two of the bodies form a close pair (stellar three-body problem). Only terms up to the order of (a/á)4 are taken into account in the Hamiltonian, wherea andá are the corresponding semi-major axes. Employing the method of elimination of the nodes, the problem may be reduced to one degree of freedom. Assuming in addition that the angular momentum of the close binary is much smaller than the angular momentum of the motion of the binary around a third body, we were able to solve the equation for the eccentricity changes in terms of the Jacobian elliptic functions.  相似文献   

6.
By using the method of separating rapid and slow subsystem, we obtain an analytical solution for a stable three-dimensional motion of a circumbinary planet around a binary star. We show that the motion of the planet is more complicated than it was obtained for this situation analytically by Farago and Laskar (2010). Namely, in addition to the precession of the orbital plane of the planet around the angular momentum of the binary (found by Farago and Laskar (2010)), there is simultaneously the precession of the orbital plane of the planet within the orbital plane. We show that the frequency of this additional precession is different from the frequency of the precession of the orbital plane around the angular momentum of the binary. We demonstrate that this problem is mathematically equivalent both to the problem of the motion of a satellite around an oblate planet and to the problem of a hydrogen Rydberg atom in the field of a high-frequency linearly-polarized laser radiation, thus discovering yet another connection between astrophysics and atomic physics. We point out that all of the above physical systems have a higher than geometrical symmetry, which is a counterintuitive result. In particular, it is manifested by the fact that, while the elliptical orbit of the circumbinary planet (around a binary star) or of the satellite (around an oblate planet) or of the Rydberg electron (in the laser field) undergoes simultaneously two types of the precession, the shape of the orbit does not change. The fact that a system, consisting of a circumbinary planet around a binary star, possesses the hidden symmetry should be of a general physical interest. Our analytical results could be used for benchmarking future simulations.  相似文献   

7.
A method of general perturbations, based on the use of Lie series to generate approximate canonical transformations, is applied to study the effects of gravity-gradient torque on the rotational motion of a triaxial, rigid satellite. The center of mass of the satellite is constrained to move in an elliptic orbit about an attracting point mass. The orbit, which has a constant inclination, is free to precess and spin. The method of general perturbations is used to obtain the Hamiltonian for the nonresonant secular and long-period rotational motion of the satellite to second order inn/0, wheren is the orbital mean motion of the center of mass and0 is a reference value of the magnitude of the satellite's rotational angular velocity. The differential equations derivable from the transformed Hamiltonian are integrable and the solution for the long-term motion may be expressed in terms of Jacobian elliptic functions and elliptic integrals. Geometrical aspects of the long-term rotational motion are discussed and a comparison of theoretical results with observations is made.  相似文献   

8.
Exploring the global dynamics of a planetary system involves computing integrations for an entire subset of its parameter space. This becomes time-consuming in presence of a planet close to the central star, and in practice this planet will be very often omitted. We derive for this problem an averaged Hamiltonian and the associated equations of motion that allow us to include the average interaction of the fast planet. We demonstrate the application of these equations in the case of the μ Arae system where the ratio of the two fastest periods exceeds 30. In this case, the effect of the inner planet is limited because the planet’s mass is one order of magnitude below the other planetary masses. When the inner planet is massive, considering its averaged interaction with the rest of the system becomes even more crucial.  相似文献   

9.
In the author's treatment of the ideal resonance problem (1988), a non-canonical transformation was employed to bring the original Hamiltonian to a form amenable to the use of standard action-angle variables. Though the strictly Hamiltonian form of equations of motion was thus compromised, their general form was maintained, allowing transformation of the system to arbitrary order and forestalling the introduction of elliptic functions until a final explicit integration required in this approach. The general theory of such transformations is presented, and some points regarding their application are discussed, leading to the conclusion that the approach is practically limited to systems with a single degree of freedom only.  相似文献   

10.
The space telescope Search for Terrestrial Exo-Planets (STEP) employed a method of sub-pixel technology which ensures that the astrometric accuracy of the telescope on the focal plane is at the order of 1 μas. This kind of astrometric precision is promising to detect the earth-like planets beyond the solar system. In this paper, we analyze the influence of some key factors, including the errors in the stellar proper motion, parallax, the optical center of the system, and the velocity and position of the satellite, on the detection of exoplanets. We propose a relative angular distance method to evaluate the non-linear terms in the variation of star-pair's angular distance caused by the possibly existing exoplanet. This method could avoid the direct influence of measuring errors of the position and proper motion of the reference stars. Supposing that there are eight reference stars and a target star with a planet system in the same field of view, we simulate their five-year observational data, and use the least square method to get the parameters of the planet orbit. Our results show that the method is robust to detect terrestrial planets based on the 1 μas precision of STEP.  相似文献   

11.
We suggest a new method for predicting the phenomena observed in Jovian system of Galilean satellites that takes into account the planet’s phase effect. The method allows one to determine the geocentric times of the contacts of the satellite and its shadow with the illuminated part of the planet’s visible disk that occur near its inferior geocentric and inferior heliocentric conjunctions, respectively. The calculation is performed in the orthographic approximation for the geometric center of the satellite and its shadow by taking into account the curvature of the satellite’s orbit and the visible flattening of Jovian disk. The correction for the phase to the satellite’s contact time is determined from the phase shift of the center of the planet’s disk.  相似文献   

12.
《Planetary and Space Science》1999,47(6-7):917-920
The dynamics of the satellite–planet system under the influence of the Sun is analyzed in the rotating frame of the planet. This system is described by the well-established, restricted three-body potential. In order to break the capture/escape scenario in temporary satellites, a scattering mechanism by an existing planetary satellite is suggested to account for permanent capture of guest bodies.  相似文献   

13.
Anthony Mallama   《Icarus》2007,192(2):576-581
A model for computing the brightness of a satellite in the shadow of a planet is described, which takes into account the Sun–planet–satellite–sensor geometry, the satellite bi-directional reflectance function, and the refraction of sunlight in the planetary atmosphere. Synthetic light curves for eclipse ingress or egress of the five large satellites of Uranus are generated. The model luminosities can be fitted to photometric observations in order to calculate a precise distance between the centers of the satellite and the planet. Alternately, when the satellite ephemeris is accurately known the atmospheric state of the planet can be studied.  相似文献   

14.
15.
We show that time scaling transformations for Hamiltonian systems are infinitesimal canonical transformations in a suitable extended phase space constructed from geometrical considerations. We compute its infinitesimal generating function in some examples: regularization and blow up in celestial mechanics, classical mechanical systems with homogeneous potentials and Scheifele theory of satellite motion.Research partially supported by CONACYT (México), Grant PCCBBNA 022553 and CICYT (Spain).  相似文献   

16.
A Hamiltonian model is constructed for the spin axis of a planet perturbed by a nearby planet with both planets in orbit about a star. We expand the planet–planet gravitational potential perturbation to first order in orbital inclinations and eccentricities, finding terms describing spin resonances involving the spin precession rate and the two planetary mean motions. Convergent planetary migration allows the spinning planet to be captured into spin resonance. With initial obliquity near zero, the spin resonance can lift the planet’s obliquity to near 90\(^\circ \) or 180\(^\circ \) depending upon whether the spin resonance is first or zeroth order in inclination. Past capture of Uranus into such a spin resonance could give an alternative non-collisional scenario accounting for Uranus’s high obliquity. However, we find that the time spent in spin resonance must be so long that this scenario cannot be responsible for Uranus’s high obliquity. Our model can be used to study spin resonance in satellite systems. Our Hamiltonian model explains how Styx and Nix can be tilted to high obliquity via outward migration of Charon, a phenomenon previously seen in numerical simulations.  相似文献   

17.
The disappearance of some integrals of motion when two or more resonance conditions are approached at the same time is explained. As an example a Hamiltonian of three degrees of freedom is considered in action-angle variables which in zero order represents three harmonic oscillators, while the perturbation contains two trigonometric terms. One integral disappears if two appropriate resonant conditions are approached sufficiently closely.  相似文献   

18.
An analytical theory is presented for determining the motion described by a Hamiltonian of two degrees of freedom. Hamiltonians of this type are representative of the problem of an artificial Earth satellite in a near-circular orbit or a near-equatorial orbit and in resonance with a longitudinal dependent part of the geopotential. Using the classical Bohlin-von Zeipel procedure the variation of the elements is developed through a generating function expressed as a trigonometrical series. The coefficients of this series, determined in ascending powers of an auxiliary parameter, are the solutions of paired sets of ordinary differential equations and involve elliptic functions and quadrature. The first order solution accounts for the full variation of the resonance terms with the second coordinate.  相似文献   

19.
For a conservative Hamiltonian system with two degrees of freedom, in the case where the two frequencies at an equilibrium of the elliptic type are commensurable or close to being so, completely canonical transformations can be formally constructed in explicit terms under the form of Lie transforms to the effect that it renders one angle coordinate ignorable and gives to the transformed Hamiltonian the form of what Garfinkel calls an ideal problem of resonance. For the problem so reduced, the unnormalized residual being omitted, natural families of periodic orbits are analyzed, their emergence from the equilibrium is discussed as well as their characteristic exponents. Special attention is given to the evolution of the system of natural families under a continuous transition through the resonance band.  相似文献   

20.
We consider a model of spin-orbit interaction, describing the motion of an oblate satellite rotating about an internal spin-axis and orbiting about a central planet. The resulting second order differential equation depends upon the parameters provided by the equatorial oblateness of the satellite and its orbital eccentricity. Normal form transformations around the main spin-orbit resonances are carried out explicitly. As an outcome, one can compute some invariants; the fact that these quantities are not identically zero is a necessary condition to prove the existence of nearby periodic orbits (Birkhoff fixed point theorem). Moreover, the nonvanishing of the invariants provides also the stability of the spin-orbit resonances, since it guarantees the existence of invariant curves surrounding the periodic orbit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号