首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李理  王琰  崔凤娟 《海洋科学》2017,41(3):113-121
基于HYCOM(Hybrid Coordinate Oceanic Circulation Model),以OFES(OGCM for the Earth Simulator)资料为参考,分析了KPP、MY2.5、KT三种不同混合方案对北太平洋西边界流系的模拟结果的影响。结果表明:三种不同混合方案模拟的上层海洋平均流场与OFES资料相似,但在流向和流幅上略有差异,其中KPP方案模拟的流速与OFES资料最为接近,MY2.5方案次之,KT方案与其差别最大。通过代表性断面上流速的对比分析,对模式就北赤道流、棉兰老流、棉兰老潜流、黑潮的模拟效果进行比较,KPP方案模拟的效果同前人的观测和研究最为接近。分析了北赤道流,棉兰老流,棉兰老潜流,黑潮的流量的季节变化特征,其中KPP方案与OFES资料计算的棉兰老流和棉兰老潜流的季节变化特征与前人描述比较一致,表现为春强秋弱。KPP方案和OFES资料的计算结果表明,北赤道流和棉兰老流大致上是同向变化的,而在冬季棉兰老流同黑潮的变化基本上是一致的。  相似文献   

2.
采用POMgcs(Princeton Ocean Model with generalized coordinate system)和MITgcm(MIT General Circulation Model)两个海洋数值模式,研究了M-Y2.0、基于固壁近似假定的M-Y2.5、基于波浪破碎作用的M-Y2.5和KPP 4种垂向混合参数化方案对模拟黄海夏季上层温度结构的影响。结果表明,M-Y2.0和基于固壁近似假定的M-Y2.5方案低估了黄海上层的湍动能,模拟的黄海夏季温度上混合层的效果与实测相比均偏浅,不能够很好地重构黄海夏季温度的垂直结构。而基于波浪破碎作用的M-Y2.5和KPP方案均可以增加海洋上层湍动能的输入量,模拟的黄海夏季温度上混合层的效果与实测较为一致。故推测黄海夏季的上层结构是受波浪混合和流场剪切等物理机制共同调节的,若通过合理的垂向混合参数化方案将这些物理机制的作用加以体现,将会较真实地模拟和重构出黄海夏季海温上层结构。  相似文献   

3.
利用Modular Ocean Model version4(MOM4)海洋环流模式设计了2个全球海洋-海冰耦合的数值实验,以分析比较Pacanowski and Philander(PP)和K-Profile Parameterization(KPP)两种不同垂直混合方案在全球海洋上层模拟中的表现。实验结果表明,PP和KPP方案在中纬和高纬海域模拟海温差别较大,后者模拟结果好于前者;在低纬海域差别较小,但赤道断面PP方案模拟结果较好;KPP方案能很好地模拟太平洋赤道潜流,而PP方案模拟的赤道潜流位置偏浅。  相似文献   

4.
仇颖  阳德华  李爽 《海洋科学》2019,43(11):103-110
Langmuir环流影响着海洋上层的能量输入,对海洋上混合层的形成和加深起着重要作用,对于海洋上混合层具有重要意义。近年来许多学者采用大涡模拟(LES)方法对Langmuir环流进行机制研究,并通过在雷诺平均模型中参数化Langmuir环流效应,将Langmuir环流过程引入到三维海洋环流或海洋耦合模式中,提出了一系列混合参数化方案。本文回顾了Langmuir环流在雷诺平均模式参数化中的研究进展,主要可分为以下几种方案:一种方法是用Langmuir数在KPP垂直混合参数化方案中引入湍流特征速度增强因子,并不断发展Langmuir数的定义;一种是在Mellor-Yamada2.5湍流闭合模型中增加斯托克斯漂流剪切效应项,此外还有通过修改模式中混合长方程来加入Langmuir效应等。通过在雷诺平均模式中应用的结果来看,现有的参数化方案在一定程度上改善了混合层深度和SST的模拟,肯定了Langmuir环流在加深混合等方面的作用,但仍存在一些问题需要在今后的研究中进一步改进。  相似文献   

5.
台风条件下朗缪尔环流对上层海洋混合的影响研究进展   总被引:1,自引:1,他引:0  
回顾了近10年来台风条件下朗缪尔环流影响上层海洋混合的研究进展,朗缪尔致湍流对海洋上混合层的形成和加深的重要作用已形成了基本共识,但对于朗缪尔致湍流对海洋上混合层的混合作用机制和程度仍然存在诸多不确定性。观测表明台风条件下台风眼附近的混合层平均湍流动能受到了较强的抑制,可能与台风不同位置朗缪尔致湍流的特征变异有关;台风条件下,现有的朗缪尔致湍流参数化方案在上层混合过程模拟中还有显著误差。在今后研究中,通过改进斯托克斯漂流剖面的计算方法,优化表征台风条件下海面状况的朗缪尔致湍流参数化计算方案,是进一步揭示台风条件下朗缪尔环流对海洋上层混合的影响机理的必要途径。  相似文献   

6.
本文通过理想化的外部强迫以及海洋站点实测数据驱动普林斯顿海洋模式来研究海洋热力学效应和斯托克斯漂流对上混合层数值模拟的影响。在Mellor-Yamada湍流闭合方案中,经常出现夏季海表面温度偏暖和混合层深度偏浅的模拟误差。实验表明,斯托克斯漂流在冬季和夏季均能增强湍流动能,加深混合层深度。这种效应可以改善夏季的模拟结果,但与观测数据相比,将增大冬季混合层深度的模拟误差。斯托克斯漂流可以通过增强湍动能来加深混合层深度。结果表明,将斯托克斯漂流与冷皮层和暖层对上部混合层的热效应相结合,可以正确地模拟混合层深度。在夏季,海洋冷皮层和暖层通过“阻挡结构”和双温跃层结构模拟出更真实的上混合层变化。在冬季,海洋热力学效应通过增强上层海洋层结平衡了斯托克斯漂流的影响,并且由斯托克斯漂流引起的过度混合被校正。  相似文献   

7.
Effect of Stokes drift on upper ocean mixing   总被引:1,自引:0,他引:1  
Stokes drift is the main source of vertical vorticity in the ocean mixed layer. In the ways of Coriolis - Stokes forcing and Langmuir circulations, Stokes drift can substantially affect the whole mixed layer. A modified Mellor-Yamada 2. 5 level turbulence closure model is used to parameterize its effect on upper ocean mixing conventionally. Results show that comparing surface heating with wave breaking, Stokes drift plays the most important role in the entire ocean mixed layer, especially in the subsurface layer. As expected, Stokes drift elevates both the dissipation rate and the turbulence energy in the upper ocean mixing. Also, ilffluence of the surface heating, wave breaking and wind speed on Stokes drift is investigated respectively. Research shows that it is significant and important to assessing the Stokes drift into ocean mixed layer studying. The laboratory observations are supporting numerical experiments quantitatively.  相似文献   

8.
Large eddy simulation (LES) of the resonant inertial response of the upper ocean to strong wind forcing is carried out; the results are used to evaluate the performance of each of the two second-order turbulence closure models presented by Mellor and Yamada (Rev Geophys Space Phys 20:851–875, 1982) (MY) and by Nakanishi and Niino (J Meteorol Soc Jpn 87:895–912, 2009) (NN). The major difference between MY and NN is in the formulation of the stability functions and the turbulent length scale, both strongly linked with turbulent fluxes; in particular, the turbulent length scale in NN, unlike that in MY, is allowed to decrease with increasing density stratification. We find that MY underestimates and NN overestimates the development of mixed layer features, for example, the strong entrainment at the base of the oceanic mixed layer and the accompanying decrease of sea surface temperature. Considering that the stability functions in NN perform better than those in MY in reproducing the vertical structure of turbulent heat flux, we slightly modify NN to find that the discrepancy between LES and NN can be reduced by more strongly restricting the turbulent length scale with increasing density stratification.  相似文献   

9.
The upper ocean response to a moving typhoon   总被引:1,自引:0,他引:1  
The upper ocean response to the translation speed of typhoons is studied using a three-dimensional primitive equation model. Similar models studied previously have applied stability criteria rather than the diffusion term to simulate the vertical mixing process. This study retains the diffusion term and uses the level-2 turbulence closure scheme to estimate the vertical eddy viscosity. The model results indicate that in the forced period, the mixed-layer temperature decrease is greater for a slow-moving storm due to stronger upwelling caused by the longer residence time. A fast-moving storm can attain a similar cooling intensity in the wake period if its residence time allows the wind to resonate with the current. The significant downward momentum diffusion and advection in the first few inertial periods of these events leads to strong, persistent inertial pumping throughout the upper ocean in the wake period. The mixed layer is further cooled by turbulent mixing supported by vertical current shears. Meanwhile, the upper thermocline exhibits a compensating temperature increase. The vertical transfer magnitude and penetration scale are smaller in the slow-moving case, when the inertial motion decays rapidly. The model results also indicate that the dominant cooling process can be inferred from the non-dimensional storm speed. However, this value may be misleading for rapidly moving storms in which the current response is so distant from the storm that little wind work is performed on the ocean.  相似文献   

10.
Assimilation systems absorb both satellite measurements and Argo observations. This assimilation is essential to diagnose and evaluate the contribution from each type of data to the reconstructed analysis, allowing for better configuration of assimilation parameters. To achieve this, two comparative reconstruction schemes were designed under the optimal interpolation framework. Using a static scheme, an in situ-only field of ocean temperature was derived by correcting climatology with only Argo ...  相似文献   

11.
12.
《Ocean Modelling》2010,35(3-4):166-184
Predictive ability of five different embedded turbulent mixing models that range from second-order turbulent closure to bulk mixing parameterization is examined in the Mediterranean Sea. Each is embedded in the HYbrid Coordinate Ocean Model (HYCOM). Mixed layer depth (MLD), which is one of the most important upper ocean variables, is used to evaluate the treatment of turbulent processes in each model run. In addition to overall spatial and temporal variability, analyses of MLD are presented using an extensive set (3976) of temperature and salinity profiles from various data sources during 2003–2006. Results obtained from simulations (with no data assimilation and relaxation only to salinity) for the five mixing models are compared with observed MLDs obtained from in situ temperature and salinity profile observations. To ensure the robustness of the validation statistics MLD is computed using both curvature and threshold based methodologies. Results indicate that while all mixing schemes represent the MLD well, the bulk mixing models have substantial accuracy deficiencies relative to the higher order mixing models. The modeled MLDs are slightly deeper than observed MLDs with the mean bias error ∼10 m for the higher order mixing models while the bulk mixing model bias error is 15 m or more. The RMS error for the higher order mixing models is ∼40 m while it is ∼50 m for the bulk mixing models. The bulk mixing models had substantially larger errors particularly for the curvature MLD definition.  相似文献   

13.
Though ubiquitous in the global oceans, double diffusive mixing has been largely ignored or poorly represented in the models of turbulent mixing in the ocean and in 3-D ocean models, until recently. Salt fingers occur in the interior of many marginal seas and ocean basins, the Tyrrhenian Sea and the subtropical Atlantic being two examples. Diffusive convection type of double diffusion occurs in the upper layers of many sub-polar seas and polar oceans due to cold melt water from sea ice. Consequently, it is important to be able to properly parameterize double diffusive mixing in basin scale and global ocean models, so that the water mass structure in the interior of the ocean can be properly simulated. This note describes a model for double diffusive mixing in the presence of background shear, based on Mellor–Yamada type second moment closure, more specifically Kantha, 2003, Kantha and Clayson, 2004 second moment closure models of resulting turbulence, following Canuto et al. (2008a) but employing a different strategy for modeling the pertinent terms in the second moment equations. The resulting model is suitable for inclusion in ocean general circulation models.  相似文献   

14.
The neutrally stratified boundary layer over a smooth rough surface is consider. The turbulent flow is simulated using a finite-difference eddy-resolving model of the atmospheric boundary layer (ABL). The model includes different turbulence closure schemes and numerical approximations for advection components of the momentum balance equation. We investigate the quality of reproduction of spectral characteristics of the turbulent flow and the model’s capabilities to reproduce the observed profile of mean wind velocity near the rough surface. It is shown that the best result is obtained by coupling a numerical scheme of higher order of accuracy with a mixed closure scheme based on an adaptive estimation of the mixing length for subgrid-scale fluctuations. Here, we are able to reproduce the asymptotics of the fluctuation spectrum of the longitudinal component of wind velocity near the surface and within the boundary layer as well as the logarithmic profile of mean velocity near the surface.  相似文献   

15.
海浪破碎对海洋上混合层中湍能量收支的影响   总被引:2,自引:1,他引:2  
海浪破碎产生一向下输入的湍动能通量,在近海表处形成一湍流生成明显增加的次层,加强了海洋上混合层中的湍流垂向混合。为了研究海浪破碎对混合层中湍能量收支的影响,文中分析了海浪破碎对海洋上混合层中湍流生成的影响机制,采用垂向一维湍封闭混合模式,通过改变湍动能方程的上边界条件,引入了海浪破碎产生的湍动能通量,并分别对不同风速下海浪破碎的影响进行了数值研究,分析了混合层中湍能量收支的变化。当考虑海浪破碎影响时,近海表次层中的垂直扩散项和耗散项都有显著的增加,该次层中被耗散的湍动能占整个混合层中耗散的总的湍能量的92.0%,比无海浪破碎影响的结果增加了近1倍;由于平均流场切变减小,混合层中的湍流剪切生成减小了3.5%,形成一种存在于湍动能的耗散和垂直扩散之间的局部平衡关系。在该次层以下,局部平衡关系与壁层定律的结论一致,即湍动能的剪切生成与耗散相平衡。研究结果表明,海浪破碎在海表产生的湍动能通量影响了海洋上混合层中的各项湍能量收支间的局部平衡关系。  相似文献   

16.
The structure of turbulence in the ocean surface layer is investigated using a simplified semi-analytical model based on rapid-distortion theory. In this model, which is linear with respect to the turbulence, the flow comprises a mean Eulerian shear current, the Stokes drift of an irrotational surface wave, which accounts for the irreversible effect of the waves on the turbulence, and the turbulence itself, whose time evolution is calculated. By analysing the equations of motion used in the model, which are linearised versions of the Craik–Leibovich equations containing a ‘vortex force’, it is found that a flow including mean shear and a Stokes drift is formally equivalent to a flow including mean shear and rotation. In particular, Craik and Leibovich’s condition for the linear instability of the first kind of flow is equivalent to Bradshaw’s condition for the linear instability of the second. However, the present study goes beyond linear stability analyses by considering flow disturbances of finite amplitude, which allows calculating turbulence statistics and addressing cases where the linear stability is neutral. Results from the model show that the turbulence displays a structure with a continuous variation of the anisotropy and elongation, ranging from streaky structures, for distortion by shear only, to streamwise vortices resembling Langmuir circulations, for distortion by Stokes drift only. The TKE grows faster for distortion by a shear and a Stokes drift gradient with the same sign (a situation relevant to wind waves), but the turbulence is more isotropic in that case (which is linearly unstable to Langmuir circulations).  相似文献   

17.
Based on the theoretical spectral model of inertial internal wave breaking(fine structure) proposed previously, in which the effects of the horizontal Coriolis frequency component f-tilde on a potential isopycnal are taken into account, a parameterization scheme of vertical mixing in the stably stratified interior below the surface mixed layer in the ocean general circulation model(OGCM) is put forward preliminarily in this paper. Besides turbulence, the impact of sub-mesoscale oceanic processes(including inertial internal wave breaking product) on oceanic interior mixing is emphasized. We suggest that adding the inertial internal wave breaking mixing scheme(F-scheme for short) put forward in this paper to the turbulence mixing scheme of Canuto et al.( T-scheme for short) in the OGCM, except the region from 15°S to 15°N. The numerical results of F-scheme by using WOA09 data and an OGCM(LICOM, LASG/IAP climate system ocean model) over the global ocean are given. A notable improvement in the simulation of salinity and temperature over the global ocean is attained by using T-scheme adding F-scheme, especially in the mid- and high-latitude regions in the simulation of the intermediate water and deep water. We conjecture that the inertial internal wave breaking mixing and inertial forcing of wind might be one of important mechanisms maintaining the ventilation process. The modeling strength of the Atlantic meridional overturning circulation(AMOC) by using T-scheme adding F-scheme may be more reasonable than that by using T-scheme alone, though the physical processes need to be further studied, and the overflow parameterization needs to be incorporated. A shortcoming in F-scheme is that in this paper the error of simulated salinity and temperature by using T-scheme adding F-scheme is larger than that by using T-scheme alone in the subsurface layer.  相似文献   

18.
《Ocean Modelling》2011,38(3-4):65-84
In this article, the authors first present oceanic observations collected in a coastal area in May 2007. The evolution of temperature profiles exhibits a very clear atmospheric heating signal and is used to study mixing. Modelled atmospheric fluxes are evaluated using the oceanic measurements. The K-profile parameterisation (KPP) is chosen to identify the most important mixing processes and its parameters are tuned to minimise differences with respect to the observations.It is found that:• the tuned KPP is able to accurately represent the effect of mixing in this case;• surface and bottom boundary layers, as well as interior shear instability mixing processes all play an important role in the observed evolution of the temperature profile, the bottom boundary being the source of the most intense mixing;• the nonlocal effects in KPP (activated during nocturnal cooling periods) have to be switched off for a better agreement.  相似文献   

19.
The role of surface waves in the ocean mixed layer   总被引:7,自引:6,他引:1  
Previously, most ocean circulation models have overlooked the role of the surface waves. As a result, these models have produced insufficient vertical mixing, with an under - prediction of the ,nixing layer (ML) depth and an over - prediction of the sea surface temperature (SST), particularly during the summer season. As the ocean surface layer determines the lower boundary conditions of the atmosphere, this deficiency has severely limited the performance of the coupled ocean - atmospheric models and hence the climate studies. To overcome this shortcoming, a new parameterization for the wave effects in the ML model that will correct this systematic error of insufficient mixing. The new scheme has enabled the mixing layer to deepen, the surface excessive heating to be corrected, and an excellent agreement with observed global climatologic data. The study indicates that the surface waves are essential for ML formation, and that they are the primer drivers of the upper ocean dynamics; therefore, they are critical for climate studies.  相似文献   

20.
Effect of Langmuir circulation on upper ocean mixing in the South China Sea   总被引:2,自引:0,他引:2  
Effect of Langmuir circulation (LC) on upper ocean mixing is investigated by a two-way wave-current coupled model. Themodel is coupled of the ocean circulationmodel ROMS (regional ocean modeling system) to the surface wave model SWAN (simulating waves nearshore) via the model-coupling toolkit. The LC already certified its importance by many one-dimensional (1D) research andmechanismanalysis work. This work focuses on inducing LC’s effect in a three-dimensional (3-D) model and applying it to real field modeling. In ROMS, theMellor-Yamada turbulence closuremixing scheme is modified by including LC’s effect. The SWAN imports bathymetry, free surface and current information fromthe ROMS while exports significant wave parameters to the ROMS for Stokes wave computing every 6 s. This coupled model is applied to the South China Sea (SCS) during September 2008 cruise. The results show that LC increasing turbulence and deepening mixed layer depth (MLD) at order of O (10 m) in most of the areas, especially in the north part of SCS where most of our measurements operated. The coupled model further includes wave breaking which will bringsmore energy into water. When LC works together with wave breaking,more energy is transferred into deep layer and accelerates the MLD deepening. In the north part of the SCS, their effects aremore obvious. This is consistent with big wind event in the area of the Zhujiang River Delta. The shallow water depth as another reasonmakes themeasy to influence the oceanmixing as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号