首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary During an expedition to the high Andes of Southern Peru in June–July 1977, measurements of direct solar radiation in four spectral bands (0.270–0.530–0.630–0.695–2.900 ) were conducted at six sites in elevations ranging from sea level to 5645 m. These measurements were evaluated in Langley plots to determine total optical depths () and irradiances at the top of the atmosphere. In addition, water vapor optical depths (wv) were calculated from the mean radiosounding over Lima during the expedition, and Rayleigh (ray) and ozone (oz) optical depths were obtained from published tabulations. Subtracting ray, oz, and wv from yielded estimates of aerosol optical depth aer. The components ray and oz decrease from the shorter towards the longer wavelength bands and from the lower towards the higher elevation sites; aer also decreases towards the higher elevations. Particularly pronounced is the decrease of aer and from the lowlands of the Pacific coast to the highlands of the interior, reflecting the effect of a persistent lower-tropospheric inversion and the contrast from the marine boundary layer to the clear atmosphere of the high Andes.With 4 Figures  相似文献   

2.
Wind-tunnel experiments were carried out to measure the shear stressduring snow saltation. Shear stress acting on the snow surface, measured directly with a newly developed drag meter system, revealedthat the shear stress increased with the development ofsaltation. This result supports Owen's hypothesis that the saltationlayer acts as an increased roughness to the flow above the saltationlayer, leading to an increase in surface shear stress. To investigate the contribution of the grain borne shear stressg and the fluid shear stress f to the increment of the total shear stress total, g was calculated from the loss of horizontal momentum of saltating snowparticles. Since g is the largest contribution to theincrement of total, the collision of thesaltating particles is dominant for the shear stressmodification. The results qualitatively support the numericalsimulation reported by McEwan and Willetts.  相似文献   

3.
On the determination of the height of the Ekman boundary layer   总被引:1,自引:1,他引:1  
The heighth of the Ekman turbulent boundary layer determined by the momentum flux profile is estimated with the aid of considerations of similarity and an analysis of the dynamic equations. Asymptotic formulae have been obtained showing that, with increasing instability,h increases as ¦¦1/2 (where is the non-dimensional stratification parameter); with increasing stability, on the other hand,h decreases as –1/2. For comparison, a simple estimate of the boundary-layer heighth u determined by the velocity profile is given. As is shown, in unstable stratification,h u behaves asymptotically as ¦¦–1, i.e., in a manner entirely different from that ofh .  相似文献   

4.
STAR (System for Transfer of Atmospheric Radiation) was developed to calculate accurately and efficiently the irradiance, the actinic flux, and the radiance in the troposphere. Additionally a very efficient calculation scheme to computer photolysis frequencies for 21 different gases was evolved. STAR includes representative data bases for atmospheric constituents, especially aerosol particles. With this model package a sensitivity study of the influence of different parameter on photolysis frequencies in particular of O3 to Singlet D oxygen atoms, of NO2, and of HCHO was performed. The results show the quantitative effects of the influence of the solar zenith angle, the ozone concentration and vertical profile, the aerosol particles, the surface albedo, the temperature, the pressure, the concentration of NO2, and different types of clouds on the photolysis frequencies.Notation I A(, ) actinic flux - I H(, ) irradiance - L(, , , ) radiance - wavelength - azimuth angle - cosine of zenith angle - s cosine of solar zenith angle - optical depth - s scattering coefficient - c extinction coefficient - o single scattering albedo - p mix mixed phase function - g mix mixed asymmetry factor - J gas photolysis frequency  相似文献   

5.
This paper considers the near-field dispersion of an ensemble of tracer particles released instantaneously from an elevated source into an adiabatic surface layer. By modelling the Lagrangian vertical velocity as a Markov process which obeys the Langevin equation, we show analytically that the mean vertical drift velocity w(t) is w()=bu *(1–e (1+)), where is time since release (nondimensionalized with the Lagrangian time scale at the source), b Batchelor's constant, and u *, the friction velocity. Hence, the mean height and mean depth of the ensemble are calculated. Although the derivation is formally valid only when 1, the predictions for w, mean height and mean depth are consistent in the downstream limit ( 1) with surface-layer Lagrangian similarity theory and with the diffusion equation. By comparing the analytical predictions with numerical, randomflight solutions of the Langevin equation, the analytical predictions are shown to be good approximations at all times, both near-field and far-field.  相似文献   

6.
A second-order modelling technique is used to investigate the influence of turbulence on chemical reactions. The covariance and variance equations for the NO-O3-NO2 system are developed as a function of the ratio of the timescale of turbulence ( t ) and the timescale of chemistry (Ch): the first Damköhler number ( t /Ch). Special attention is given to the calculation of the covariance between NO and O3 normalized by the product of their means, the so-called intensity of segregation (I S ). This parameter quantifies the state of mixing of two chemical species.The intensity of segregation is calculated as a function of the flux of NO and the first Damköhler number. The model results presented illustrate the importance of taking the effect of turbulence on chemical reactions into account for higher values of the NO flux, for values of the ratio O3/NO larger than 12.5 and for values of the ratio t /CH larger than 0.1. For such cases, the effective reaction rates are slower than if the chemical species are assumed to be uniformly mixed.  相似文献   

7.
Summary The influence of the micro- and macrophysics of water clouds on the scattering and radiative properties of clouds is investigated using versatile cloud drop size distributions (DSDs) and Mie theory for single scattering and the delta-Eddington approximation for multiple scattering. A new parameterization scheme for the shortwave radiative properties of water clouds is presented. As for single- scattering properties, a new parameterization for cloud optical thickness () is proposed. This is based upon the seperation of the dependence of on the total number of DSDs, the cloud thickness, and the liquid water content, combined with equivalent radius. The cloud bulk radiative properties, i.e., the flux reflectance, transmittance, and absorptance, are uniquely fitted by a dimensionless parameter (X) or the optical thickness. The parameterization is compared with other schemes. Finally, the features and potential use of the scheme are discussed.With 5 Figures  相似文献   

8.
When applied to a sea surface, shortcomings are noted for the ordinary classification of drag conditions at rigid underlying surfaces according to the Reynolds roughness number Re s . It is shown that in the case of mobile underlying surfaces, it would be more natural to use the dynamical classification of drag conditions according to the order of magnitude of the ratio ( = /) of the momentum flux toward the waves ( w) to the viscous momentum flux through the surface ( w). The relevant estimates of for the main stages of development of the wind waves indicate that the observed values of the drag coefficient of the sea surface correspond to the case of underdeveloped roughness.  相似文献   

9.
A simple formula, (1 + (2fmc))-1,is proposed to estimate the attenuation of a scalar flux measurement made by eddy-correlation using a fast-response anemometer and a linear, first-order-response scalar sensor with a characteristic time constant c.In this formula, =7/8 for neutral and unstable stratification within the surface-flux layer and =1 both within the convective boundary layer (CBL) and for stable stratification in the surface layer.fm is the frequency of the peak of the logarithmic cospectrum and can be estimated from fm = nm /z, where z is the measurement height and is thewind speed at that height. The dimensionless frequency at the cospectral maximum nm is estimated here from observations of its behavioras a function of atmospheric stability, z/L within the surface layeror z/zi within the CBL, where L is the Obukhov stability length and zi is the depth of the CBL. The predicted dependence of flux attenuation on measurement height is discussed.  相似文献   

10.
Drag and drag partition on rough surfaces   总被引:13,自引:0,他引:13  
An analytic treatment of drag and drag partition on rough surfaces is given. The aims are to provide simple predictive expressions for practical applications, and to rationalize existing laboratory and atmospheric data into a single framework. Using dimensional analysis and two physical hypotheses, theoretical predictions are developed for total stress (described by the square root of the canopy drag coefficient), stress partition (described by the ratio S/ of the stress s on the underlying ground surface to total stress ), zero-plane displacement and roughness length. The stress partition prediction is the simple equation S/= 1/(1+), where = CRCS the ratio of element and surface drag coefficients. This prediction agrees very well with data and is free of adjustable constants. Other predictions also agree well with a range of laboratory and atmospheric data.  相似文献   

11.
Summary A fixed platform (Fig.3), installed 100 m from the shoreline in 3 m water depth, was instrumented with velocity, temperature and wave-height sensors. 132 data (10 minutes averages) were analysed to calculate the wind stress; from these, 99 data were used to investigate the vertical distribution of the wind stress; all data are presented with Table 1.It was postulated that the total stress, t being constant with height, is made up additively of two components, the wave-supporting stress, w , and the turbulent stress, c ; see Eq. 1. The vertical distribution of these two components is shown schematically in Fig. 1.The total stress, t , evaluated outside the zone of wave influence, is given in the classical way with Fig. 4. The wave-supporting stress, w (z), was evaluated from the data according to a relation proposed by Kitaigorodskii et al. (1984); it is given with Fig. 5. A height-dependency is clearly evident. The turbulent stress c (z), was evaluated with data of the velocity gradient; it is given with Fig. 6. A height-dependency is not evident.The field data from the lake of Geneva give evidence that the additive relation of Eq. 1 seems to be justified.With 6 Figures  相似文献   

12.
It is well known that if turbulent mass convection is modelled as diffusion, errors result unless trajectories from the source (ath) to the point of observation (z p ) comprise many statistically-independent segments (Taylor, 1921). We show that this is not guaranteed merely by the Lagrangian timescale () at the source being small (e.g., source at ground), but that a better criterion istmax[(h), (z p )], wheret is a typical travel time toz p .  相似文献   

13.
The purpose of the paper is to find the mean velocities and stresses in the turbulent, neutral, barotropic planetary boundary layer (PBL). Correction functions are introduced similar to those used by Millikan and Hinze in discussions of flows in a pipe and in a turbulent boundary layer. The functions for the PBL are determined semi-empirically and, with a choice of constants, the resulting velocity distributions are in reasonable agreement with the Leipzig profile. The paper also discusses the correction functions for pipe and boundary-layer flows and for plane Couette flow. The results are in excellent agreement with observations.  相似文献   

14.
Summary A radiative transfer model has been used to determine the large scale effective 6.6 GHz and 37 GHz optical depths of the vegetation cover. Knowledge of the vegetation optical depth is important for satellite-based large scale soil moisture monitoring using microwave radiometry. The study is based on actual observed large scale surface soil moisture data and observed dual polarization 6.6 and 37 GHz Nimbus/SMMR brightness temperatures over a 3-year period. The derived optical depths have been compared with microwave polarization differences and polarization ratios in both frequencies and with Normalized Difference Vegetation Index (NDVI) values from NOAA/AVHRR. A synergistic approach to derive surface soil emissivity from satellite observed brightness temperatures by inverse modelling is described. This approach improves the relationship between satellite derived surface emissivity and large scale top soil moisture fromR 2=0.45 (no correction for vegetation) toR 2=0.72 (after correction for vegetation). This study also confirms the relationship between the microwave-based MPDI and NDVI earlier described and explained in the literature.List of Symbols f frequency [Hz] - f i(p) fractional absorption at polarizationp - h surface roughness - h h cos2 - H horizontal polarization - n i complex index of refraction - p polarization (H orV) - R s microwave surface reflectivity - T B(p) brightness temperature at polarizationp - T * normalized brightness temperature - T polarization difference (T v-T H) - T s temperature of soil surface - T c temperature of canopy - T max daily maximum air temperature - T min daily minimum air temperature - V vertical polarization - soil moisture distribution factor; also used for the constant to partition the influence of bound and free water components to the dielectric constant of the mixture - empirical complex constant related to soil texture - microwave transmissivity of vegetation (=e ) - * effective transmissivity of vegetation (assuming =0) - microwave emissivity - s emissivity of smooth soil surface - rs emissivity of rough soil surface - vs emissivity of vegetated surface - soil moisture content (% vol.) - K dielectric constant [F·m–1] - K fw dielectric constant of free water [F·m–1] - K ss dielectric constant of soil solids [F·m–1] - K m dielectric constant of mixture [F·m–1] - K o permittivity of free space [8.854·10–12 F·m–1] - high frequency limit ofK wf [F·m–1] - wavelength [m] - incidence angle [degrees from nadir] - polarization ratio (T H/T V) - b soil bulk density [gr·cm–3] - s soil particle density [gr·cm–3] - R surface reflectivity in red portion of spectrum - NIR surface reflectivity in near infrared portion of spectrum - eff effective conductivity of soil extract [mS·cm–1] - vegetation optical depth - 6.6 vegetation optical depth at 6.6 GHz - 37 vegetation optical depth at 37 GHz - * effective vegetation optical depth (assuming =0) - single scattering albedo of vegetation With 12 Figures  相似文献   

15.
The standard E – model generates aplanetary boundary layerthat appears to be much too deep. The cause of theproblem is traced to the equation for the dissipationrate () of turbulent kinetic energy (E), specifically theparameterization of dissipation production anddestruction. In the context of atmosphericboundary-layer modelling, we argue that a part of thedissipation production should be modelled as the inputto the spectral cascade from the energy-containingpart of the spectrum, with a characteristic length , while the equilibrium imbalancebetween local production and destruction ofdissipation is modelled as proportional toE2/E, as in the standard model. Wepropose an E – – turbulence closurescheme, in which both the mixing length, m, and are prescribed. The importance ofthe equation is diminished, though itstill determines the dissipation rate in the Eequation.  相似文献   

16.
Selected field measurements of evening stable boundary layers are presented in detail comparable with published Large Eddy Simulation results. Such models appear to match idealized theories more closely than do some boundary-layer observations. Any attempt to compare detailed observations with idealized models therefore highlights the variability of the real boundary layer.Here direct turbulence measurements across the stable boundary layer from a heterogeneous and an ideal site are contrasted. Recommendations are made for the information needed to distinguish heterogeneous and ideal cases.The companion paper (Part II) discusses further the issues of data, analysis in the presence of variability, and the effects of averaging over heterogeneous terrain.Part of UK Meteorological Office Atmospheric Process Research Division.  相似文献   

17.
A dynamical model for the late-Quaternary global variations of 18O, mean ocean surface tempeature , ice mass I, deep ocean temperature , and atmospheric carbon dioxide concentration , is constructed. This model consists of two diagnostic equations (for 18O and ), and three prognostic equations (for I, , and ) of a form studied extensively in previous articles. The carbon dioxide equation includes forcing by a representation of the Milankovitch earth-orbital radiation effects, and contains a basic instability that drives a free oscillation of period near 100,000 years. The system is constrained to conserve mass and energy, contain physically plausible feedbacks including a system time constant no greater than 10.000 years, and be robust (i. e., structurally stable in the presence of expected noise levels and uncertainties in values of coefficients). Within the limits of these constraints, coefficients are chosen such that (i) the solution gives a good fit to the observed SPECMAP 18O variations, and (ii) the ice mass variations are qualitatively similar to the 18O variations. The predicted long term variations of sea surface temperature and atmospheric carbon dioxide are in reasonably good agreement with the limited observational evidence available for these quantities, while the predicted variations of deep ocean temperature remain to be verified when paleoclimatic estimates of this quantity become available. The relative contributions of ice mass changes and surface water temperature changes to the variations of 18O at any time are given by the model.  相似文献   

18.
The study focuses on a way to parameterize the effect of subgrid scale convective motions on surface fluxes in large scale and regional models for the case of light surface winds. As previously proposed, these subgrid effects are assumed to scale with the convection intensity through the relationship: where is the mean velocity of the wind, U0 the velocity of the mean wind, w* the free convection velocity, and an empirical coefficient to be determined. Both observations and numerical simulation are presently used to determine the free convection coefficient .Large eddy simulation of a fair weather convective boundary layer case observed during TOGA-COARE is performed. Comparisons between observations and the simulation of surface properties and vertical profiles in the planetary boundary layer are presented. The simulated vertical turbulent fluxes of heat, moisture and buoyancy range well within estimates from aircraft measurements.The most important result is that the true free convection coefficient , directly estimated from simulation, leads to a value of 0.65, smaller than the ones estimated from temporal and spatial variances. Using observations and simulation, estimates of from temporal and spatial variances are obtained with similar values 0.8. From both theoretical derivations and numerical computations, it is shown that estimates of the true from variances are possible but only after applying a correction factor equal to 0.8. If this correction is not used, is overestimated by about 25%. The time and space sampling problem is also addressed in using numerical simulations.  相似文献   

19.
The variations of and in the drainage flow in the Brush Creek valley of western Colorado are investigated using data from Doppler acoustic sodars and instrumented towers. The data were obtained on two experimental nights during the 1984 ASCOT field study. There is good agreement between the variations derived from low-level observations of the sodars and those derived from the towers located throughout the valley. The observed hourly average and in the nocturnal drainage flow are about 20 ° to 25 ° and 5 °, respectively; these values are much larger than those generally observed over flat terrain during nighttime stable conditions. After sunrise (about 0600 MST), as the valley warms and the flow direction changes to up-valley, these parameters increase sharply to their peak values at about 0800 MST and then decrease to their normal daytime values after about two hours.In the drainage flow, the hourly average varies inversely with wind speed according to the relation u 0.7ms-1. The vertical standard deviation is much less enhanced by complex terrain than the horizontal standard deviation. The observed values are predicted fairly well by the local similarity theory.Oak Ridge Associated Universities (ORAU) Summer Research Participant at ATDD in 1987 andOak Ridge Associated Universities (ORAU) Summer Research Participant at ATDD in 1987 and  相似文献   

20.
Among well-mixed multi-dimensional Lagrangian stochastic (LS) dispersion models, we observe that those in poorest agreement with observations produce spiralling trajectories, with an associated reduction in dispersion. We therefore investigate statistics of increments d ' to the orientation '= arctan(W'/U') of the Lagrangian velocity-fluctuation vector – as a possible means to distinguish the better LS models within the well-mixed class. Zero-spin models, having d' = 0, are found to provide best agreement with observations. It is not clear however, whether imposition of the zero-spin property selects (in conjunction with the well-mixed condition) a unique model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号