首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Tsushima Basin is located in the southwestern Japan Sea, which is a back-arc basin in the northwestern Pacific. Although some geophysical surveys had been conducted to investigate the formation process of the Tsushima Basin, it remains unclear. In 2000, to clarify the formation process of the Tsushima Basin, the seismic velocity structure survey with ocean bottom seismometers and airguns was carried out at the southeastern Tsushima Basin and its margin, which are presumed to be the transition zone of the crustal structure of the southwestern Japan Island Arc. The crustal thickness under the southeastern Tsushima Basin is about 17 km including a 5 km thick sedimentary layer, and 20 km including a 1.5 km thick sedimentary layer under its margin. The whole crustal thickness and thickness of the upper part of the crust increase towards the southwestern Japan Island Arc. On the other hand, thickness of the lower part of the crust seems more uniform than that of the upper part. The crust in the southeastern Tsushima Basin has about 6 km/s layer with the large velocity gradient. Shallow structures of the continental bank show that the accumulation of the sediments started from lower Miocene in the southeastern Tsushima Basin. The crustal structure in southeastern Tsushima Basin is not the oceanic crust, which is formed ocean floor spreading or affected by mantle plume, but the rifted/extended island arc crust because magnitudes of the whole crustal and the upper part of the crustal thickening are larger than that of the lower part of the crustal thickening towards the southwestern Japan Island Arc. In the margin of the southeastern Tsushima Basin, high velocity material does not exist in the lowermost crust. For that reason, the margin is inferred to be a non-volcanic rifted margin. The asymmetric structure in the both margins of the southeastern and Korean Peninsula of the Tsushima Basin indicates that the formation process of the Tsushima Basin may be simple shear style rather than pure shear style.  相似文献   

2.
Seismic reflection and refraction data were collected west of New Zealand's South Island parallel to the Pacific–Australian Plate boundary. The obliquely convergent plate boundary is marked at the surface by the Alpine Fault, which juxtaposes continental crust of each plate. The data are used to study the crustal and uppermost mantle structure and provide a link between other seismic transects which cross the plate boundary. Arrival times of wide-angle reflected and refracted events from 13 recording stations are used to construct a 380-km long crustal velocity model. The model shows that, beneath a 2–4-km thick sedimentary veneer, the crust consists of two layers. The upper layer velocities increase from 5.4–5.9 km/s at the top of the layer to 6.3 km/s at the base of the layer. The base of the layer is mainly about 20 km deep but deepens to 25 km at its southern end. The lower layer velocities range from 6.3 to 7.1 km/s, and are commonly around 6.5 km/s at the top of the layer and 6.7 km/s at the base. Beneath the lower layer, the model has velocities of 8.2–8.5 km/s, typical of mantle material. The Mohorovicic discontinuity (Moho) therefore lies at the base of the second layer. It is at a depth of around 30 km but shallows over the south–central third of the profile to about 26 km, possibly associated with a southwest dipping detachment fault. The high, variable sub-Moho velocities of 8.2 km/s to 8.5 km/s are inferred to result from strong upper mantle anisotropy. Multichannel seismic reflection data cover about 220 km of the southern part of the modelled section. Beneath the well-layered Oligocene to recent sedimentary section, the crustal section is broadly divided into two zones, which correspond to the two layers of the velocity model. The upper layer (down to about 7–9 s two-way travel time) has few reflections. The lower layer (down to about 11 s two-way time) contains many strong, subparallel reflections. The base of this reflective zone is the Moho. Bi-vergent dipping reflective zones within this lower crustal layer are interpreted as interwedging structures common in areas of crustal shortening. These structures and the strong northeast dipping reflections beneath the Moho towards the north end of the (MCS) line are interpreted to be caused by Paleozoic north-dipping subduction and terrane collision at the margin of Gondwana. Deeper mantle reflections with variable dip are observed on the wide-angle gathers. Travel-time modelling of these events by ray-tracing through the established velocity model indicates depths of 50–110 km for these events. They show little coherence in dip and may be caused side-swipe from the adjacent crustal root under the Southern Alps or from the upper mantle density anomalies inferred from teleseismic data under the crustal root.  相似文献   

3.
青藏高原东部的隆升机制一直都是地学界的研究热点,研究学者们提出和发展了多种岩石圈变形模型,而存在多种模型的主要原因之一是对青藏高原东部地壳及岩石圈结构认识不足。本文主要针对SinoProbe-02项目横跨龙门山断裂带、全长400多公里的宽角、折射地震数据及重力数据进行联合反演和综合解释。研究结果表明,龙门山及邻近地区地壳结构可明确划分为上地壳、中地壳和下地壳。上地壳上层为沉积层,龙门山断裂带以西大部分区域被三叠纪复理岩覆盖,而在龙日坝断裂与岷江断裂之间出现了密度为2.7g/cm3的高速异常体;向东靠近龙门山地区,沉积层厚度逐渐减薄。中地壳速度变化不均一,而且变形强烈;若尔盖盆地和龙门山断裂带下方出现明显低速带;中地壳在龙门山西侧厚度加厚,在岷江断裂下方和四川盆地靠近龙门山断裂带地区附近厚度达到最大。莫霍面整体深度从东往西增厚,最厚可达56 km。本次研究得到的地壳结构和密度分布分析结果表明现有的地壳厚度和物质组成不足以支撑龙门山及邻近地区目前所达到的隆升高度,因此四川盆地刚性基底西缘因挤压作用产生的弯曲应力也是该地区抬升的重要条件之一。  相似文献   

4.
The Otway Basin in southeastern Australia formed on a triangular‐shaped area of extended continental lithosphere during two extensional episodes in Cretaceous to Miocene times. The extent of the offshore continental margin is highlighted by Seasat/Geosat satellite altimeter data. The crustal architecture and structural features across this southeast Australian margin have been interpreted from offshore‐onshore wide‐angle seismic profiling data along the Otway Continental Margin Transect extending from the onshore Lake Condah High, through the town of Portland, to the deep Southern Ocean. Along the Otway Continental Margin Transect, the onshore half‐graben geometry of Early Cretaceous deposition gives way offshore to a 5 km‐thick slope basin (P‐wave velocity 2.2–4.6 km/s) to at least 60 km from the shoreline. At 120 km from the nearest shore in a water depth of 4220 m, sonobuoy data indicate a 4–5 km sedimentary sequence overlying a 7 km thick basement above the Moho at 15 km depth. Major fault zones affect the thickness of basin sequences in the onshore area (Tartwaup Fault Zone and its southeast continuation) and at the seaward edge of the Mussel Platform (Mussel Fault). Upper crustal basement is interpreted to be attenuated and thinned Palaeozoic rocks of the Delamerian and Lachlan Orogens (intruded with Jurassic volcanics) that thin from 16 km onshore to about 3.5 km at 120 km from the nearest shore. Basement rocks comprise a 3 km section with velocity 5.5–5.7 km/s overlying a deeper basement unit with velocity 6.15–6.35 km/s. The Moho shallows from a depth of 30 km onshore to 15 km depth at 120 km from the nearest shore, and then to about 12 km in the deep ocean at the limits of the transect (water depth 5200 m). The continent‐ocean boundary is interpreted to be at a prominent topographic inflection point 170 km from shore at the bottom of the continental slope in 4800 m of water. P‐wave velocities in the lower crust are 6.4–6.8 km/s, overlying a thin transition zone to an upper mantle velocity of 8.05 km/s beneath the Moho. Outstandingly clear Moho reflections seen in deep‐marine profiling data at about 10.3 s two‐way time under the slope basin and continent‐ocean boundary place further strong controls on crustal thickness. There is no evidence of massive high velocity (>7 km/s) intrusives/underplate material in the lower crust nor any synrift or early post‐rift subaerial volcanics, indicating that the Otway continental margin can be considered a non‐volcanic margin, similar in many respects to some parts of the Atlantic Ocean margins e.g. the Nova Scotia ‐ Newfoundland margin off Canada and the Galicia Bank off the Iberian Peninsula. Using this analogue, the prominent gravity feature trending northwest‐southeast at the continent‐ocean boundary may indicate the presence of highly serpentinised mantle material beneath a thin crust, but this has yet to be tested by detailed work.  相似文献   

5.
To study the crustal structure beneath the onshore–offshore transitional zone, a wide-angle onshore–offshore seismic experiment was carried out in northern South China Sea near Hong Kong, using large volume airgun sources at sea and seismic stations on land. The crustal velocity model constructed from traveltime fitting shows that the sedimentary thickness abruptly increases seaward of the Dangan Islands based on the characteristics of Pg and Multiple Pg, and the crustal structure beneath the sedimentary layer is relatively simple. The Moho depth is about 25–28 km along the profile and the P-wave velocity increases gradually with depth. The velocities in the upper crust range from 5.5 to 6.4 km/s, while that in the lower crust is 6.4–6.9 km/s. It also reveals a low velocity zone with a width of more than 10 km crossing the crust at about 75–90 km distance, which suggests that the Littoral Fault Zone (LFZ) exists beneath the onshore–offshore transitional zone. The magnetism anomalies, bouguer gravity anomalies and active seismic zone along the coastline imply the LFZ is a main tectonic fault in the onshore–offshore area. Combined with two previously published profiles in the continental South China (L–G profile) and in the northern margin of South China Sea (OBS1993) respectively, we constructed a land-sea super cross-section about 1000 km long. The results show the onshore–offshore transitional zone is a border separating the unstretched and the stretched continental crust. The low velocity layer (LVL) in the middle crust was imaged along L–G profile. However, the high velocity layer (HVL) in the lower crust was detected along OBS1993. By analyzing the mechanisms of the LVL in the middle crust and HVL in the base of crust, we believe the crustal structures had distinctly different attributes in the continental South China and in the northern SCS, which indicates that the LFZ could be the boundary fault between them.  相似文献   

6.
中国大陆科学钻探场址区的地壳速度结构特征   总被引:4,自引:0,他引:4  
为了深入研究大别—苏鲁超高压变质带的深部结构及空间展布特征, 进一步揭示该超高压变质形成的动力学过程, 在中国大陆科学钻探场址区进行了广角反射/折射地震测深调查.根据广角反射/折射地震测深的资料研究, 建立了中国大陆科学钻探场址区的地壳纵波速度结构.从纵向上来看, 研究区域的地壳结构可划分为上、中、下3层: 上地壳的速度小于6.2 0km/s, 厚10余km; 中地壳的速度为6.4 0km/s, 厚亦为10km左右; 下地壳的速度为6.6 0km/s.地壳厚度为31km左右, 且其地壳的平均速度为6.30km/s.上地壳中的速度倒转指示了超高压变质体在地壳内部的空间分布, 且超高压变质体在大陆科学钻探场址及其附近的下部呈现为一隆起形态.   相似文献   

7.
The north–south trending Tancheng-Lujiang (Tanlu) fault belt extends from northeast China to the Dabie–Sulu orogenic belt, for a length of more than 3000 km. This fault belt probably has close links with the lithosphere evolution, seismic activity and mineral resource concentration in East China. Surface geological mapping and studies on sedimentation and basin formation have indicated segmentation at the southern, middle and northern domains of the fault. Here we employ geophysical constraints to evaluate these fault segments. Unlike previous geophysical studies focused on laterally varying crust/mantle seismic velocity structure across the fault, in this study we have integrated a variety of geophysical data sets, such as crustal P-wave velocity, earthquake occurrence and released seismic energy, seismogenic layer thickness, surface heat flow and geothermal field, to understand the deep structure and strength of the lithosphere along the Tanlu segmented fault belt. The results demonstrate remarkable crustal-scale north-to-south segmentation this major fault. The geophysical evidence and some geochemical constraints suggest that the Tanlu fault belt probably served as a channel for melt and fluid percolation, and exerted a significant control on the lithosphere evolution in East China.  相似文献   

8.
为了理解长江中下游地区在中生代成矿的深部动力学过程,Sinoprobe-03-02项目于2011年9月至10月,在跨宁芜矿集区和郯庐断裂带实施了从安徽利辛至江苏宜兴450km长的宽角反射/折射地震剖面。速度剖面结果显示,Moho面深度和地壳速度结构在郯庐断裂两侧东西方向存在明显的差异:(1)在东部扬子块体内部,地壳覆盖层厚3~5km,西部的合肥盆地下方,则达到4~7km。(2)剖面平均Moho面深度为30~32km左右,在郯庐断裂下方,Moho面深度在35km左右;在宁芜矿集区下方,Moho面整体深度偏浅,达30~31km左右,但局部范围内,Moho面深度至34km左右。(3)剖面的下地壳平均速度在6.5~6.6km/s左右,在宁芜矿集区下方,下地壳速度偏低,为6.4~6.5km/s左右。剖面上地幔顶部的速度结构平均在8.0~8.2km/s。在宁芜矿集区下方,速度偏低,为7.9~8.1km/s左右。(4)郯庐断裂带的下方,从地表开始,还存在20多千米长的低速异常带,一直延伸到Moho面附近。剖面的宁芜矿集区下方Moho面上隆、下地壳及上地幔的低速异常等壳幔结构特征,预示下地壳不以榴辉岩残体为主,支持燕山期地幔岩浆的上涌和侵入并成矿,是热上涌物质的源地。  相似文献   

9.
The North Anatolian Fault (NAF) zone is 1500 km long, extending almost up to the Greek mainland in the west. It is a seismically active right-lateral strike-slip fault that accommodates the relative motion between the Turkish block and Black Sea plate. The Sea of Marmara lies along the western part of the NAF and shows evidence of subsidence. In this area pure strike-slip motion of the fault zone changes into extensional strike-slip movement that is responsible for the creation of the Sea of Marmara and the North Aegean basins. The northern half of the Sea of Marmara is interpreted as a large pull-apart basin. This basin is subdivided into three smaller basins separated by strike-slip fault segments of uplifted blocks NE-SW. Basinal areas are covered by horizontally layered sedimentary sequences. Uplifted blocks have undergone compressional stress. All the blocks are subsiding and are undergoing vertical motions and rotations relative to one another. The uplifted blocks exhibit positive Bouguer gravity anomalies. According to gravity interpretation, there is relative crustal thinning under the Sea of Marmara. The northern side of the Sea of Marmara is marked by a distinctive deep-rooted magnetic anomaly, which is dissected and shifted southward by strike-slip faulting. The southern shelf areas of the Sea of Marmara are dominated by short-wavelength magnetic anomalies of shallow origin.  相似文献   

10.
《Gondwana Research》2014,25(3-4):902-917
The South China continent has a Mesozoic intraplate orogeny in its interior and an oceanward younging in postorogenic magmatic activity. In order to determine the constraints afforded by deep structure on the formation of these characteristics, we reevaluate the distribution of crustal velocities and wide-angle seismic reflections in a 400 km-long wide-angle seismic profile between Lianxian, near Hunan Province, and Gangkou Island, near Guangzhou City, South China. The results demonstrate that to the east of the Chenzhou-Linwu Fault (CLF) (the southern segment of the Jiangshan–Shaoxing Fault), the thickness and average P-wave velocity both of the sedimentary layer and the crystalline basement display abrupt lateral variations, in contrast to layering to the west of the fault. This suggests that the deformation is well developed in the whole of the crust beneath the Cathaysia block, in agreement with seismic evidence on the eastwards migration of the orogeny and the development of a vast magmatic province. Further evidence of this phenomenon is provided in the systematic increases in seismic reflection strength from the Moho eastwards away from the boundary of the CLF, as revealed by multi-filtered (with band-pass frequency range of 1–4, 1–8, 1–12 and 1–16 Hz) wide-angle seismic images through pre-stack migration in the depth domain, and in the P-wave velocity model obtained by travel time fitting. The CLF itself penetrates with a dip angle of about 22° to the bottom of the middle part of the crust, and then penetrates with a dip angle of less than 17° in the lower crust. The systematic variation in seismic velocity, reflection strength and discrepancy of extensional factors between the crust and the lithosphere, are interpreted to be the seismic signature of the magmatic activity in the interest area, most likely caused by the intrusion of magma into the deep crust by lithospheric extension or mantle extrusion.  相似文献   

11.
We herein present a new seismic refraction/wide-angle reflection profile that crosses the Songpan–Ganzi terrane, the Animaqing suture zone and the eastern Kunlun mountains (comprised of the South Kunlun and Middle Kunlun blocks separated by the Middle Kunlun fault). The profile is 380 km long and extends from Moba to Guide in eastern Tibet. The crustal thickness is about 62 km under the Songpan–Ganzi terrane, 62–64 km under the South Kunlun, and 60 km under the Middle Kunlun block. The Songpan–Ganzi flysch seems to be present up to a depth of 15 km south of the Animaqing suture zone, and up to a depth of 10 km in the Middle Kunlun block, with thicknesses elsewhere that depend on assumptions about the likely lithologies. The profile exhibits clear lateral variations both in the upper and lower crust, which are indicative of different crustal blocks juxtaposed by the Kunlun fault system. Whether or not the Songpan–Ganzi flysch was originally deposited on oceanic crust, at the longitude of our profile (100°E) it is now underlain by continental crust, and the presence of continental crust beneath the Songpan–Ganzi terrane and of a continental arc under the South Kunlun block suggest Paleozoic continent–continent arc collision in the eastern Kunlun Mountains. Comparison of crustal velocity columns from all wide-angle seismic profiles across the eastern Kunlun mountains indicates a remarkable west-to-east change in the Moho topography across the Kunlun fault system (15–20 km Moho step at 95°E, but only 2–5 km along our profile at 100°E). Lower-crustal thickness of the Kunlun terranes is rather uniform, about 35 km, from 80°–95°E, which suggests that similar thrust-thickening processes have played a role where the Qaidam Basin abuts the Kunlun fault, but thins to 20–25 km at 100°E, east of the Qaidam Basin. The increased crustal thickness from 93° to 98°E compared to that at 100°E may be due to the differences in the thickness of the crust of the two plates before their collision, and/or largely achieved by thickening of the lower crust, perhaps indicating a crustal flow mechanism operating more strongly in the western region.  相似文献   

12.
The 1000-km-long Darlag–Lanzhou–Jingbian seismic refraction profile is located in the NE margin of the Tibetan plateau. This profile crosses the northern Songpan-Ganzi terrane, the Qinling-Qilian fold system, the Haiyuan arcuate tectonic region, and the stable Ordos basin. The P-wave and S-wave velocity structure and Poisson's ratios reveal many significant characteristics in the profile. The crustal thickness increases from northeast to southwest. The average crustal thickness observed increases from 42 km in the Ordos basin to 63 km in the Songpan-Ganzi terrane. The crust becomes obviously thicker south of the Haiyuan fault and beneath the West-Qinlin Shan. The crustal velocities have significant variations along the profile. The average P-wave velocities for the crystalline crust vary between 6.3 and 6.4 km/s. Beneath the Songpan-Ganzi terrane, West-Qinling Shan, and Haiyuan arcuate tectonic region P-wave velocities of 6.3 km/s are 0.15 km/s lower than the worldwide average of 6.45 km/s. North of the Kunlun fault, with exclusion of the Haiyuan arcuate tectonic region, the average P-wave velocity is 6.4 km/s and only 0.5 km/s lower than the worldwide average. A combination of the P-wave velocity and Poisson's ratio suggests that the crust is dominantly felsic in composition with an intermediate composition at the base. A mafic lower crust is absent in the NE margin of the Tibetan plateau from the Songpan-Ganzi terrane to the Ordos basin. There are low velocity zones in the West-Qinling Shan and the Haiyuan arcuate tectonic region. The low velocity zones have low S-wave velocities and high Poisson's ratios, so it is possible these zones are due to partial melting. The crust is divided into two layers, the upper and the lower crust, with crustal thickening mainly in the lower crust as the NE Tibetan plateau is approached. The results in the study show that the thickness of the lower crust increases from 22 to 38 km as the crustal thickness increases from 42 km in the Ordos basin to 63 km in the Songpan-Ganzi terrane south of the Kunlun fault. Both the Conrad discontinuity and Moho in the West-Qinling Shan and in the Haiyuan arcuate tectonic region are laminated interfaces, implying intense tectonic activity. The arcuate faults and large earthquakes in the Haiyuan arcuate tectonic region are the result of interaction between the Tibetan plateau and the Sino–Korean and Gobi Ala Shan platforms.  相似文献   

13.
A two-dimensional model of the crust and uppermost mantle for the western Siberian craton and the adjoining areas of the Pur-Gedan basin to the north and Baikal Rift zone to the south is determined from travel time data from recordings of 30 chemical explosions and three nuclear explosions along the RIFT deep seismic sounding profile. This velocity model shows strong lateral variations in the crust and sub-Moho structure both within the craton and between the craton and the surrounding region. The Pur-Gedan basin has a 15-km thick, low-velocity sediment layer overlying a 25-km thick, high-velocity crystalline crustal layer. A paleo-rift zone with a graben-like structure in the basement and a high-velocity crustal intrusion or mantle upward exists beneath the southern part of the Pur-Gedan basin. The sedimentary layer is thin or non-existent and there is a velocity reversal in the upper crust beneath the Yenisey Zone. The Siberian craton has nearly uniform crustal thickness of 40–43 km but the average velocity in the lower crust in the north is higher (6.8–6.9 km/s) than in the south (6.6 km/s). The crust beneath the Baikal Rift zone is 35 km thick and has an average crustal velocity similar to that observed beneath the southern part of craton. The uppermost mantle velocity varies from 8.0 to 8.1 km/s beneath the young West Siberian platform and Baikal Rift zone to 8.1–8.5 km/s beneath the Siberian craton. Anomalous high Pn velocities (8.4–8.5 km/s) are observed beneath the western Tunguss basin in the northern part of the craton and beneath the southern part of the Siberian craton, but lower Pn velocities (8.1 km/s) are observed beneath the Low Angara basin in the central part of the craton. At about 100 km depth beneath the craton, there is a velocity inversion with a strong reflecting interface at its base. Some reflectors are also distinguished within the upper mantle at depth between 230 and 350 km.  相似文献   

14.
The Hidaka Collision Zone (HCZ), central Hokkaido, Japan, is a good target for studies of crustal evolution and deformation processes associated with an arc–arc collision. The collision of the Kuril Arc (KA) with the Northeast Japan Arc (NJA), which started in the middle Miocene, is considered to be a controlling factor for the formation of the Hidaka Mountains, the westward obduction of middle/lower crustal rocks of the KA (the Hidaka Metamorphic Belt (HMB)) and the development of the foreland fold-and-thrust belt on the NJA side. The “Hokkaido Transect” project undertaken from 1998 to 2000 was a multidisciplinary effort intended to reveal structural heterogeneity across this collision zone by integrated geophysical/geological research including seismic refraction/reflection surveys and earthquake observations. An E–W trending 227 km-long refraction/wide-angle reflection profile found a complicated structural variation from the KA to the NJA across the HCZ. In the east of the HCZ, the hinterland region is covered with 4–4.5 km thick highly undulated Neogene sedimentary layers, beneath which two eastward dipping reflectors were imaged in a depth range of 10–25 km, probably representing the layer boundaries of the obducting middle/lower crust of the KA. The HMB crops out on the westward extension of these reflectors with relatively high Vp (>6.0 km/s) and Vp/Vs (>1.80) consistent with middle/lower crustal rocks. Beneath these reflectors, more flat and westward dipping reflector sequences are situated at the 25–27 km depth, forming a wedge-like geometry. This distribution pattern indicates that the KA crust has been delaminated into more than two segments under our profile. In the western part of the transect, the structure of the fold-and-thrust belt is characterized by a very thick (5–8 km) sedimentary package with a velocity of 2.5–4.8 km/s. This package exhibits one or two velocity reversals in Paleogene sedimentary layers, probably formed by imbrication associated with the collision process. From the horizontal distribution of these velocity reversals and other geophysical/geological data, the rate of crustal shortening in this area is estimated to be greater than 3–4 mm/year, which corresponds to 40–50% of the total convergence rate between the NJA and the Eurasian Plate. This means that the fold-and-thrust belt west of the HCZ is absorbing a large amount of crustal deformation associated with plate interaction across Hokkaido Island.  相似文献   

15.
ABSTRACT

The land-sea transition zone in the northern South China Sea (SCS) records important information from the continental rifting to the seafloor spreading. The crustal structure is the key to explore the deep tectonic environment and the evolution of the SCS. In 2015, the onshore-offshore 3D deep seismic experiment was carried out on the Pearl River Estuary (PRE). Explosions and air guns were used as sources on land and at sea respectively in this experiment.Onshore seismic stations and Ocean Bottom Seismographs (OBSs) synchronously recorded the seismic signals. We focus on an onshore-offshore seismic profile (L2, SE-trending) along the eastern side of the PRE. By modelling the seismic travel times, we constructed a P-wave velocity model along the profile. The model shows that the sediment on land is thin and has seismic velocities of 4.5–5.5 km/s. In contrast, thickness of the offshore sediment gradually increases to more than 4.0 km, and the velocities vary between 2.0 km/s and 4.5 km/s. The onshore and offshore crustal velocities are 5.8–6.8 km/s and 5.5–6.8 km/s, respectively. At depth between 15 km and 20 km, a low-velocity layer (LVL; only 5.9 km/s) is detected, pinching out under the Littoral Fault Zone (LFZ). The LVL has probably accommodated the crustal extension beneath the land area, resulting in low extent of the crustal thinning. A slightly uplifted Moho exists beneath the Dongguan fault depression zone, representing a place where hot mantle materials ascend. Localized thickening of the sediments and rapid thinning of the crust characterize the LFZ, and it can be regarded as a tectonic boundary between the South China (SC) with normal continental crust and the northern SCS margin with extended continental crust.  相似文献   

16.
西北次海盆的深部地壳结构蕴含着南海北部陆缘拉张过程的重要信息.广角反射/折射测线(OBS2006-2)长386 km,是目前唯一的一条沿NEE向穿过西沙地块、并平行于西北次海盆扩张脊的深地震测线.通过射线追踪与走时模拟方法(RAYINVR),获得了OBS2006-2测线下方的速度结构.结果表明:西沙地块的沉积层厚度约为1~2 km,而西北次海盆的沉积层厚度大约为2~3 km;Moho界面从西沙地块的27 km逐步抬升到西北次海盆的12 km,Moho界面下方的速度为7.8~8.0 km/s;未发现壳内高速层和低速层.在西沙地块和西北次海盆的过渡区,有着较大量的岩浆活动信息,推测与西北次海盆的初始扩张有关.OBS2006-2测线中114.5°E以西的地区为减薄的陆壳,而114.5°E以东的地区为洋壳,莫霍面在陆壳与洋壳的结合处剧烈抬升,地壳厚度明显减薄.西北次海盆的扩张脊下方可能有残余岩浆的存在.   相似文献   

17.
One in-line wide-angle seismic profile was conducted in 1990 in the course of the Southeastern China Continental Dynamics project aimed at the study of the contact between the Cathaysia block and the Yangtze block. This 380-km-long profile extended in NW–SE direction from Tunxi, Anhui Province, to Wenzhou, Zhejiang Province. Five in-line shots were fired and recorded at seismic stations with spacing of about 3 km along the recording line. We have used two-dimensional ray tracing to model P- and S-wave arrivals and provide constraints on the velocity structure of the upper crust, middle crust, lower crust, Moho discontinuity, and the top part of the lithospheric mantle. P-wave velocity, S-wave velocity and VP/VS ratio are mapped. The crust is 36-km thick on average, albeit it gradually thins from the northwest end to the southeast end (offshore) of the profile. The average crustal velocity is 6.26 km/s for P-waves but 3.6 km/s for S-waves. A relatively narrow low-velocity layer of about 4 km of thickness, with P- and S-wave velocities of 6.2 km/s and 3.5 km/s, respectively, marks the bottom of the middle crust at a depth of 23-km northwest and 17-km southeast. At the crust–mantle transition, the P- and S-wave velocity change quickly from 7.4 to 7.8 km/s (northwest) and 8.0 to 8.2 km/s (southeast) and from 3.9 to 4.2 km/s (northwest) and 3.9 to 4.5 km/s (southeast), respectively. This result implies a lateral contrast in the upper mantle velocity along the 140 km sampled by the profile approximately. The average VP/VS ratio ranges from 1.68–1.8 for the upper crust to 1.75 for the middle and 1.75–1.85 for lower crust. With the interpretation of the wide-angle seismic data, Jiangshan–Shaoxin fault is considered as the boundary between the Yangtze and the Cathaysia block.  相似文献   

18.
为了研究西太平洋弧后边缘海盆地的深部构造特征,于2015年在东海琉球岛弧弧后地区布设了一条穿过东海陆架盆地、钓鱼岛隆褶带、南冲绳海槽地区和琉球岛弧的主动源广角反射/折射深部地震剖面.利用走时正演和反演的方法得到的二维速度结构模型展现了西太平洋边缘弧后地区莫霍面的深度由东海陆架地区的大于30 km显著抬升至南冲绳海槽轴部的约16 km,地壳高度拉张减薄,并存在一系列显著的不连续下地壳高速体,速度达6.8~7.3 km/s,这是地幔上涌的显著表现.模型从深部结构角度展现了新生代以来西太平洋弧后盆地扩张中心的变迁,证实了西太平洋洋陆过渡带内深部上涌的软流圈在弧后拉张过程中不断地向洋跃迁,形成自西向东的构造迁移,并带动岩石圈进行幕式伸展,认为新生代向洋变新的构造迁移是太平洋俯冲带后撤引起的一系列弧后深-浅部地球动力效应.   相似文献   

19.
郯庐断裂带的岩石圈结构及其成因分析   总被引:36,自引:1,他引:35  
横穿郯庐断裂带的五条地学断面揭示,断裂带两侧地壳结构明显不同,这是平移运动造成不同块体拼合的结果。早白垩世走滑期的岩浆活动,指示当时断裂带切入了壳-幔边界。这表明断裂带在走滑中切穿了整个地壳,莫霍面当时应为平缓的大型拆离面,壳-幔之间发生了显著的失耦。断裂带在晚白垩世-早第三纪的伸展活动中,软流圈进行了强烈的上隆,岩石圈出现了显著的细颈化,属于纯剪切伸展模式。在晚第三纪以来的挤压活动中,浅埋软流圈背景上较高的上地幔温度,使郯庐断裂带成为岩石圈薄弱带,从而发生了较强的逆冲活动和大规模幔源玄武岩浆的喷发。  相似文献   

20.
田甜  张景发  姜文亮  赵亚博 《地质学报》2017,91(9):1905-1924
延边地区位于多个微板块的结合部位,区内发育长白山活动火山群,地震活动频繁。本文通过重磁小波多尺度分解与莫霍面、居里面深度反演分析,研究延边地区的微板块地壳结构特征。其中敦化-密山断裂以东的胶辽地块地壳厚度最大,约38~40km,兴凯地块则最小,约34~36km,敦化-密山断裂以西的松嫩地块地壳厚度变化平缓,约36~37km;NE向敦化-密山断裂为延边地区的一级断裂,切穿莫霍面,为松嫩地块的东侧边界;NW向展布的富尔河-红旗河断裂、秋梨沟老头沟断裂与汪清-敬信断裂则属于胶辽地块与兴凯地块之间的缝合带,控制居里面分区及形态,而居里面隆起区及其边缘则多分布火山口,表明居里面的局部隆起与岩浆活动关系密切。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号