首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用2013—2015年廊坊市环境监测数据及同期气象资料,采用相关分析等统计方法,分析廊坊市臭氧浓度的日变化特征、超标规律以及气象因素对其的影响。结果表明:臭氧浓度的日变化特征明显,为"1谷1峰"型,每日07:00—08:00左右达到谷值,15:00—16:00达到峰值;臭氧超标只集中出现在春季、夏季与秋季的部分月份,1—3月、11—12月不存在臭氧超标情况,超标现象日变化特征明显,主要出现在11:00—20:00。气象因素对臭氧浓度的影响很大,风向为西南风与东南风时臭氧超标率较高;臭氧超标时,地面天气类型主要为高压后部或高压底部,高空天气类型主要为脊前西北气流或平直西风环流;臭氧浓度与相对湿度呈显著负相关,与温度、日照呈显著正相关。  相似文献   

2.
上海夏季近地面臭氧浓度及其相关气象因子的分析和预报   总被引:24,自引:1,他引:23  
为了揭示城市近地面臭氧浓度的变化特征及其相关气象因素,尝试进行近地面臭氧浓度预报。通过对2005年夏季(6~9月上旬)上海徐家汇地区近地面臭氧的观测与分析,建立了用于夏季臭氧浓度预报和高浓度臭氧污染事件预警的一种简便、实用的统计回归方法。结果表明:天气条件对臭氧形成具有明显的作用,臭氧浓度晴天最大、多云天次之、阴雨天最小;臭氧具有明显的日变化特征,12:00~14:00之间为最大值,凌晨3:00~5:00之间有一很小的次峰,5:00~6:00之间为最小值。产生高浓度臭氧污染是多项因子的综合结果,一般在高压系统的影响下,晴天少云,紫外辐射较强,相对湿度较低,气温较高,地面和高空吹偏北风,且风速较小的情形时容易产生高浓度臭氧污染。引进高浓度臭氧潜势指数和风向影响指数两个指标,并综合考虑多种气象要素,通过逐步回归建立的臭氧浓度预报方程,对逐日最大臭氧浓度具有较好的拟合效果和可预报性。  相似文献   

3.
利用广东省惠州市区2013—2016年逐日、逐时的环境和气象资料, 研究了珠江三角洲(简称“珠三角”)东侧惠州市臭氧污染特征及其与气象条件关系。结果表明:惠州市臭氧污染具有明显的月和季节变化特征, 10月臭氧平均浓度最高, 臭氧超标日和污染日主要出现在7—10月。惠州市臭氧浓度日变化呈单峰变化, 06—08时最低, 最大值出现在午后14—15时。臭氧浓度变化和气象条件关系密切, 低浓度臭氧大多出现在气温较低、相对湿度和风速较大、云量较多伴有降水、日照时数较小的天气, 臭氧浓度超标多出现在气温较高、相对湿度和风速较小、云量较少一般无降水、日照充足的天气。惠州市臭氧超标主要出现在地面和低空偏西风下, 这可能与惠州市处于珠三角城市群下风向的区域污染输送有关。   相似文献   

4.
利用2010—2013年宁波市近地层臭氧浓度等环境监测资料、地面气象观测资料和NCEP再分析资料,分析了宁波市臭氧浓度的分布规律及其与环境条件的相关性,并建立了臭氧浓度预测方程。结果表明:2010—2013年宁波市近地层臭氧浓度日变化呈"单峰型",峰值一般出现在午后;臭氧月浓度变化呈"双峰型",两个峰值分别出现在5月和10月。选取与宁波近地层臭氧浓度相关性较好的日平均气压、水汽压、气温、NO2浓度和SO2浓度等作为预报因子建立回归模型预测臭氧浓度,模型通过了显著性检验,预报效果较好。统计分析了宁波市臭氧浓度超标日的常见天气型,表明变性冷高压、均压场、高空脊、副热带高压及热带气旋外围影响型为易导致宁波市臭氧污染的天气型,5种天气型所占比例分别为22.1%、9.5%、24.4%、31.4%和8.7%,其他天气型占3.9%;并通过合成分析法,说明了5种天气型相关的天气形势。  相似文献   

5.
利用不同气候背景代表城市北京、沈阳、银川、成都、南京和广州6个城市2014-2016年臭氧质量浓度和同期气象要素数据,对典型城市臭氧(O_3)浓度变化特征及其与气象条件的关系进行研究。结果表明:2014-2016年臭氧年平均浓度由高到低的顺序为南京沈阳北京银川成都广州,3年间广州臭氧浓度呈下降趋势,沈阳变化不大,其他城市总体呈上升趋势,其中,银川增幅最大,北京增幅最小;臭氧浓度月变化特征受纬度影响较大,随纬度增高单峰结构越明显,且各月郊区臭氧普遍高于市区;各城市臭氧日最大值出现在15:00(北京时,下同)-16:00,最小值出现在07:00-08:00,但其峰值、谷值及日变幅有明显差异,广州全天郊区臭氧都显著高于市区,其他城市则不同,11:00-17:00间两者差别较小,成都、南京、银川郊区峰值浓度甚至略低于市区,其余时段郊区高于市区;6个城市影响臭氧变化最主要的气象要素均是气温和日照时数,其次是相对湿度,再次是风速,气温高、日照长、湿度低有利于臭氧生成,相对而言,对于日照时间较长的北京、银川和沈阳,臭氧对气温的变化较其他城市更敏感,且与风速呈弱的正相关,而对于气温、湿度较高的广州、南京和成都,臭氧与日照时数和相对湿度的相关性较其他3个城市强,且与风速呈弱的负相关;城区臭氧与气象要素相关性普遍较郊区好。  相似文献   

6.
夏冬  莫伟强 《广东气象》2011,33(5):36-38
利用东莞市板岭国家基本站EC9810B O3分析仪、常规气象观测数据及micaps常规气象资料,从天气学的角度对东莞市出现高浓度臭氧的原因进行了分析.结果显示:日最大小时平均臭氧浓度超过国家1级标准和国家2级标准时,气温、风速和气压大致相同,相对湿度、降雨量、日照时数不同;起主要影响作用的天气系统为地面冷高压脊、高空槽...  相似文献   

7.
基于广西区域的地面气象观测数据、臭氧浓度数据和臭氧激光雷达观测资料,采用后向轨迹方法,分析了2021年6月6-8日广西出现的一次大范围长时间由南向北变化的臭氧污染过程的形成原因.结果 表明,此次臭氧区域污染的主要原因是本地臭氧生成,次要原因是珠三角地区臭氧向广西区域输送;臭氧浓度与气象要素密切相关,与气温呈现较为一致的正相关,与降水量、地面风速和相对湿度呈现较为明显的负相关.  相似文献   

8.
该文利用空气质量、污染物资料、NCEP(1°×1°)再分析资料及常规气象资料,分析2017年10月25日—11月3日防城港市一次持续性空气污染过程的污染物特征和气象条件。结果表明:此次空气污染过程首要污染物为臭氧,臭氧浓度存在日变化;气温与臭氧浓度变化存在显著正相关,相对湿度与臭氧浓度变化存在显著负相关;午后太阳辐射增强、湿度降低、无降水等气象条件有利于臭氧浓度的增加;500 hPa环流平直、地面为弱的高压脊、地面风速小、天气晴好少云、低层存在逆温层是本次持续性空气污染过程维持的有利气象条件。  相似文献   

9.
利用地面大气颗粒物质量浓度观测资料、探空和NECP再分析资料以及地面激光雷达探测资料,对2021年3月13—15日沈阳地区污染事件过程展开分析,探讨大气污染物质量浓度、大气环流背景与气溶胶垂直分布等特征。结果表明: 3月13日PM2.5质量浓度最高值出现在06:00—07:00,约为220.0—230.0 μg·m-3,15日12:00开始显著降低,而PM10质量浓度在15:00出现显著增加,为258.3 μg·m-3。SO2和NO2浓度较高值均出现在3月13日10:00时左右,分别为40.1 μg·m-3和101.3 μg·m-3。CO质量浓度最高值出现在13日16:00—17:00,约为8.8 mg·m-3。沈阳地区臭氧的最高值均出现在午后,13日和14日午后(12:00—16:00)臭氧最大值为102.4—113.7 μg·m-3。蒙古气旋东移过程中逐渐发展加强,其后部西北风将沙尘向东南方向输送。沈阳地区沙尘发展旺盛时存在不稳定层结,同时伴有显著的上升运动,有利于沙尘粒子的垂直混合和向下游输送。3月15日02:00(北京时间15日10:00)气溶胶消光最大值出现在0.7 km处,消光系数约为6.0 km-1。近地面激光雷达退偏比显著增加至0.4—0.5,近地面以非球形粒子(粗颗粒物)为主的沙尘或浮尘。  相似文献   

10.
连续雾霾天气污染物浓度变化及天气形势特征分析   总被引:8,自引:2,他引:6  
利用MICAPS资料、地面观测资料、NCEP资料和衡水市环境监测站细颗粒物(PM2.5)及PM10浓度资料,对2013年1月衡水市出现的连续雾霾天气从PM10及细颗粒物浓度演变、雾霾天气污染物浓度与地面要素关系、中低层环流形势特征进行了分析,结果表明:1)雾霾天气期间06:00(北京时间,下同)至07:00和16:00至21:00为PM10和细颗粒物浓度较低时段,PM10最大值出现在15:00,细颗粒物最大值出现在02:00,两者并不同时达到极值。2)雾霾天气污染物浓度与地面湿度并不是简单的正相关或负相关关系,还和许多其它因素有关。3)衡水市污染源主要来源于工业污染源、扬尘污染、冬季燃煤采暖、局部污染源及区域性污染。4)雾霾天气相对湿度和能见度基本呈负相关,气压变化不大,风向频率最多为北到东北风,平均风速一般都在2 m/s以下。雾日时大部分时段为雾和霾的混合物。5)重污染日期间500 hPa为平直偏西气流或西北偏西气流,没有明显的槽脊活动。而污染较轻的时段500 hPa为明显的西北气流控制或有槽脊活动。6)雾霾天气期间大部分日数08:00在850hPa以下都存在逆温层;地面气压场偏弱,尤其河北平原一带基本为均压场。最后对雾霾天气影响及对策进行了简单探讨。  相似文献   

11.
河西走廊东部夏季沙尘暴气象要素变化特征   总被引:1,自引:0,他引:1  
利用河西走廊东部民勤和凉州站1971—2013年夏季(6—8月)地面常规气象日观测资料及民勤探空站同期逐日08:00和20:00探空资料,选取民勤和凉州同一天均出现沙尘暴天气的12个沙尘暴个例,统计分析河西走廊东部夏季沙尘暴过程中风向、风速和沙尘暴持续时间、出现时间以及过程前后高低空相关气象要素的变化特征。结果表明:(1)风向、风速对河西走廊东部夏季沙尘暴天气的发生具有重要影响,在西北、西西北、西3个风向下出现沙尘暴天气的频率达75%;(2)夏季沙尘暴持续时间较短,且有75%的夏季沙尘暴出现在下午到晚上(13:00—20:00)时段;(3)夏季沙尘暴发生前大气整层湿度较小、中低层增温明显、高层有冷平流、不稳定度加大、地面为热低压控制、气温高、相对湿度小。  相似文献   

12.
北京市夏季臭氧变化特征的观测研究   总被引:9,自引:0,他引:9  
利用2002年7月至8月325m气象塔资料研究了北京市夏季近地层臭氧浓度变化特征及其与气象因子的关系。结果表明:北京市夏季边界层臭氧浓度日变化显著.臭氧浓度随高度增加而增加;臭氧多数为单峰型分布,双峰型仅分布在底层;臭氧峰值出现时间与气温峰值出现时间基本一致,或略有落后。  相似文献   

13.
利用NCEP再分析、Micaps高空资料和地面气象观测站资料对2018年5月18—31日发生在佛山的持续性高温天气过程进行分析,结果表明:西太平洋副热带高压稳定西伸是对流层整层高压系统的表现,其长时间的稳定维持是造成该次持续性高温天气过程的主要原因;副高中心的下沉增温配合低相对湿度和长日照时数可出现37℃以上的灾害性炎热天气;对于少数高温日除副高作用外,"焚风效应"也有一定的贡献;当低云量≤6成时,10:00的气温≥30℃并且10:00的2 min平均风速≤2级时,可作为5月高温预警信号发布指标。  相似文献   

14.
基于2015—2017年广东省江门市城区臭氧浓度监测数据和气象观测数据,结合应用统计分析、聚类分析等方法,分析了江门臭氧浓度特征及气象影响因素,探讨了2017年江门臭氧严重超标的气象成因。2015—2017年,江门臭氧污染程度逐年加重,秋季臭氧浓度均值高于其它季节;37%的臭氧浓度超标日与西北太平洋或南海热带气旋活动有关,显著高于其它天气类型下超标日占比。臭氧浓度与白天气象要素相关性高于夜间,对臭氧浓度影响较大的气象要素有日照、相对湿度、气温。聚类分析得到6类气流轨迹,当气流轨迹为偏东(陆地)和偏北路径时,其受体臭氧浓度均值和污染气流轨迹占比显著高于平均值。2017年臭氧严重超标的气象成因是达到利于臭氧生成的气象条件阈值时数和日数显著高于以往,且途经江门以北和以东陆地的气流数目明显多于以往。   相似文献   

15.
拉萨地区夏季地面臭氧的观测和特征分析   总被引:5,自引:0,他引:5  
1998年 6~ 9月 ,在西藏拉萨郊区 (海拔 36 5 0m ,2 9.6 5°N ,91.16°E)对地面臭氧进行了连续观测。该地区夏季地面臭氧日平均浓度在 10~ 6 0nL/L ,夏初的浓度较高于夏季后期。地面臭氧浓度的日变化呈单峰型 ,峰值出现在当地时间 10~ 18时 ,具有光化学过程臭氧生成的典型变化特征。局地风速、降水、太阳总辐射等气象因素的变化对地面臭氧浓度具有不同程度的影响。拉萨地区大规模宗教活动中的露天生物体燃烧 ,对地面臭氧浓度的增加有十分明显的贡献  相似文献   

16.
测站附近微环境条件对地面气温观测记录的影响目前还不清楚。本文对2010年漠河国家基准气候站地面观测对比试验数据进行了分析,得到如下结论:(1)年平均地面气温近障碍物点低于标准观测场内,但1、6月的月平均气温近障碍物点偏高;(2)06:00—17:00和21:00,近障碍物地点的气温偏低;18:00至次日05:00(除21:00),近障碍物点气温偏高;(3)春季各时次近障碍物点地面气温均偏低;夏季06:00—17:00近障碍物点气温偏低,18:00至次日05:00相反;秋季仅01:00、03:00、19:00、23:00近障碍物点气温偏高,其他时次相反;冬季07:00—19:00近障碍物点气温偏低,20:00至次日06:00相反。冷季近障碍物点气温偏低;暖季昼间近障碍物点气温偏低,夜间相反;(4)日最高、最低气温出现时间不同地点大体相同,最高气温近障碍物点偏低,最低气温近障碍物点偏高,但最高气温偏低绝对值大于最低气温偏高绝对值;(5)有雾情况下近障碍物地点的气温偏高几率大;雨雪多云天气近障碍物地点气温均偏低;晴朗的白天近障碍物地点的气温偏低,有风天气更明显;而晴朗的夜间近障碍物地点气温偏高,无风天气更明显;晴朗天气条件下,无风时近障碍物地点与观测场内气温差值大于有风时。结果表明,地面气温观测记录对台站观测场附近微环境改变十分敏感,微环境条件的变化将导致地面气温观测出现明显不连续性,对气候变化分析产生影响。  相似文献   

17.
利用1987—2016年西安城区和6个区县的高温天气资料,运用天气学原理和统计学方法,分析≥35℃、≥37℃和≥40℃高温天气的时空分布特征。研究表明近30 a西安地区高温日数整体表现为增加趋势,≥35℃、≥37℃和≥40℃高温日线性倾向率分别为3.3、3.0和0.2 d·(10 a)-1;≥35℃和≥37℃高温日7月出现最多,≥40℃高温日6月出现最多。根据500 h Pa大气环流形势,将西安地区高温天气分为西北气流型、西太平洋副热带高压型(以下简称副高)(细分为副高影响型和副高控制型)以及大陆暖高型3种类型。通过分析高温发生前一天08:00的高低空暖空气温度范围和位置分布、地面气压场分布、24 h变压强度、气温和云量、ECWMF数值模式850 h Pa温度和海平面气压场预报结果以及5个指标站08:00 850 h Pa和地面温度等因子,细化总结出6—8月逐月≥35℃、≥37℃和≥40℃高温精细化预报指标。  相似文献   

18.
基于2014-2017年西安市环保局臭氧观测资料、泾河气象站总辐射和气象资料以及长安气象站紫外辐射和气象资料,对西安市臭氧污染特征及其与气象条件的关系进行了研究。结果表明:西安市臭氧质量浓度的日变化和月变化均呈明显的单峰形态;日最小值22.2μg/m^3和最大值100.7μg/m^3分别出现在07时和16时;臭氧日最大8 h平均质量浓度(用C8h(O3)表示)月均值最大为148.5μg/m^3,最小为30.0μg/m^3,分别出现在7月和11月。总辐射日最大辐照度、日总辐射曝辐量和日紫外辐射曝辐量与C8h(O3)之间具有显著的正相关关系,并且以日紫外辐射曝辐量与C8h(O3)的相关性最高,表明紫外辐射对近地面臭氧质量浓度的影响更为强烈。日最高气温、平均气温、日照时数和C8h(O3)正相关,风速、相对湿度与C8h(O3)负相关,表明晴空时高温、低湿、小风更有利于近地面臭氧的形成。统计关系显示,在5-8月,当日最高气温大于35℃或日最低相对湿度小于40%时,需要警惕臭氧超标污染的发生。  相似文献   

19.
编报漏失极端气温的情况及原因   总被引:3,自引:3,他引:0  
李淑清  郭瑞玲 《广东气象》2006,(3):70-71,73
我国气象资料统计以北京时间20:00为日界,广东省现行的地面天气加密报中气温极值组编码所选时段是跨日界的,当遇有以下4种情况时,会漏失日极端气温:⑴日最高温度出现在20:00~08:00之间;⑵次日20:00~08:00之间的最高温度比当天08:00~20:00之间的最高温度还要高;⑶日最低温度出现在14:00~20:00之间;⑷前一天的14:00~20:00的最低温度比当天20:00~14:00的最低温度更低。建议在每天20:00增加编发20:00~20:00的最低、最高温度组,以完善日极端气温资料,便于更好地开展天气预报服务。  相似文献   

20.
孟祥翼 《气象科技》2017,45(6):1049-1057
利用2000—2014年5月1日到6月10日河南省121个气象观测站点的逐日观测数据、欧洲中心模式预报资料,对河南省干热风天气进行分析,总结了干热风天气形势分类模型,同时利用多元回归法建立了河南省干热风天气的客观预报方法。分析结果得出:河南省干热风天气发生主要形势为西北气流型、高压脊型和纬向环流型3类;通过多元回归分析筛选出日最高温度预报因子为前一日最高气温、当日最低气温、08:00气温、EC850hPa 24h温度预报,相对湿度预报因子为EC850hPa 24h相对湿度预报、前一日14:00相对湿度、当日08:00露点温度,风速预报因子为EC细网格过去3h10m阵风预报,建立温度、湿度和风速3要素的预报方程;利用预报方程对2014年预报时段的天气进行检验,结果表明,对于轻干热风预报的TS评分为62%,重干热风预报的TS评分为64%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号