首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
REE in the Great Whale River estuary, northwest Quebec   总被引:1,自引:0,他引:1  
We report rare earth element (REE) concentrations of a longitudinal profile within the estuary of the Great Whale River in northwest Quebec and in Hudson Bay. All of the measured REE have concentrations less than those predicted by conservative mixing of seawater and river water, demonstrating removal of the REE from solution. REE removal is rapid, occurring primarily at salinities less than 2‰. Removal of the REE is greatest for the light REE, and ranges from about 7% for the light REE to no more than 40% for the heavy REE. Fe removal is essentially complete at low salinity. The shape of the Fe and REE vs. salinity profiles is not consistent with a simple model of destabilization and coagulation of iron and REE-bearing colloidal material. A linear relationship between the activity of free ion REE3+ and pH is consistent with a simple ion-exchange model for REE removal.Surface and subsurface samples of Hudson Bay seawater are characterized by high REE concentrations and high La/Yb relative to average seawater. The subsurface sample has a Nd concentration of 100 pmol/kg and an εNd of −29.3 ± 0.3. These characteristics are consistent with the high REE concentration, high La/Yb, and low εNd of river inputs into Hudson Bay. These results indicate that rivers draining the Canadian Shield are a major source of non-radiogenic Nd and REE to the Atlantic Ocean. We estimate that outflow of water from Hudson Bay to the Labrador Sea could supply ≈ 30% of the non-radiogenic Nd in North Atlantic Deep Water.  相似文献   

2.
New data for the direct measurement of the isotopic composition of neodymium in Atlantic Ocean seawater are compared with previous measurements of Pacific Ocean seawater and ferromanganese sediments from major ocean basins. Data for Atlantic seawater are in excellent agreement with Nd isotopic measurements made on Atlantic ferromanganese sediments and are distinctly different from the observed compositions of Pacific samples. These results clearly demonstrate the existence of distinctive differences in the isotopic composition of Nd in the waters of the major ocean basins and are characteristic of the ocean basin sampled. The average εNd(0) values for the major oceans as determined by data from seawater and ferromanganese sediments are as follows: Atlantic Ocean,εNd(0) ? ?12 ± 2; Indian Ocean,εNd(0) ? ?8 ± 2; Pacific Ocean,εNd(0) ? ?3 ± 2. These values are considerably less than εNd(0) value sources with oceanic mantle affinities indicating that the REE in the oceans are dominated by continental sources. The difference in the absolute abundance of143Nd between the Pacific and Atlantic Oceans corresponds to ~106 atoms143Nd per gram of seawater. The correspondence between the143Nd/144Nd in seawater and in the associated sediments suggests the possible application of this approach to paleo-oceanography.Distinctive differences in εNd(0) values are observed in the Atlantic Ocean between deep-ocean water associated with North Atlantic Deep Water and near-surface water. This suggests that North Atlantic Deep Water may be relatively well mixed with respect to Nd isotopic composition whereas near-surface water may be quite heterogeneous, reflecting different sources for surface waters relative to deep water. This suggests that it may be possible to distinguish the sources of water masses within an ocean basin on the basis of Nd isotopic composition.The Nd isotopic variations in seawater are used to relate the residence time of Nd and mixing rates between the oceans.  相似文献   

3.
Records of the past neodymium (Nd) isotope composition of the deep ocean can resolve ambiguities in the interpretation of other tracers. We present the first Nd isotope data for sedimentary benthic foraminifera. Comparison of the ?Nd of core-top foraminifera from a depth transect on the Cape Basin side of the Walvis Ridge to published seawater data, and to the modern dissolved SiO2–?Nd trend of the deep Atlantic, suggests that benthic foraminifera represent a reliable archive of the deep water Nd isotope composition. Neodymium isotope values of benthic foraminifera from ODP Site 1264A (Angola Basin side of the Walvis Ridge) from the last 8 Ma agree with Fe–Mn oxide coatings from the same samples and are also broadly consistent with existing fish teeth data for the deep South Atlantic, yielding confidence in the preservation of the marine Nd isotope signal in all these archives. The marine origin of the Nd in the coatings is confirmed by their marine Sr isotope values. These important results allow application of the technique to down-core samples.The new ?Nd datasets, along with ancillary Cd/Ca and Nd/Ca ratios from the same foraminiferal samples, are interpreted in the context of debates on the Neogene history of North Atlantic Deep Water (NADW) export to the South Atlantic. In general, the ?Nd and δ13C records are closely correlated over the past 4.5 Ma. The Nd isotope data suggest strong NADW export from 8 to 5 Ma, consistent with one interpretation of published δ13C gradients. Where the ?Nd record differs from the nutrient-based records, changes in the pre-formed δ13C or Cd/Ca of southern-derived deep water might account for the difference. Maximum NADW-export for the entire record is suggested by all proxies at 3.5–4 Ma. Chemical conditions from 3 to 1 Ma are totally different, showing, on average, the lowest NADW export of the record. Modern-day values again imply NADW export that is about as strong as at any stage over the past 8 Ma.  相似文献   

4.
Nd and Sr isotopic variations of Early Paleozoic oceans   总被引:4,自引:0,他引:4  
We report143Nd/144Nd and87Sr/86Sr isotopic data for Lower Paleozoic phosphatic brachiopod and conodont fossils. The data appear to represent the isotopic values of Early Paleozoic seawaters. We show that different paleoceanic water masses can be distinguished on the basis of their εNd signatures. Two sides of what is classically considered one circulating Iapetus Ocean have different εNd signatures from at least the Middle Cambrian until the Late Middle Ordovician. We infer two ocean basins between North America and Baltica separated by an island and/or shoal circulation barrier. Thus, it appears necessary to redefine the area of the Iapetus Ocean. The εNd signature of the redefined smaller Iapetus Ocean ranges from −5 to −9 and the εNd signature of the larger, coeval Panthalassa Ocean, including part of what was formerly called the Iapetus Ocean, ranges from −10 to −20. The first time that the εNd values are identical in these two water masses is coincident with the onset of the Taconic Orogeny of North America. The paleogeographic geometry we infer from this work is consistent with paleogeographic reconstructions having the Baltica continent at very high latitudes in the Early/Middle Ordovician. The εNd and faunal distribution support temperature-controlled conodont faunal provinciality. A rough mean age for exposed continental crust in the Early Paleozoic can be obtained from the average εNd value of Early Paleozoic Oceans. The data suggest that the mean age of the crust as a function of time has remained essentially constant or even decreased during the past 500 Ma, and suggest substantial additions of new crust to the continents through the Phanerozoic.  相似文献   

5.
Archean komatiites, high-Mg basalts and tholeiites from the North Star Basalt and the Mount Ada Basalt formations of the Talga-Talga Subgroup, Warrawoona Group, Pilbara Block, Western Australia, define a linear correlation on the normal143Nd/144Nd vs.147Sm/144Nd isochron plot. The data give an age of 3712 ± 98 Ma and initialεNd(T) of +1.64 ± 0.40. The 3712 ± 98 Ma date is consistent with the regional stratigraphic sequence and available age data and the SmNd linear array may be interpreted as an isochron giving the eruption age of the Talga-Talga Subgroup. An alternative interpretation is that the isochron represents a mixing line giving a pre-volcanism age for the Subgroup. Consideration of geochemical and isotopic data indicates that the true eruptive age of the Talga-Talga Subgroup is possibly closer to about 3500 Ma. Regardless of the age interpretation, the new Nd isotopic data support an existence of ancient LREE-depleted reservoirs in the early Archean mantle, and further suggest that source regions for the Pilbara volcanic rocks were isotopically heterogeneous, withεNd(T) values ranging from at least 0 to +4.0.  相似文献   

6.
Sr and Nd isotope analyses and REE patterns are presented for a suite of well-documented mantle-derived xenoliths from the French Massif Central. The xenoliths include spinel harzburgites, spinel lherzolites and some pyroxenites. They show a wide range of textures from undeformed protogranular material through porphyroclastic to equigranular and recrystallised secondary types. Textural differences are strongly linked to trace element geochemistry and variations in radiogenic isotope ratios. Many undeformed protogranular xenoliths are Type IA LREE-depleted with MORB-type εSr values between − 30.7 and − 23.6, and εNd values + 13.9 to + 9.4. A second group of undeformed xenoliths are Type IB LREE-enriched with higher εSr values (− 22.7 to − 10.6) and lower εNd values (+ 11.9 to + 5.6). Deformed xenoliths with porphyroclastic, equigranular and secondary recrystallised textures are all Type IB (LREE-enriched, εNd < 6.4, εSr > 11.8). It is proposed that two separate events have given rise to the observed mixing arrays: (1) MORB-source depleted mantle was enriched by a component derived from an enriched mantle. Deformation and recrystallisation accompanied this event. (2) Subsequently, unenriched MORB-source mantle interacted with magmas chemically akin to the host basalts, and enrichment occurred with little deformation. Hypotheses of Tertiary mantle diapirism resulting in isochemical deformation and refinement of protogranular mantle to equigranular mantle are untenable because of differences in REE patterns and isotopic ratios between different textural groups.  相似文献   

7.
Geochemical analyses of dikes, sills, and volcanic rocks of the Mesozoic Appalachian Tholeiite (MAT) Province of the easternmost United States provide evidence that continental tholeiites are derived from continental lithospheric mantle sources that are genetically and geochronologically related to the overlying continental crust. Nineteen olivine tholeiites and sixteen quartz tholeiites from the length of this province, associated in space and time with the last opening of the Atlantic, display significant isotopic heterogeneity: initial εNd = +3.8 to −5.7; initial 87Sr/86Sr= 0.7044−0.7072; 206Pb/204Pb= 17.49−19.14; 207Pb/204Pb= 15.55−15.65; 208Pb/204Pb= 37.24−39.11. In PbPb space, the MAT define a linear array displaced above the field for MORB and thus resemble oceanic basalts with DUPAL Pb isotopic traits. A regression of this array yields a secondary PbPb isochron age of ≈ 1000 Ma (μ1 = 8.26), similar to Sm/Nd isochrons from the southern half of the province and to the radiometric age of the Grenville crust underlying easternmost North America. The MAT exhibit significant trace element ratio heterogeneity (e.g., Sm/Nd= 0.226−0.327) and have trace element traits similar to convergent margin magmas [e.g., depletions of Nb and Ti relative to the rare earth elements on normalized trace element incompatibility diagrams, Ba/Nb ratios (19–75) that are significantly greater than those of MORB, and low TiO2 (0.39–0.69%)].Geochemical and geological considerations very strongly suggest that the MAT were not significantly contaminated during ascent through the continental crust. Further, isotope and trace element variations are not consistent with the involvement of contemporaneous MORB or OIB components. Rather, the materials that control the MAT incompatible element chemistry were derived from subcontinental lithospheric mantle. Thus: (1) the MAT/arc magma trace element similarities; (2) the PbPb and Sm/Nd isochron ages; and (3) the need for a method of introducing an ancient (> 2−3 Ga) Pb component into subcontinental mantle that cannot be much older than 1 Ga leads to a model whereby the MAT were generated by the melting of sediment-contaminated arc mantle that was incorporated into the continental lithosphere during arc activity preceding the Grenville Orogeny (≈ 1000 Ma).  相似文献   

8.
Gas concentrations and isotopic compositions of water have been measured in hydrothermal waters from 13°N on the East Pacific Rise. In the most Mg-depleted samples ( 5 × 10−3 moles/kg) the gas concentrations are: 3–4.5 × 10−5 cm3 STP/kg helium, 0.62–1.24 cm3 STP/kg CH4, 10.80–16.71 × 10−3 moles/kg CO2. The samples contain large quantities (95–126 cm3/kg) of H2 and some carbon monoxide (0.26–0.36 cm3/kg) which result from reaction with the titanium sampling bottles. δ13C in methane and CO2 (−16.6 to −19.5 and −4.1 to −5.5 respectively) indicate temperatures between 475 and 550°C, whereas δ13CCO is compatible with formation by reduction of CO2 on Ti at 350°C close to the sampling temperature.3He/4He are very homogeneous at (7.5 ± 0.1)RA(3He/4He = 1.0 × 10−5) and very similar to already published data as well as CH4/3He ratios between 1.4 and 2.1 × 106.18O and D in water show enrichments from 0.39 to 0.69‰ and from 0.62 to 1.49‰ respectively. These values correspond to W/R ratios of 0.4–7. The distinct18O enrichments indicate that the isotopic composition of the oceans is not completely buffered by the hydrothermal circulations. The3He-enthalpy relationship is discussed in terms of both hydrothermal heat flux and3He mantle flux.  相似文献   

9.
Trace element and isotopic characteristics of late Carboniferous to early Permian minettes and kersantites have been determined. These lamprophyres have been sampled throughout the Western European Hercynian orogen, from Brittany to the west to Schwarzwald to the east. In spite of sharp petrological differences reflected by mineralogy and major element geochemistry, minettes and kersantites exhibit close identity with respect to trace element and isotopic features. These features comprise enrichment in incompatible elements, highCs/Rb and lowCe/Pb ratios, Ta and Ti relative depletion, high abundance in transition elements and highNi/Mg ratios. Pb isotope ratios are undistinguishable from those measured on Hercynian continental crust. Initial143Nd/144Nd ratios are between0.5120 (εi −5) and0.5122 (εi −1) for minettes and kersantites whereas initial87Sr/86Sr ratios vary between 0.7055–0.710 for minettes and 0.707–0.708 for kersantites. No simple mixing relations are visible on RbSr and SmNd isochron diagrams. The exceptional homogeneity of these geochemical characteristics along a 1000 km traverse does not allow for an hypothesis of enrichment through upper level assimilation and thus leads to propose that these rocks originated through melting of a mantle enriched by recycling of crustal material.  相似文献   

10.
The evolution of interocean carbon isotopic gradients over the last 2.5 m.y. is examined using high-resolution δ13C records from deep sea cores in the Atlantic and Pacific Oceans. Over much of the Northern Hemisphere ice ages, relative reductions in North Atlantic Deep Water production occur during ice maxima. From 2.5 to 1.5 Ma, glacial reductions in NADW are less than those observed in the late Pleistocene. Glacial suppression of NADW intensified after 1.5 Ma, earlier than the transition to larger ice sheets around 0.7 Ma. At a number of times during the Pleistocene, δ13C values at DSDP Site 607 in the North Atlantic were indistinguishable from eastern equatorial Pacific δ13C values from approximately the same depth (ODP Site 677), indicating significant incursions of low δ13C water into the deep North Atlantic. Atlantic/Pacific δ13C values converge during glaciations between 1.13-1.05 m.y., 0.83-0.70 m.y., and 0.46-0.43 m.y. This represents a pseudo-periodicity of approximately 300 kyr which cannot easily be ascribed to global ice volume or orbital forcing. This partial decoupling, at low frequencies, of the δ18O and δ13C signals at Site 607 indicates that variations in North Atlantic deep water circulation cannot be viewed simply as a linear response to ice sheet forcing.  相似文献   

11.
Trace elements and isotopic compositions of whole rocks and mineral separates are reported for 15 spinel-bearing harzburgite and lherzolite xenoliths from southeastern Australia. These samples have an exceedingly large range in isotopic compositions, with87Sr/86Sr ranging from 0.70248 to 0.70834 and εNd values ranging from +12.7 to −6.3. This range in isotopic compositions can be found in xenoliths from a single locality. The isotopic compositions of clinopyroxene separates and their whole rocks were found to be different in some xenoliths. Samples containing small glass pockets, which replace pre-existing hydrous minerals, generally show only small differences in isotopic composition between clinopyroxene and whole rock. In a modally metasomatized peridotite, significant differences in the Sr and Nd isotopic compositions of a coexisting phlogopite-clinopyroxene pair are present. Coexisting clinopyroxenes and orthopyroxenes from an anhydrous lherzolite have Sr isotopic compositions that are significantly different (0.70248 versus 0.70314), and yield an apparent age of 625 Ma, similar to that found previously by Dasch and Green [1]. However, the Nd isotopic compositions of the clinopyroxene and orthopyroxene are identical indicating recent (within 40 Ma) re-equilibration of Nd.Sr and Nd concentrations in the whole rocks and clinopyroxenes show an excellent positive correlation, and have an average Sr/Nd ratio of 15. This ratio is similar to the primitive mantle value, as well as that found in primitive MORBs and OIBs, but is much lower than that measured in island arc basalts and what might be predicted for a subduction zone-derived fluid. This indicates that a significant proportion of the Sr and Nd in these peridotites is introduced as a basaltic melt with intraplate chemical characteristics.The isotopic compositions of the peridotites reflect long-term, small-scale heterogeneities in the continental lithospheric mantle, and are in marked contrast to the near uniform isotopic compositions of the host alkali basalts (87Sr/86Sr= 0.7038–0.7041andεNd = +3.6 to +2.9). A minimum of three evolutionary stages are identified in the growth of the continental lithospheric mantle: an early basalt depletion event, recording the initial development and stabilization of the lithospheric mantle, followed by at least two enrichment episodes. These observations are consistent with continental lithospheric mantle growth involving the underplating of refractory peridotite diapirs.  相似文献   

12.
Erciyes stratovolcano, culminating at 3917 m, is located in the Cappadocian region of central Anatolia. During its evolution, this Quaternary volcano produced pyroclastic deposits and lava flows. The great majority of these products are calc-alkaline in character and they constitute Kocdag and Erciyes sequences by repeated activities. Alkaline activity is mainly observed in the first stages of Kocdag and approximately first-middle stages of Erciyes sequences. Generally, Kocdag and Erciyes stages terminate by pyroclastic activities. The composition of lavas ranges from basalt to rhyolite (48.4–70.5 wt.% SiO2). Calc-alkaline rocks are represented mostly by andesites and dacites. Some compositional differences between alkaline basaltic, basaltic and andesitic rocks were found; while the composition of dacites remain unchanged. All these volcanics are generally enriched in LIL and HFS elements relative to the orogenic values except Rb, Ba, Nb depleted alkaline basalt. 87Sr/86Sr and 143Nd/144Nd isotopic composition of the volcanics range between 0.703344–0.703964, 0.512920–0.512780 for alkaline basalts and change between 0.704322–0.705088, 0.512731–0.512630 for alkaline basaltic rocks whereas calc-alkaline rocks have relatively high Sr and Nd isotopic ratios (0.703434–0.705468, 0.512942–0.512600). Low Rb, Ba, Nb content with high Zr/Nb, low Ba/Nb, La/Yb ratio and low Sr isotopic composition suggest an depleted source component, while high Ba, Rb, Nb content with high La/Yb, Ba/Nb, low Zr/Nb and low 87Sr/86Sr ratios indicate an OIB-like mantle source for the generation of Erciyes alkaline magma. These elemental and ratio variations also indicate that the different mantle sources have undergone different degree of partial melting episodes. The depletion in Ba, Rb, Nb content may be explained by the removal of these elements from the source by slab-derived fluids which were released from pre-collisional subduction, modified the asthenospheric mantle. The chemically different mantle sources interacted with crustal materials to produce calc-alkaline magma. The Ba/Nb increase of calc-alkaline samples indicates the increasing input of crustal components to Erciyes volcanics. Sr and Nd isotopic compositions and elevated LIL and HFS element content imply that calc-alkaline magma may be derived from mixing of an OIB-like mantle melts with a subduction-modified asthenospheric mantle and involvement of crustal materials in intraplate environments.  相似文献   

13.
Sr and Nd isotope and geochemical investigations were performed on a remarkably homogeneous, high-silica rhyolite magma reservoir of the Aira pyroclastic eruption (22,000 years ago), southern Kyushu, Japan. The Aira caldera was formed by this eruption with four flow units (Osumi pumice fall, Tsumaya pryoclastic flow, Kamewarizaka breccia and Ito pyroclastic flow). Quite narrow chemical compositions (e.g., 74.0–76.5 wt% of SiO2) and Sr and Nd isotopic values (87Sr/86Sr=0.70584–0.70599 and Nd=−5.62 to −4.10) were detected for silicic pumices from the four units, with the exception of minor amounts of dark pumices in the units. The high Sr isotope ratios (0.7065–0.7076) for the dark pumices clearly suggest a different origin from the silicic pumices. Andesite to basalt lavas in pre-caldera (0.37–0.93 Ma) and post-caldera (historical) eruptions show lower 87Sr/86Sr (0.70465–0.70540) and higher Nd (−1.03 to +0.96) values than those of the Aira silicic and dark pumices. Both andesites of pre- and post-caldera stages are very similar in major- and trace-element characteristics and isotope ratios, suggesting that the both andesites had a same source and experienced the same process of magma generation (magma mixing between basaltic and dacitic magmas). Elemental and isotopic signatures deny direct genetic relationships between the Aira pumices and pre- and post-caldera lavas. Relatively upper levels of crust (middle–upper crust) are assumed to have been involved for magma generation for the Aira silicic and dark pumices. The Aira silicic magma was derived by partial melting of a separate crust which had homogeneous chemistry and limited isotope compositions, while the magma for the Aira dark pumice was generated by AFC mixing process between the basement sedimentary rocks and basaltic parental magma, or by partial melting of crustal materials which underlay the basement sediments. The silicic magma did not occupy an upper part of a large magma body with strong compositional zonation, but formed an independent magma body within the crust. The input and mixing of the magma for dark pumices to the base of the Aira silicic magma reservoir might trigger the eruptions in the upper part of the magma body and could produce a slight Sr isotope gradient in the reservoir. An extremely high thermal structure within the crust, which was caused by the uprise and accumulation of the basaltic magma, is presumed to have formed the large volume of silicic magma of the Aira stage.  相似文献   

14.
The REE content and isotopic composition of Sr and Nd have been determined in fish teeth ranging in age from the Trias to the present and from various localities mostly around the Atlantic. These measurements have been carried out on Selachian and Teleost remains from the same locality in Togo and show no appreciable difference, which suggests, with the help of a mass balance calculation of the Ce anomaly, that diagenetic effects are not responsible for the REE enrichment of biogenic phosphates.One group of fossil teeth has about 3 times the REE abundances of shale and a shale-normalized pattern with a minimum at Sm: it is thought to reflect deposition in the open-sea environment. A second group has REE concentration about 10 times higher than the first group with either a regular light REE enrichment or, more frequently, a maximum in the middle REE, both being probably indicative of deposition in estuarine or near-shore conditions. The shape of the REE spectra and the size of the Ce anomaly can be used semi-quantitatively to determine the depth of deposition. The results presented here on Late Cretaceous/Eocene fish teeth samples from Morocco reflect an increasing influx of deep waters with a lowLa/Yb ratio and strong negative Ce anomaly, which agrees well with the evolution of sediment chemistry and microfauna associations.In contrast, Nd is typical of the water mass in which the fish debris decayed. Examples of nearly isolated basins identified with Nd isotopes include the South Atlantic prior to the Lutetian (Nd ≈ −13.5), the Miocene Persian Gulf (Nd = −3.1), and Bolivia during the Late Cretaceous (Nd = −12.8). Togo and Guinea-Bissau results suggest that, in the South Atlantic, the meridional oceanic circulation had not started before 45 Ma ago.Combination of REE andNd data suggests that the assignment of Jurassic-Cretaceous samples measured so far to open-sea water masses is still ambiguous.  相似文献   

15.
We present a new paleotemperature scale, based on the oxygen isotopic ratio of the non-exchangeable fraction of the oxygen from diatom silica. The equation t = 17.2 − 2.4 (δ18Osilica − δ18Owater − 40) − 0.2 (δ18Osilica − δ18Owater − 40)2 was derived using recent sediment samples from different oceanic areas, the temperature and isotopic composition of the local surface water. Comparison of our results with other relationships established for quartz-water or amorphous silica-water at higher temperature suggests no difference in isotopic fractionation between quartz-water and biogenic silica-water couples.  相似文献   

16.
We have determined the concentrations and isotopic compositions of Sr and Nd in hydrothermal fluids from 21°N, East Pacific Rise and Guaymas Basin, Gulf of California. The purest solutions analyzed from 21°N exhibit a small range in Sr concentration between individual vents from 5.8 to 8.7 ppm, close to normal seawater Sr concentrations. They exhibit a small range in87Sr86Sr fromεSr(0) = −13.4 to −17.7, corresponding toεSr(0) ≈ −18 ± 2 in the pure hydrothermal end-member. These results indicate extensive but not complete isotopic exchange with Sr in the depleted oceanic crust (εSr(0) = −31.8) and suggest that Sr concentrations in these solutions are buffered. In contrast, the concentration and isotopic composition of Nd in solutions show large variations between vents. The concentration of Nd ranges from 20 to 336 pg/g (6–100 times seawater Nd concentrations). The isotopic composition ranges fromεNd(0) = −3.6 (similar to Pacific seawater) to +7.9. Many samples show substantial contributions from MORB, but all haveεNd(0) well below MORB at this locality (εNd(0) = +9.7) in spite of very large enrichments in Nd concentrations. While complete isotopic exchange withwater/rock≈ 2 or exchange with anomalous oceanic crust can explain the Sr data, the Nd data require exchange with a reservoir havingεNd(0) < Pacific seawater. Low-temperature reactions with metalliferous sediments on the ridge flanks may provide such a source. Both Sr and Nd in the Guaymas Basin solution are very different from21°N. εSr(0) = +11.0 andεNd(0) = −11.4 and are consistent with the fluid exchanging Sr and Nd with heated sediments having a substantial component of old continental detritus. Some irregularities in the Nd isotopic data reported here indicate that there must be a problem of contamination for some ultra-low-level trace elements during sample collection and processing which requires further attention.Using a simple box model, the estimates for hydrothermal Nd fluxes are compared with fluxes which would be required to maintain the relatively radiogenic value ofεNd(0) ≈ −3 in the Pacific against the influx of more negative Antarctic waters (εNd(0) ≈ −9). It is shown that the hydrothermal flux of Nd from mid-ocean ridges falls far short of that necessary to maintain the isotopic balance. This indicates that weathered material from volcanic terranes (εNd(0) ≈ +7) is the most reasonable major source of radiogenic Nd in the Pacific.  相似文献   

17.
Mantle-derived volatiles in continental crust: the Massif Central of France   总被引:1,自引:0,他引:1  
CO2-rich gases and groundwaters from springs and boreholes originating within the basement of the Massif Central have variable3He/4He ratios with correspondingR/Ra values ranging from 0.8 to 5.5 and 0.3 to 2.8 respectively, indicating the presence of a significant component of mantle helium. Molar concentrations of rare gases in the CO2-rich gases are approximately 5 orders of magnitude greater than in the waters and suggest that a near-surface Henry's Law fractionation has occurred between exsolving CO2 and water.δ13C values of the CO2-rich gases are in the range −4.2 to −6.1‰, i.e. in that range normally attributed to mantle carbon, but which could also represent an average crustal composition and therefore do not discriminate between mantle and crustal sources.C/3He ratios show 4 orders of magnitude variation from 1.4 × 1012 to 5 × 108 and, compared to a mantleC/3He ratio of 109, indicate that either a complex fractionation has occurred between mantle helium and mantle CO2 or more likely that mantle rare gases have been diluted by large quantities of CO2 with an average crustal carbon isotope composition. The regional distribution of3He and C does not show any obvious relationship to age or proximity of volcanic centres or major faults, suggesting that mantle-derived C and He components decoupled from their silicate melt sources at some depth.The results from this area of active fluid circulation suggest that C-isotope data derived from metamorphic terrains should be interpreted with great caution, but that input of some mantle-derived carbon is expected to accompany crustal extension.  相似文献   

18.
Fogang granitic batholith, the largest Late Mesozoic batholith in the Nanling region, has an exposure area of ca. 6000 km2. Wushi diorite-hornblende gabbro body is situated at the northeast part of the ba- tholith. Both the granitic batholith main body and the diorite-hornblende gabbro body belong to high-K calc alkaline series. Compared with the granitic main body, the Wushi body has lower Si (49%―55%), higher Fe, Mg, Ca, lower REE, less depletion of Eu, Ba, P, Ti, and obvious depletion of Zr, Hf. Zircon LA-ICP-MS dating and the mineral-whole rock isochron dating reveal that Fogang granitic main body and Wushi body were generated simultaneously at ca. 160 Ma. The Fogang granitic main body has high (87Sr/86Sr)i ratios (0.70871―0.71570) and low εNd(t) values (?5.11―?8.93), suggesting the origins of the granitic rocks from crustal materials. Their Nd two-stage model ages range from 1.37―1.68 Ga. The Sr and Nd isotopic compositions and the Nd model ages of the granitic rocks may suggest that the giant Fogang granitic main body was generated from a heterogeneous source, with participation of mantle component. Wushi diorite-hornblende gabbro is an unusual intermediate-basic magmatic rock series, with high (87Sr/86Sr)i ratios (0.71256―0.71318) and low εNd(t) values (?7.32―?7.92), which was possibly formed through mixing between the mantle-derived juvenile basaltic magma and the magma produced by the dehydration melting of lower crustal basaltic rocks.  相似文献   

19.
Samples dredged from 2 localities near the crest of the Valu Fa ridge, an active back-arc basin spreading centre in the Lau Basin, consist of highly vesicular lava fragments of andesitic composition. The samples are characterized by rare, euhedral An85 plagioclase phenocrysts in a hypocrystalline groundmass of An60 plagioclase laths, brown glass and rare subhedral clinopyroxene. Samples from within and, to a lesser extent, between the dredge hauls show remarkable isotopic and chemical homogeneity, with: 87Sr/86Sr − 0.70330 ± 2; 143Nd/144Nd − 0.51303 ± 2; 206Pb/204Pb − 18.65 ± 2; 207Pb/204Pb − 15.55 ± 1; 208Pb/204Pb − 38.34 ± 4; Sr − 165 ppm; Rb − 7 ppm; Cs − 0.17 ppm; K − 3300 to 4200 ppm; Ba − 96 ppm; and REE — LREE depleted with 12–18 × chondritic abundances. On Sr-Nd, Pb-Pb and Sr-Pb plots the volcanics lie just within or on the edge of the MORB fields, overlapping with island-arc volcanics from the Marianas and Tonga. Compared with MORB and ocean-island basalts, the samples show alkali-element enrichment relative to REE and higher Cs relative to Rb. The isotopic and geochemical characteristics of the Valu Fa Ridge volcanics clearly indicate a minor, but significant, slab-derived component in the back-arc basin mantle source.  相似文献   

20.
Well-preserved metalliferous sediments and pillow basalts of Lower Ordovician age (ca. 490 Ma) have been studied in an attempt to specify the Nd isotopic composition of Iapetus seawater. Initial143Nd/144Nd ratios of the pillow basalts are indistinguishable from published initial ratios for the 505-Ma Bay of Islands ophiolite complex and are within the anticipated range for MORB-type basalts 500 Ma ago. Metalliferous sediments occur both interstitial to basalt pillows and as well-developed sedimentary accumulations. The initial143Nd/144Nd ratios for the non-interstitial variety range from 0.511851 to 0.511712 Nd = ?2.7to?5.4) and are considered to provide an estimate of143Nd/144Nd in Iapetus seawater. The interstitial metalliferous sediments show evidence for a significant basalt-derived Nd component. Although volcanic activity occurred at the margin of Iapetus essentially contemporaneous with the formation of the metalliferous sediments, it is clear that arc-type volcanic material was not a major source of Nd in Iapetus seawater. Rather the source of Nd was from continental regions with a similar average age to those supplying material to the present-day Atlantic Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号