首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高速公路两侧土壤的磁化率从路中央向两侧具有逐渐降低的特征,相对应的样品中的重金属Cu、Pb、Zn、N i、Cr、Fe等元素的含量也具有从路中心向两侧逐渐降低的现象。相关分析表明,土壤磁化率与土壤中的Cu、Pb、Zn、N i、Cr、Fe的相关性显著,因而可以利用磁化率异常来指示高速公路两侧土壤的重金属污染状况。元素的赋存形态分析表明铁锰氧化物态与残渣态是Cu、Pb、Zn、N i、Cr、Fe的主要赋存形式;各元素的形态分析结果与土壤磁化率的相关统计分析表明,高速公路两侧土壤的磁化率与可交换态中的Cu、Pb、Zn、铁锰氧化物态中的Fe、Pb、Zn、有机还原态中的Cu、Cr、Fe、Zn和残渣态中的Cu、Pb、Zn、Cr、Co、N i具有明显的相关性。  相似文献   

2.
Total concentrations of chemical elements in soils may not be enough to understand the mobility and bioavailability of the elements. It is important to characterise the degree of association of chemical elements in different physical and chemical phases of soil. Another geochemical characterisation methodology is to apply sequential selective chemical extraction techniques. A seven-step sequential extraction procedure was used to investigate the mobility and retention behaviour of Al, Fe, Mn, Cu, Zn, Pb, Cr, Co, Ni, Mo, Cd, Bi, Sn, W, Ag, As and U in specific physical–chemical and mineral phases in mine tailings and soils in the surroundings of the abandoned Ervedosa mine. The soil geochemical data show anomalies associated with mineralised veins or influenced by mining. Beyond the tailings, the highest recorded concentrations for most elements are in soils situated in mineralised areas or under the influence of tailings. The application of principal components analysis allowed recognition of (a) element associations according to their geochemical behaviour and (b) distinction between samples representing local geochemical background and samples representing contamination. Some metal cations (Mn, Cd, Cu, Zn, Co, Cr, Ni) showed important enrichment in the most mobilisable and bioavailable (i.e., water-soluble and exchangeable) fractions due likely to the acidic conditions in the area. In contrast, oxy-anions such as Mo and As showed lower mobility because of adsorption to Fe oxy-hydroxides. The residual fraction comprised largest proportions of Sn and Al and to a lesser extent Zn, Pb, Ni, Cr, Bi, W, and Ag, which are also present at low concentrations in the bioavailable fractions. The elements in secondary mineral phases (mainly Fe, Mn, Cu, Zn, Cd, Pb, W, Bi, Mo, Cr, Ni, Co, As and U) as well as in organic matter and sulphides are temporarily withheld, suggesting that they may be released to the environment by changes in physico-chemical conditions.  相似文献   

3.
Sixty-two soil samples collected from different functional zones of Guiyang were analyzed for total concentrations and sequential extraction of Cr, Cu, Pb, Zn and Cd by ICP spectrometry. The average total concentrations ofCr, Cu, Pb, Zn and Cd in the soils of Guiyang were 92.9, 51.6, 44.1,139.3 and 0.28 mg/kg, respectively. The soils have been polluted by Cr, Cu, Pb, Zn and Cd to some extent in comparison with the background values of Guiyang. Significant differences were recognized in the concentrations of Cr, Cu, Pb, Zn and Cd in different functional zones. As for the sequential extraction, Cr, Cu and Zn were present mainly in the residual fraction, and Pb was present mainly in the oxidizable fraction. The reducible fraction of Cd accounts for 47.5%, and the residual fraction is lowest. The mobility and bioavailability of heavy metals follow the order of Cd〉Pb〉Cu〉Cr〉Zn.  相似文献   

4.
为了解包头市典型工业企业对其所在地土壤中重金属含量的影响及污染现状,利用相关性系数对其表层土壤中7种重金属(Cu、Zn、Pb、Cr、Cd、Mn、Ni)来源进行研究,并采用内梅罗综合污染指数法和潜在生态危害指数对其污染状况进行评价。结果表明,7种重金属含量平均值均高于内蒙古土壤背景值,其中Cd、Mn、Ni超标率已达100%,而Cu、Pb、Zn的超标率分别为97%、93%和93%,只有Cr超标率较低(53%),污染程度依次为CdPbCuNiZnMnCr,其中Pb和Cd为重度污染,Cu、Zn、Ni为中度污染,Cr、Mn为轻度污染;Cu、Zn、Cr、Mn、Ni可能同时来自工业生产和交通运输两个源,而Pb和Cd除上述来源外,燃煤烟气的排放有较大贡献。潜在生态危害依次为CdPbCuNiCrZnMn,其中Cd的潜在生态风险最大,应予以高度重视,其他金属的风险均为轻微。  相似文献   

5.
To evaluate muck sediments as a potential soil amendment, total and Mehlich III-extractable concentrations of Cd, Cu, Cr, Ni, Pb, Zn, and Co in 59 muck sediment samples from the St. Lucie Estuary were analyzed. A seven-step chemical fractionation procedure was used to assess the potential mobility of heavy metals. Except for Cd, the average total concentrations of the metals are lower than the reported average concentrations of these elements in municipal composts in the U.S.A. The concentrations were also below critical levels for the safe use of wastes and byproducts in agriculture, as established by the United States Environmental Protection Agency. The Cd, Cu, Cr, Ni, Pb, Zn and Co in the sediments were predominantly associated with silicate minerals in the residual form. Most metals in the muck sediments occur predominantly in weakly mobile or nonbioavailable forms. Use of mucks in neutral pH upland soils should not pose any significant hazards or risk to the environment. However, Cd, Cu, Cr, Ni, Pb, Zn, and Co, especially Zn, Cu, and Pb, could be more readily released from the muck sediments under acidic soil conditions.  相似文献   

6.
Agricultural soils of the Riotinto mining area (Iberian Pyrite Belt) have been studied to assess the degree of pollution by trace elements as a consequence of the extraction and treatment of sulphides. Fifteen soil samples were collected and analysed by ICP-OES and INAA for 51 elements. Chemical analyses showed an As–Cu–Pb–Zn association related with the mineralisation of the Iberian Pyrite Belt. Concentrations were 19–994 mg kg−1 for As, 41–4,890 mg kg−1 for Pb, 95–897 mg kg−1 for Zn and of 27–1,160 mg kg−1 for Cu. Most of the samples displayed concentrations of these elements higher than the 90th percentile of the corresponding geological dominium, which suggests an anthropogenic input besides the bedrock influence. Samples collected from sediments were more contaminated than leptosols because they were polluted by leachates or by mining spills coming from the waste rock piles. The weathering of the bedrock is responsible for high concentrations in Co, Cr and Ni, but an anthropogenic input, such as wind-blown dust, seems to be indicative of the high content of As, Cu, Pb and Zn in leptosols. The metal partitioning patterns show that most trace elements are associated with Fe amorphous oxy-hydroxides, or take part of the residual fraction. According to the results obtained, the following mobility sequence is proposed for major and minor elements: Mn, Pb, Cd, > Zn, Cu > Ni > As > Fe > Cr. The high mobility of Pb, Cu and Zn involve an environmental risk in this area, even in soils where the concentrations are not so high.  相似文献   

7.
Heavy metal contamination was the main environmental problem around the Jinchang Ni–Cu mine area of Gansu, Northwest China. The concentration of heavy metals (Cr, Cu, Ni, Pb, and Zn) in various environmental mediums around the Jinchang Ni–Cu mine area were analyzed using atomic absorption spectrometry (AAS). The different chemical speciation of heavy metals was extracted using BCR (European Community Bureau of Reference) sequential extraction procedure, and the concentration of chemical speciation of each heavy metal was measured by inductively coupled plasma-atomic emission spectrometry. The results showed that Cu and Ni were the most important heavy metal pollutants in various mediums including cultivated soils, dust on slagheap surfaces, tailings, and sediments in waste water drains. In the tailings and sediments, the concentrations of Ni were obviously higher than those of Cu, whereas, in the soil and dust, the concentrations of Cu were higher than those of Ni. Analysis of chemical speciation indicated that Cr and Zn were mainly in residual fraction; Cu was mainly in oxidizable fraction; Ni was mainly in reducible fraction and acid soluble fraction; and Pb was mainly in reducible fraction and residual fraction. The extent of contamination of various environmental mediums was different because the heavy metals were derived from different sources. Furthermore, the mobility of various heavy metals was different because of the different distribution of chemical speciation.  相似文献   

8.
The current study was designed to investigate the extent and severity of contamination as well as the fractionation of potentially toxic elements (As, Cd, Cr, Cu, Pb, Zn, Ni) in minesoils and agricultural soils around a Pb–Zn mine in central Iran. For this purpose, 20 agricultural soils and eight minesoils were geochemically characterized. Results showed that minesoils contained elevated concentrations of As (12.9–254 mg kg−1), Cd (1.2–55.1 mg kg−1), Pb (137–6239 mg kg−1) and Zn (516–48,889 mg kg−1). The agricultural soils were also polluted by As (5.5–57.1 mg kg−1), Cd (0.2–8.5 mg kg−1), Pb (22–3451 mg kg−1) and Zn (94–9907 mg kg−1). The highest recorded concentrations for these elements were in soils influenced directly by tailing ponds. Chromium, Cu and Ni content in agricultural soils (with average value of 74.1, 34.6 and 50.7 mg kg−1, respectively) were slightly higher than the minesoils (with average value of 54.5, 33.1 and 43.4 mg kg−1, respectively). Sequential extraction data indicated that there were some differences between the speciation of PTEs in soil samples. In the agricultural soils, Zn and Cd were mainly associated with carbonate bound fraction, As and Pb with reducible fraction, Cu with oxidisable fraction and Cr and Ni with residual phase. With respect to mobility factor values, Zn and Cd in the agricultural soils have been found to be the most mobile while As mobility is negligible. Also, the mobility factor of As, Cd and Pb in agricultural soils adjoining tailing ponds was high. In minesoil sample Cd was most abundant in the carbonate form, whereas other studied elements were mainly present in the reducible and residual fractions; therefore, despite the high total concentrations of As, Pb and Zn in the minesoils, the environmental risk of these elements was low. Based on the obtained data, a portion of Cu, Cr and Ni input was from agricultural activities.  相似文献   

9.
王图锦  潘瑾  刘雪莲 《岩矿测试》2016,35(4):425-432
消落带是水域与陆地的过渡地带,对水环境有着至关重要的影响。本文以三峡库区消落带面积最大的澎溪河流域作为研究区域,采集消落带土壤及其沿岸土壤样品,分析重金属形态分布特征,并使用地质累积指数法和风险评价准则(RAC)对重金属污染程度及生态风险进行评价。研究表明,消落带土壤中Pb、Cu、Cr、Cd、Zn和Ni平均含量分别为68.70、36.96、55.10、0.68、108.26、31.68 mg/kg,污染程度依次为CdPbZnCuNiCr,以Cd和Pb污染较为突出,普遍高于长江干流土壤,远高于重庆地区土壤。Cd的RAC值为20.62%,呈中等环境风险;其形态稳定性最差,以可还原态和酸提取态为主。Pb、Cu、Cr、Zn、Ni的RAC值为5.45%~10.0%,环境风险较低;且均以残渣态为主,占总量的54.69%~83.05%。以消落带沿岸土壤为对照,消落带形成后土壤中各重金属总量均有不同程度升高,且不同重金属在其增量部分的形态存在差异,Cr和Ni的增量部分以残渣态为主,Cd、Pb、Zn的增量以非残渣态为主。研究发现,由于受到水域与陆地污染源的双重影响,澎溪河流域重金属具有由沿岸向消落带沉积富集的趋势。  相似文献   

10.
通过采集南宁市郊农田中玉米、蔬菜、水稻可食部分及其根系土150组,研究重金属元素在不同土壤-农作物系统中迁移特征及其影响因素,结果表明:根系土中Hg、Cd、Cr、Cu、Ni、Pb、Zn平均含量分别为0.116、0.202、56.76、22.12、14.49、25.18和56.28 mg·kg-1。农作物对应平均含量分别为0.001 1、0.037、0.054、1.153、0.205、0.011和9.37 mg·kg-1。根系土富集因子表明Cd受到不同程度人为活动影响,Cr和Ni主要受地质背景控制;不同作物系统元素富集因子表明Pb在土壤-农作物系统中迁移能力最低,Zn迁移能力最强。Cd、Cr、Cu、Ni、Pb和Zn在土壤-水稻系统重迁移能力显著高于蔬菜和玉米。根系土中pH、CaO、有机质、Fe2O3、K2O、MgO与重金生物富集系数呈显著性负相关,但在土壤-叶类蔬菜系统中根系土中K2O、MgO与Hg生物富集系数呈显著正相关。   相似文献   

11.
The concentrations of metals (Pb, Cr, Ba, Zn, V, Mn, Co, Cu, Ni and As) in 38 soil samples collected from the industrial district in Weinan (NW China) were determined by wavelength dispersive X-ray fluorescence spectrometry. The magnetic parameters of soil including low-/high-frequency susceptibility and frequency-dependent susceptibility were measured. The modified three-step BCR sequential extraction procedure was used to evaluate mobility, availability and persistence of trace elements in urban soil samples. Multivariate (principal component analysis, clustering analysis and correlation analysis) and geostatistical analysis (ArcGIS tools) were applied to the obtained data to evaluate the analytical results and to identify the possible pollution sources of metals as well as geo-spatial distributions. The results revealed that the sampling area was mainly influenced by two main sources: (1) Ba, Cu, Pb, Cr and Zn were mainly derived from industrial sources, which combined with coal combustion as well as traffic factor. The mobility sequence based on the sum of the BCR sequential extraction stages was: Pb (53.79 %) > Zn (51.78 %) > Cu (50.96 %) > Ba (42.59 %) > Cr (18.47 %). Pb was the metal predominantly associated (~46.86 %) with the form bound to Fe/Mn oxides, and the highest percentage of Zn was exchangeable and carbonate-bound fraction. Cu was present mainly in organic fraction, while the residual fraction was the most dominant solid phase pool of Cr (~81.53 %) and Ba (~57.41 %). (2) Mn, V, Co, As and Ni in the study area were consistently from natural sources. The analysis of enrichment factors indicated that urban soils in Weinan City were classified as having significant enrichment by Ba, Cu, Pb, Cr and Zn. The overall results proposed the future tactics for Weinan environment quality control on a local scale that concerned not only the levels of risky, but also the industrial emission abatement techniques as well as urban setting.  相似文献   

12.
Eleven surface soil samples from calcareous soils of industrial areas in Hamadan Province, western Iran were analyzed for total concentrations of Zn, Cd, Ni, Cu and Pb and were sequentially extracted into six fractions to determine the bioavailability of various heavy metal forms. Total Zn, Cd, Ni, Cu and Pb concentrations of the contaminated soils were 658 (57–5,803), 125.8 (1.18–1,361), 45.6 (30.7–64.4), 29.7 (11.7–83.5) and 2,419 (66–24,850) mg kg−1, respectively. The soils were polluted with Zn, Pb, and Cu to some extent and heavily polluted with Cd. Nickel values were not above regulatory limits. Copper existed in soil mainly in residual (RES) and organic (OM) fractions (about 42 and 33%, respectively), whereas Zn occurred essentially as RES fraction (about 69%). The considerable presence of Cd (30.8%) and Pb (39%) in the CARB fraction suggests these elements have high potential biavailability and leachability in soils from contaminated soils. The mobile and bioavailable (EXCH and CARB) fractions of Zn, Cd, Ni, Cu, and Pb in contaminated soils averaged (7.3, 40.4, 16, 12.9 and 40.8%), respectively, which suggests that the mobility and bioavailability of the five metals probably decline in the following order: Cd = Pb > Ni > Cu > Zn.  相似文献   

13.
Heavy metals in soils are of great environmental concern, in order to evaluate heavy metal contents and their relationships in the surface soil of industrial area of Baoji city, and also to investigate their influence on the soils. Soil samples were collected from 50 sites, and the concentration of Pb, Zn, Cu, Cr, Ni heavy metals and the contents of characteristics in soil from industrial area of Baoji city were determined with X-ray fluorescence method. The concentrations of Pb, Zn, Cu, Cr and Ni in the investigated soils reached the amount of 2,682.00–76,979.42, 169.30–8,288.58, 62.24–242.36, 91.96–110.54 and 36.14–179.28 mg kg−1, respectively. The major element Pb contents of the topsoils were determined. to highlight the influence of ‘anthropic’ features on the heavy metal concentrations and their distributions. To compare, all values of elements were much higher than those of unpolluted soils in the middle of Shaanxi province that average 16.0–26.5, 67.1–120.0, 17.8–57.0, 46.9–65.6 and 24.7–34.6 mg kg−1 for Pb, Zn, Cu, Cr and Ni, respectively. An ensemble of basic and relativity analysis was performed to reduce the precipitate of Pb in soil was extremely high and greatly relativity with other elements. Meanwhile, Pb, Zn, Cu, Cr, Ni heavy metals were typical elements of anthropic activities sources, so it was easy to infer to the tracers of anthropic pollutions from the factorial analysis, which was coming from the storage battery manufactory pollutions. The pollutant distributions were constructed for the urban area which identified storage battery manufactory soot precipitate as the main source of diffuse pollution and also showed the contribution of the topsoils of industrial area of Baoji city as the source point of pollution. Consequently, the impact of heavy metals on soil was proposed and discussed. These results highlight the need for instituting a systematic and continuous monitoring of heavy metals and other forms of pollutants in Baoji city to ensure that pollution does not become a serious problem in the future.  相似文献   

14.
重金属污染是金属矿山开采和冶炼所引起的主要环境问题。对甘肃省典型矿业城市金昌市周围农田土壤、废渣堆表面风化物及降尘、尾矿坝尾矿砂和尾矿坝旁排污沟沉积物中Cr、Cu、Ni、Pb、Zn含量及其化学形态进行分析。结果表明:不同区域环境中重金属呈现不同程度累积,其中以Cu、Ni最为显著,含量由高到低依次为尾矿坝排污沟>尾矿坝>废渣堆>农田土壤;尾矿砂和沉积物中重金属分布以Ni含量显著高于Cu含量为特征;而农田土壤和风化物及降尘中重金属分布以Cu含量高于Ni含量为特征,前者Cu、Ni主要来源于尾矿,后者与冶炼烟尘排放有很大关系;样品中除Cr、Zn以残渣态为主外,Cu、Ni、Pb化学形态分布有较大差异,Cu以可氧化态和残渣态为主,Ni以可还原态为主,其次为弱酸提取态,Pb以可还原态为主,其次为残渣态。土壤理化性质是影响重金属化学形态分布的重要因素。  相似文献   

15.
Background Values of potentially toxic elements (PTEs) in soils are typically obtained from total or pseudo-total contents, but not represent the fraction of these elements available for plant uptake due to the predominance of the stable forms. Available contents to plants, in turn, tend to be positively correlated with the potential risk of contamination of PTEs. In this study, we determined the available contents, extracted with Mehlich-III solution, of Ba, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn in Oxisols and Ultisols in the state of Pará, Eastern Amazon, Brazil. Available contents ranged from low to very low when compared to soils from other Brazilian regions and from other countries. Contents of PTE were higher in Oxisols than in Ultisols, except for Cu and Ni. In the Oxisols, PTEs were positively correlated with clay content. However, PTEs were not correlated with soil pH, organic matter and cation exchange capacity. In the Ultisols, Ba, Cu, Pb, and Mn contents were significantly correlated with pH, while Ni contents were correlated with the contents of silt.  相似文献   

16.
Urbanisation and industrial development lead to contamination of estuaries and streams with dispersed loadings of heavy metals and metalloids. Contributions of these elements also occur from natural sources. This study provides baseline geochemical data on the respective natural and anthropogenic inputs of Cu, Pb, Zn, Cd, As, Sb, Cr, Ni, Mn and S to estuarine, fluvial and wetland sediments, and adjacent soils, in the Kooloonbung Creek catchment that drains the Port Macquarie urban area in north coastal New South Wales. There have been anthropogenic additions of Cu, Pb, Zn and As from dispersed urban sources at Port Macquarie, but they are restricted to the local catchment and do not impact on the adjacent Hastings River estuary. The most contaminated sediments display enrichment factors up to 20 × for Cu and Pb, 9 × for Zn and 5 × for As relative to local background values. However, only one value (for Pb) exceeds National Water Quality Management Strategy interim sediment quality guideline (high) values. On the other hand, sediments and local soils are commonly strongly enriched in Cr, Ni and Mn, reflecting adjacent ultramafic and mafic rock substrate and lateritic regolith. Concentrations of Cr and Ni are commonly well above interim sediment quality guideline (high) values for sediments, but are in mineralogical forms that are not readily bioavailable. Sediment and soil quality guideline values consequently need to recognise natural enrichments and the mineralogical siting of heavy metals. Although dissolved concentrations of heavy metals in stream waters are commonly low, there is evidence for mobility of Cu, Zn, Fe and Al. Parts of the Kooloonbung Creek wetland area lie on sulfidic estuarine sediments (potential acid sulfate soils). Experimental oxidation of uncontaminated and contaminated sulfidic sediments leads to substantial dissolution of heavy metals under acid conditions, with subsequent aquatic mobility. The results warn about disturbance and oxidation of potential acid sulfate soils that have been contaminated by urban and natural heavy-metal sources.  相似文献   

17.
固体聚合膜电解浓集法是浓缩氚含量较低(1 Bq/m~3)的天然水样的常用方法,但因水样自身含有杂质离子或电解装置聚合膜带入杂质进入浓集液,使浓集液偏酸性,在测量过程中易产生化学淬灭效应,导致氚的测量值偏低。本文研究了水样自身存在的杂质离子和聚合膜上残留的杂质离子、样品溶液的pH值及其电导率所产生的化学淬灭效应的影响,实验表明,为减少化学淬灭效应,提高测量低含量氚的准确性,需保证水样溶液呈中性,电导率≤1μS/cm,同时避免杂质沉积在聚合膜上。如果水样溶液的pH值偏酸性、电导率大于1μS/cm,可采用酸碱混合型离子交换树脂去除水样中自身的杂质;对于聚合膜引入的杂质,可在电解后的水样中加入微量氨水将其pH值调节至中性。  相似文献   

18.
Selenium and heavy metals content in some Mediterranean soils   总被引:1,自引:0,他引:1  
The study of metal contents in industrial, agricultural or/and polluted soils compared with natural or unpolluted soils is currently necessary to obtain reference values and to assess soil contamination. Nonetheless, very few works published appear in international journals on elements like Se, Li and Sr in Spanish soils. This study determines the total levels of Se, Li, Sr, As, Cd, Co, Cr, Cu, Ni, Pb, V, Zn, Fe, Mn and Ba in 14 natural (unpolluted) soils (Gypsisols, Leptosols, Arenosols and Acrisols), 14 agricultural soils (Anthrosols, Fluvisols and Luvisols), and 4 industrial–urban affected-surface soil horizons (Anthrosols and Fluvisols) of Eastern Spain. The geochemical baseline concentrations (GBC) and reference values (RV) have been established, and the relationships among elements and also between soil properties and elemental concentrations have been analysed. The RV obtained in this study were (mg kg−1): Se 2.68, Li 115, Sr 298, Cd 0.97, Co 35, Cr 217, Cu 46, Ni 50, Pb 137, V 120, Zn 246, Fe 124,472, Mn 2691, and Ba 743. The RV for Se and Li were used as a preliminary approach to assess soil contamination in Spanish soils. The results confirm human impact on Sr, As, Cd, Cr, Cu, Ni, Pb and Zn soil concentrations, but evidence no deviation from natural Se, Li, Co, V, Fe, Mn and Ba concentrations. The results obtained from the statistical analysis reveal significant correlations between some elements and clay and soil organic matter (SOM) contents, indicating that metal concentrations are controlled by soil composition. One particularly interesting finding is the high correlation coefficients obtained between SOM and Se, Cd, Cr, V, Fe, and Mn, and between clay and Cd, Zn, V, Fe and Mn. Once again, these facts confirm the role of SOM and clay minerals in soil functions and that soil is an ecosystem element responsible for maintaining environmental quality.  相似文献   

19.
The long-term impact of irrigation on a Mediterranean sandy soil irrigated with treated wastewater (TWW) since 1980 was evaluated. The main soil properties (CEC, pH, size distribution, exchangeable cations and chloride, hydraulic conductivity) as well as the organic matter and Cu, Cr and Pb speciation in an irrigated soil and a non-irrigated control soil at various soil depths were monitored and compared during a 2 year experiment. In this second part, we focused on Cu, Cr and Pb behaviour in relation with soil organic carbon (SOC). Soil samples were collected every 3 months during 2 years at the depths 0–20, 20–40 and 40–60 cm and were analysed for exchangeable and total metals, organic carbon content, metal sequential extraction and humic substances – Humic Acids (HA), Fulvic Acids (FA) and Non-Humified Fraction (NHF). Long-term irrigation with a domestic treated wastewater (TWW) may be considered safe with regard to trace metal accumulation in soil. Irrigation lowered the HA and NHF fractions of SOC and made the FA fraction more mobile. Cu bound preferentially to the SOC fraction, Cr was found mainly in the reducible fraction and Pb was bound to all fractions indiscriminately. Cu exhibited a high affinity for the HA fraction, while Pb and Cr had a high affinity for the FA fraction, which indicates a greater mobility of the organically-bound Pb and Cr than of the organically-bound Cu. Evaluation of the potential metal mobility has to take into account not only the usual speciation between labile, reducible and oxidisable fractions, but also the nature of the SOC responsible for the oxidisable fraction.  相似文献   

20.
福建铁观音茶园生态地球化学特征   总被引:4,自引:2,他引:2       下载免费PDF全文
东南沿海是铅等重金属的地球化学高背景区。该地区广泛分布酸性红壤,酸雨沉降、不适当施肥导致土壤酸化以及由此引发土壤重金属生态风险令人关注。以福建省铁观音主产区为研究区,采集了79个茶园的表层和亚表层土壤样、茶叶样品,测定了重金属元素以及土壤常量元素和理化指标。研究表明,福建铁观音茶园土壤中Hg、Pb、Se、Zn高含量主要由地质背景所引起,土壤常量组分、有机质、酸碱度等理化条件对土壤元素含量有一定的影响;铁观音茶树老叶中As、Cd、Cr、Hg、Se、Pb、F等非植物营养元素含量明显高于嫩叶,显示这些元素随植物生长逐渐累积的特征,而嫩叶中植物生长必需的营养元素Cu、(Ni)、Zn则高于老叶,反映出微量营养元素在茶叶生长部位相对富集的特征;多数情况下土壤与茶叶间元素含量相关性差,说明茶树对土壤元素的吸收累积受到多种复杂因素的影响。研究表明茶叶与土壤Pb、Cr具有显著正相关性,为建立铅污染土壤生态效应预测评价模型提供了基础依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号