首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Treatment of the seepage problems at the Kalecik Dam (Turkey)   总被引:10,自引:0,他引:10  
Sedat Turkmen   《Engineering Geology》2003,68(3-4):159-169
This paper describes the seepage prevention measures at Kalecik Dam. Water leaked from the foundation of the dam after the impoundment. The dam, 77 m in height, was constructed for irrigation purposes.

The foundation consists of Mesozoic ophiolite, Paleocene allochthonous units composed of different lithologies and Miocene conglomerate. Karstified and fractured Paleocene limestone outcrops on the right bank of the dam foundation. This unit extends into, and its thickness increases within, the right abutment. The leakage occurs towards the downstream springs through the right bank limestone.

The main grout curtain is 200 m long and 60 m deep and was constructed on the right bank. After reservoir impounding, new springs were observed in the downstream area. Therefore, after the construction of the dam, remedial curtain grouting was required and carried out in three stages. Firstly, the main grout curtain was supplemented by additional grouting to seal the fractures and infill karstic cavities. The diversion tunnel was also repaired. The curtain depth was the same as the depth of the previous curtain. The second stage of additional treatment consisted of new deep grouting. Some investigation holes were also drilled along the same alignment as the main curtain to locate the seepage in the region. These holes were extended to an elevation of 442 m. The final stage of grouting measures was between the spillway and the dam body and underneath the spillway.

As a result of the additional grouting measures, the spring discharges observed downstream of the dam embankment decreased. However, the seepage paths were extended and were moved with time so that the seepage problems are still continuing.  相似文献   


2.
In this study, seepage phenomena through the right abutment of Shahid Abbaspour dam are investigated. The Shahid Abbaspour dam is a 200 m high arch dam, which regulates the waters of the Karun River, serves power generation, and flood control and irrigation needs. The dam site lies in the Zagros Mountains of southern Iran. This region presents continuous series of mainly of karstic limestone, marl, shale and gypsum ranging in age from Jurassic to Pliocene. The region has subsequently been folded and faulted. Seepage from the Shahid Abbaspour reservoir occurs mainly through the karstic limestone.The basic foundation treatment of the dam consisted of consolidation grouting, a high-pressure grout curtain and a drainage curtain. Moreover, a 144 m high and 30 m wide concrete cutoff wall was built to prevent reservoir seepage through a clay-filled fracture zone in the right abutment. The grout curtain penetrates the “Principal Vuggy Zone” only beneath the central portion of the dam and below the cutoff wall. In the right abutment fan curtains were constructed to reduce drainage flows, but the seepage problem could not be solved. In order to determine the seepage direction and karstification pattern, hydrogeological studies have been carried out. Additional investigation boreholes have been drilled to monitor fluctuations in groundwater level. Besides these, water chemistry, dye tracer, pinhole and XRF tests have been carried out. As a result of these studies, seepage paths have been identified in the karstic limestone in the right abutment of the dam.  相似文献   

3.
The seepage occurrence from the reservoir on the right bank of the Akde?irmen Dam located in Afyonkarahisar province in the Turkey has been investigated. When the reservoir began to fill with water, a large amount of water seepage occurred at the dam. The seepage developed at the base of the spillway and the right downstream slope of the dam. The various attempts have been made to reduce the seepage using grouting. Although the additional grouting operations was reduced the seepage at the base of the spillway, there has not been a reduction in seepage at the water outlet location at the downstream slope. Electrical resistivity measurements along the eight lines with the dipole–dipole array and dye tracer tests were performed in order to identify the seepage locations. The interpretation of electrical resistivity data showed the distribution of strata and the seepage zone along the right downstream of the dam. Groundwater flow rates calculated from dye tests indicated that there is an excessive seepage south-eastwardly on the downstream slope of the dam. Integrated interpretation of resistivity data and dye tests indicate that the seepage paths are in the direction from NW to E and SE.  相似文献   

4.
Seepage through foundation and abutments of a dam can potentially result in a waste of the water stored in dam reservoir, erosion of foundation materials, and development of uplift pressure in dam foundation which, consequently, threatens the long-term stability of the dam. In this study, the grout volume is estimated based on parameters such as joint aperture, the maximum penetration length of the grout, and calculated grout take in Bazoft dam site. Bazoft Dam is a hydroelectric supply and double-curvature arch dam with a height of 211 m located in Chaharmahal and Bakhtiari Province of Iran. The bedrock of Bazoft dam site consists of Asemari Formation (limy marl and marly lime), in the middle and upper parts of left abutment, and Jahrom Formation (limestone and dolomite) in the right abutment, river bed, and lower part of left abutment. The joint apertures were calculated based on the permeability and the joint spacing. Next, the maximum penetration length of the grout and grout volume were calculated. Using a statistical analysis, the relationship of the joint aperture, maximum penetration length, and the calculated grout volume with real grout take was also investigated. The results show that the grout take can be predicted with appropriate accuracy based on the calculated grout volume.  相似文献   

5.
The main objective of this paper is to estimate the water seepage from Lar dam reservoir based on a combination of the geological structure study results and identification of the flow conduits in the right bank of the reservoir. From the beginning of impounding the dam in 1980, heavy seepage was observed at two karstic springs, Haraz and Galugah, located about 9 km downstream of the dam. During the first impounding, the discharge of the Haraz spring abruptly increased from 0.5 m3/s to around 5 m3/s. The results of piezometers and dye tests indicate that seepage occurs mainly through the right abutment of the dam where there is a structural wedge between the north dipping North Tiz Kuh and the south dipping Lar Valley faults. F1, F2, and F3 faults are the most important faults in vicinity of the structural wedge. Based on the dye test results, the North Tiz Kuh and F3 faults along which caves No. 1 and 2 are formed are regarded as two isolated conduits for seepage and conveyance into Lar Valley Fault at downstream of Lar dam. After identifying the conduits, water seepage from the Lar dam reservoir has been calculated using finite element method. According to the results of numerical method, when the reservoir water level is at 2485 m a.s.l, the average of water seepage is around 8.51 m3/s (this amount of water is related to the seepage along the Lar Valley Fault). The average discharge of springs downstream of the dam has been used to verify the numerical method. The results show a very close relation between estimated and observed discharge.  相似文献   

6.
对湖北省京山县吴岭水库枢纽工程中土坝剖面进行了有限元渗流计算,分析了大坝基础部位的残坡积土和强风化砂岩的强透水性以及下游排水体对于大坝渗流场的影响,指出现有坝体断面设计的不合理是导致大坝下游坡面散浸的原因,为大坝的工程处理提供了依据,也为今后土坝设计提供了借鉴。  相似文献   

7.
Akköprü Dam, which is under construction, is located at Dalaman Basin in the southwest of Turkey. The base rock at the Akköprü dam site and reservoir area is autochthon Akta? limestone and Gökseki flysch formation. Allochthon Cehennem Deresi limestone, a complex series of ferro- (melange) and peridotite–serpentine units, overlay this unit with tectonic contact. These units are covered by young sedimentary series. The outcrops of karstified Akta? limestone are observed at 2 km upstream of the dam site, at the right reservoir abutment. This unit is very permeable and the groundwater level is very deep, 100–116 m below the Dalaman riverbed. After impoundment, 250,000 m2 of this unit will be submerged. Groundwater which percolates in this unit discharges at the coastal springs. This study analyzed the watertightness of Akköprü reservoir related to the karstified limestone in the left reservoir bank and discussed possible options of remedial works to reduce seepage.  相似文献   

8.
张强勇  林春金  向文 《岩土力学》2006,27(10):1831-1834
渗流、渗压是影响坝基稳定的重要因素。通过对石板水电站重力坝坝基渗流、渗压多年观测数据的统计分析,考虑水位、温度和时效的影响,采用逐步回归分析法建立了坝基渗流、渗压的统计回归分析模型。回归计算结果表明,渗流、渗压统计值与观测值吻合较好,统计复相关系数较大,估计标准误差较小。统计回归分析模型有效地反映了坝基渗流、渗压的变化规律和发展趋势,为评价大坝运行安全性态提供了有效地分析手段和途径。  相似文献   

9.
本文分析了客兰水库库区、坝体、输水涵管、坝基、溢洪道、输水隧洞等工程部位渗漏情况和原因,并对坝体进行了有限元渗流计算与分析。  相似文献   

10.
坝址环境水质及其时空变化隐含了丰富的信息,可以揭示水、岩、帷幕间的相互作用情况以及渗流条件的改变。以李家峡水电站为例,对坝址不同部位渗流水进行采样检测的基础上,综合运用水化学图示、统计分析等方法,研究了坝址环境水质空间分布特征,并与之前的检测结果对比分析水质变化趋势。研究显示,廊道内渗水总体上呈现出“高矿化”的特征,且坝基部位较两岸坝肩尤甚,表明两岸部位帷幕前后水力联系相对活跃;从时间演变看,左岸及坝基廊道部位的水质与此前检测分布较为一致,表明对应部位防渗性能变化稳定;右岸水样两次检测情况变化较大,表明右岸廊道部分部位渗流条件变化较大。  相似文献   

11.
绕坝渗流地下水位的时空分布模型研究   总被引:5,自引:0,他引:5       下载免费PDF全文
郑东健  王建 《水科学进展》2005,16(5):730-734
许多大坝的失事是由于高地下水位引起坝肩失稳所致。绕坝渗流是影响坝肩高地下水位的主要因素。为此通常将大坝基础防渗帷幕延伸到坝肩岸坡内一定距离,以减小绕坝渗流影响。而防渗帷幕运行性态随时间变化,为了评价坝肩防渗帷幕和地下水位的运行性态,首先分析了地下水位观测资料和水位、降水、温度、时效等时空影响因素及其表达式,随后基于岸坡地下水位观测资料,利用最小二乘法建立了大坝岸坡地下水位的时空分布模型。通过比较模型剩余标准差和测点的剩余标准差,可以确定坝肩地下水位的异常测点,分析岸坡防渗薄弱部位,掌握坝肩岸坡渗流场时空分布规律,监控绕坝渗流的性态。  相似文献   

12.
赵立敏 《中国煤田地质》2007,19(2):44-46,69
在调查高腊梅水库大坝所处地形地貌、地层岩性、地质构造与地震及水文地质等地质环境条件的基础上,研究了坝体、坝基及坝肩的工程地质特征,对坝体的稳定性、填筑土的渗漏,坝基及坝肩岩(土)体的渗透等问题进行了评价.对可能产生的工程地质危害及应采取的加固处理措施等提出了有针对性的建议.  相似文献   

13.
A 204 m high solid concrete gravity dam is proposed across the River Yamuna in Garhwal Himalaya, India. It will be located on dolerite rocks which have been intruded into the slates of Chandpur Formation. The present study includes the evaluation of the dam foundation by means of drifts, drill holes, water pressure tests and abutment slope stability studies. The water pressure test indicate the necessity of providing a grout curtain below the dam foundation. The analysis of the dam abutments for stability using the Limit equilibrium method indicates that the right abutment slope is kinematically unstable for plane failure mode. The plane failure analysis of the right abutment slope was carried out by modifying the Hoek and Bray (1981, Rock Slope Engineering, 3rd ed., Institute of Mining and Metallurgy, London) technique of plane failure analysis. The analysis reveals that right abutment slope may become unstable during the stripping operation. Based upon the analysis a safe cut slope design for the abutments have been suggested. Subsurface exploration by means of cross drift and drill holes has indicated a sheared contact of slate and dolerite in the foundation area. To avoid the settlement of the dam along this shear zone precautionary measures are suggested.  相似文献   

14.
Zhang  Wenbing  Shen  Zhenzhong  Chen  Guanyun  Zhang  Wanlin  Xu  Liqun  Ren  Jie  Wang  Fei 《Hydrogeology Journal》2021,29(5):1831-1855

Seepage analysis and assessment of the effect of seepage control at reservoir sites are essential parts of dam design and operations, and of considerable significance for the safe and economic design of the masses and hydraulic structures associated with reservoir sites. In this study, a systematic process is provided for the optimal design and assessment of seepage control of reservoir dams under karst development conditions. A reservoir dam planned for construction in the middle-upper reaches of the Huayang River in China is selected as a case example for illustration. A three-dimensional equivalent continuum seepage finite-element numerical model is applied to investigate the effectiveness of the proposed and optimized seepage-control schemes, and it is calibrated by an inversion analysis of the initial seepage field based on the flexible tolerance method and field penetration test data. By analyzing the sensitivity of seepage discharge to the length and depth of the grouting curtain, a safe and economic seepage-control optimization scheme is suggested. Additionally, the sensitivity of seepage discharge to the hydraulic conductivity of the limestone layer is analyzed, and the results show that the hydraulic conductivity of the limestone layer has a significant impact on the seepage discharge of the reservoir site. The methodology and results derived from this study can provide technical support and reference for the optimal design and assessment of seepage control for reservoir dam engineering under karst conditions.

  相似文献   

15.
Havasan dam site is located in northwest of Iran. The planned concrete dam is to be built on Cretaceous limestone. Faulted and fractured limestone is exposed at the dam abutments and in the reservoir area. Rock mass properties including the deformation modulus and uniaxial compressive strength were calculated using different rock mass classification systems (RMR, Q, GSI and DMR). Laboratory tests indicate that joint filling materials contain clay with low to high plasticity (CL to CH) and low to medium potential swelling pressures. X-ray diffraction analysis confirms that the reason for potential swelling of joint fillings is the existence of clay minerals (such as illite and montmorillonite). The study results about the shear strength of clay-filled joints show that under JRC–JCS condition (laboratory scale), JRC n –JCS n (large scale) and normal stress equal to 0.25–4 MPa, the range of shear strength of clay-filled joints will be equal to 0.2–2.17 and 0.14–1.72 MPa. In some areas dissolution along the joints results in high permeability, especially in the right abutment. Three dominant joint sets occur in the exploration galleries which have been excavated in the right abutment. The maximum aperture of these joints varies from 7 to 9 cm, and the joints are typically filled with clay. Preliminary analysis shows that the presence of open joints which will cause seepage of water, combined with the impact of the clay-filled joints and forces acting on the slopes, could lead to slope failures and rock falls. In addition, the assessment of slope stability results in abutments using limited equilibrium method and Swedge software under dynamic and static conditions shows that two wedges formed on the slopes of the abutment by the natural joints are potentially unstable. The rock wedge on the left abutment is smaller but presents higher sliding potential. In addition, there is no probability of planar failure due to the geological condition of the dam abutments. This paper summarizes the site investigation and subsequent analysis, which resulted in a recommendation not to construct this site. We offer some potential mitigation plans to consider if a dam were to be built at this site.  相似文献   

16.
某水利枢纽厂房大型基坑开挖渗流研究   总被引:2,自引:2,他引:2  
倪才胜  韩昌瑞  白世伟 《岩土力学》2008,29(7):1819-1824
渗流,特别涉及到自由面或浸润线的确定是岩土工程的重点和难点问题。借鉴砂土坝的渗流分析方法,采用经典分段组合法理论得到基坑开挖边坡渗流简化模型Ⅰ。在此基础上将土层分层,应用土层分界面上的渗流折射定律,得到简化模型Ⅱ。分别求解两种模型得到正常水位和最大水位条件下的渗水量,与工程实际的渗水量进行对比发现,计算渗水量大于实际渗水量,这是由于忽略了围堰对渗水的阻隔作用。在正常水位条件下,模型Ⅱ的结果优于模型Ⅰ。  相似文献   

17.
渗透变形或渗透破坏是由潜蚀强烈发展而出现的一种特有的不良地质作用,本文结合某大型水电工程坝基存在的软弱夹层,在现场取样试验,研究了这些软弱夹层在渗透水流作用下发生渗透变形的方式和程度,并以试验成果为基础,根据水工建筑物的布置以及上下游水头差等条件,采用数值模拟的方法模拟软弱夹层的水力梯度分布情况以及软弱夹层与上下两盘基岩中的水力梯度分布,为坝基防渗设计提供依据。  相似文献   

18.
北盘江流域沿线山高谷深,岩溶水文地质条件复杂,局部区域水资源短缺,岩溶渗漏问题成为水利水电工程建设的瓶颈。文章综合地质调查测绘、钻探及物探、水文地质试验、岩溶水系统分析、地下水均衡分析等方法,论证了PCH水库不会发生邻谷渗漏及绕坝基深部的岩溶管道型渗漏,但发生溶隙型渗漏的可能性较大。采用有限元法模拟溶隙渗漏显示:随着T1yn1-1灰岩溶蚀率的增大,坝基抗滑稳定系数稍有降低,潜在失稳模式为后缘剪断T1yn1-2岩体,前缘沿T1yn1-2层内岩屑夹泥型软弱结构面剪出;坝基渗漏量呈线性增加,T1yn1-1灰岩溶隙密集带为坝基主要渗漏区。当溶隙密集带沿T1yn1-1灰岩与T1yn1-2泥灰岩接触带水平发育且集中分布时,坝基抗滑稳定系数将明显减小,坝基渗漏量将明显增大;当溶隙密集带垂直发育、分散发育或主要分布于坝后区域时,其对坝基抗滑稳定及坝基渗漏量影响微弱。岩溶水文地质分析及数值模拟均显示,复杂岩溶水系统势汇区下游区域多以溶隙渗漏为主,其工程影响有限,具备建坝成库条件。   相似文献   

19.
某拟建水电站为高坝大库,挡水建筑物系200m级碾压混凝土重力坝,系我国在境外投资建设的重大能源项目之一。该水电站位于一条区域性的深大断裂(F4断裂)上,该断裂的活动性以及涉及的筑坝技术可行性为本工程的重大技术课题,关乎水电站成立与否的关键。为此开展了区域地震地质调查、物探、钻探、硐探、断裂物质测龄以及岩土物理力学性质现场和室内测试等大量工作,研究表明:(1)该断裂地震活动微弱,最新活动年龄14.2万~79.8万年,是一条晚更新世以来不活动的断裂,为非活动断层;(2)F4断裂对水坝建设存在影响的部位主要为碎裂岩带和F4-1、F4-2断层,其中微新碎裂岩多为Ⅲ1B类岩体,仅F4-2断层下盘影响带内的碎裂岩岩体为Ⅳ1B类岩体,F4-1、F4-2断层带工程性质差,为Ⅴ类岩体,是坝基最软弱的部位;(3)在F4断裂带上筑坝,建库后诱发构造型水库地震的可能性小,存在的主要工程地质问题为坝基变形和渗漏、渗透稳定问题,可通过适当深挖,并结合回填混凝土塞、固结灌浆、加深加密帷幕孔以及增加帷幕排数等工程措施予以处理。因此,F4断裂带上可以兴建水电站工程,筑坝技术可行。结果可为该水电站设计、施工提供技术依据,为类似工程提供技术参考。  相似文献   

20.
某坝基为砂卵石基础,其下为强风化基岩,坝基渗漏和左右岸绕坝渗漏是该水库坝基存在的主要地质问题。为此,采取了塑性混凝土防渗墙与双排帷幕灌浆相结合的综合防渗措施。为了检测水库坝基及塑性混凝土防渗墙施工质量,防止水库正常蓄水后发生渗漏,选用了高密度电法进行无损检测。工程采用温纳施伦贝尔法观测,分别采用5m和10m电极间距,电极数60个,剖面数16。依据5m和10m道距实测视电阻率剖面与反演结果的解释,对水库坝基和防渗墙的工程质量进行了评价,认为-25m桩号塑性混凝土防渗墙可能存在渗漏问题,-80m桩号对应一低阻异常,坝体可能存在渗漏通道;其余部位未发现明显异常。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号