首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Quartz optically stimulated luminescence (OSL) dating is widely used to determine the time of deposition and burial of Late Quaternary sediments. Application of the method is usually limited to the past 150,000 years due to early saturation of the OSL signal. Here we explore the potential to date Quaternary sediments using the violet (402 nm) stimulated luminescence (VSL) signal of quartz. We develop and test a new post-blue VSL single aliquot regenerative dose dating protocol, and demonstrate that the VSL signal originates from a deep trap at about 1.9 eV with a thermal lifetime of 1011 years at 10 °C, and that this trap is bleachable by sunlight. The VSL signal grows with dose to ∼6400 Gy, a factor ∼20 higher than the conventional quartz OSL signal, and with the proposed protocol we recover a known dose of 1000 Gy in three out of four samples. The potential of the VSL protocol for dating Quaternary sediments is highlighted by its successful application to a suite of geological samples ranging in age between 13 and 330 ka. Based on our investigations, we propose that the VSL protocol has the potential to extend the quartz dating range to cover the full Quaternary.  相似文献   

2.
Raised beach sand deposits along the southeastern coast of Norway were dated by optical (OSL) and infrared stimulated luminescence (IRSL) and the quartz and K-feldspar luminescence characteristics were described. Due to the poor quartz luminescence characteristics, only a limited number of samples were suitable for OSL dating. More promising are the K-feldspar extracts, with typical K-feldspar luminescence characteristics and no sign of fading. For equivalent dose (De) determination, sand-size quartz and feldspar extracts were used, applying a single aliquot regenerative (SAR) protocol. Both, OSL and IRSL De estimates show a wide distribution, unexpected for beach deposits. The calculated OSL and IRSL age estimates were generally in good agreement and the correctness of the ages was confirmed by independent age control. Because only a limited number of the quartz samples were suitable for OSL dating, IRSL dating of the K-feldspar represents an alternative to OSL quartz dating.  相似文献   

3.
Dating of quartz by optically stimulated luminescence (OSL) has been revolutionized with introduction of the test dose (TD) in development of a measurement sequence known as the single-aliquot regenerative-dose (SAR), whereby a valid sensitivity correction for the luminescence signal is provided in the measurement cycle. However, the size of the TD used in the SAR protocol remains controversial. Previous studies show that the TD has little effect on the equivalent dose (De) for young samples in luminescence dating in which the applicability of different deposits varies greatly in different regions. However, detailed studies are lacking on how TD size affects SAR–OSL results of samples with a relatively high De range. In this study, typical loess samples with high De values (∼60 Gy–∼250 Gy) from the eastern Tibetan Plateau were selected to investigate the effects of variation in TD size on the quartz SAR–OSL protocol. Dose recovery tests show that a known dose could be recovered successfully by applying different TDs. Test dose size has an effect on shapes of regenerated dose–response curves (DRCs) and has different influences on Des and characteristic saturation doses for quartz samples with a high dose range. A TD size of 20%–30% De is a good compromise for Tibetan loess with De of ∼60–120 Gy in the quartz SAR protocol, and a TD size larger than 30% should be considered for samples with a larger De. The results of this study highlight the importance of TD size in the SAR–OSL protocol for quartz samples with a high dose range.  相似文献   

4.
In Central Iran there are several cities along the Dehshir fault, which have similar geological conditions to that of the city of Bam prior to the 2003 earthquake (Mw 6.5), during which more than 30,000 lives were lost. Optical stimulated luminescence (OSL) samples were collected from the Dehshir fault in order to place constraints on its seismic history. The single aliquot regenerative (SAR) dose measurement protocol on coarse grained quartz extracts was used for this study. This SAR protocol had to be optimized for the low OSL sensitivity by varying both the preheat temperatures and test doses used. Dose recovery tests showed that given laboratory dose could be successfully recovered. However, replicate palaeodose (De) data were scattered and consequently ages based on mean De's had large uncertainties. As this is thought to largely reflect poor bleaching conditions prior to sediment burial at the site, various statistical procedures were employed in conjunction with the stratigraphic knowledge of the site to try and extract more refined burial ages from the samples. From this the timing of the last earthquake was estimated around 2.0 ± 0.2 kyr. This refined age suggests that the earthquake catalogue of Iran is incomplete and more paleoseismological investigation is required to recognize and date the previous events of Dheshir fault.  相似文献   

5.
A thick Middle and Late Pleistocene loess-palaeosol sequence is exposed at the Stari Slankamen section in the Vojvodina region situated in the south-eastern part of the Pannonian basin, Serbia. The profile exposes an about 45 m thick series of loess intercalated by at least eight pedocomplexes. Ten samples were dated by luminescence methods using a modified single aliquot regenerative dose (SAR) protocol for polymineral fine grains and for quartz extracts from the upper part of the Stari Slankamen loess sequence. The infrared stimulated luminescence (IRSL) and post-IR optically stimulated luminescence (OSL) signals from all polymineral samples showed anomalous fading, suggesting that the post-IR OSL signal is still dominated by feldspar OSL. The ages ranging from 4.6 to 193 ka were obtained after fading correction. These ages indicate that the loess unit V-L1L1, the weakly developed soil complex V-L1S1 and the loess unit V-L1L2 were deposited during marine isotope stage (MIS) 2, 3, and 4, respectively, and also indicate that the loess unit V-L2 is of the penultimate glacial age.  相似文献   

6.
We investigate the use of quartz optically stimulated luminescence (OSL) dating for determining fluvial overbank sedimentation rates over decades to centuries. For the study we took 11 samples from three cores from an embanked floodplain along the River Waal (Rhine) near Neerijnen (The Netherlands). We propose a measurement protocol for young fluvial quartz based on the single-aliquot regenerative dose procedure. Parameters for the protocol are chosen to isolate the fast OSL component, eliminate an ultrafast OSL component and avoid thermal transfer. The protocol shows excellent dose recovery and recycling ratios. For each sample, a Gaussian is fitted to the lower part of the equivalent dose distribution to obtain an estimate of the burial dose. We discuss the validity of the OSL ages using internal and external controls, and conclude that there is no evidence for large systematic offsets in the OSL ages. OSL based sedimentation rates are between ~3 and 8 mm/a, in line with previous estimates.  相似文献   

7.
An up to 15 m thick alluvial fan and aeolian sandsheet complex is exposed in the upper Senne area, on the southern slope of the Teutoburger Wald Mountains (NW Germany). The origin and age of these deposits have been controversially discussed for many years, ranging from Saalian glaciofluvial to periglacial Weichselian deposits. In order to provide a high-resolution chronological framework for the deposits, we conducted luminescence dating of 12 samples from two localities (Oerlinghausen and Augustdorf pits). Both coarse-grain potassium-rich feldspar and quartz minerals were used for luminescence dating. Feldspar was measured using an elevated temperature post-IR infrared stimulated luminescence (IRSL). Quartz was measured using optically stimulated luminescence (OSL) with a conventional single aliquot regenerative dose (SAR) protocol. Feldspar results tend to overestimate quartz ages for the lower part of the sections (alluvial plain and alluvial fan facies) but are consistent with quartz ages for the upper part of the sections (aeolian facies). Quartz ages from both central and minimum age models suggest deposition during the Late Pleistocene Pleniglacial to Late Glacial.  相似文献   

8.
Optically stimulated luminescence (OSL) dating methods have been widely applied in Quaternary glaciology. However, glacigenic deposits are considered in general as problematic for OSL dating, mainly because they are transported shorter distances prior to burial and are usually partially bleached. Thus, most researchers choose glaciofluvial and glaciolacustrine sediments (with relatively longer transportation times) for OSL dating when constraining the age of glaciation. In this study, four samples were collected from a lateral moraine series at Zhuqing Village, northern margin of Queer Shan Mountain, eastern Tibetan Plateau, in order to investigate the applicability of OSL dating for morainic deposits. Quartz grains (38–63 μm) were extracted and measured using single aliquot regenerative-dose (SAR) protocol. Internal checks and dose recovery test show that the SAR protocol is appropriate for equivalent dose (De) determination. The effect of thermal transfer is small for all samples and the recycling ratio for each individual sample is close to unity. The symmetry in the De distributions indicates that quartz grains were well-bleached prior to burial. OSL ages show good agreement with geomorphological and field investigations, and are also concordant with an independent ESR age. It is concluded that: (a) the morainic deposits in Zhuqing were well-bleached and suitable for OSL dating; (b) SAR protocol can be applied to morainic deposits for samples under study.  相似文献   

9.
Anomalous fading of the infrared stimulated luminescence (IRSL) signal from the polymineral fine-grain and K-feldspar fractions of aeolian sediments from Hungary has been studied. The samples in this study have previously been dated using the multiple aliquot additive dose (MAAD) protocol to measure the IRSL signal. The IRSL measurements using MAAD were conducted ~4 weeks after the irradiation, making it difficult to assess to what extent these age estimates were affected by anomalous fading. In this study, equivalent doses were obtained using the single aliquot regenerative dose (SAR) protocol. The fading rate for each sample was calculated using the different IRSL components and different parts of the decay curve. For each sample, the middle part of the decay curve always showed a lower fading rate than the initial part of the decay curve. The difference between the fading rates for different parts of the decay curve was greater for the K-feldspars than for the polymineral fine grains. Fading corrected ages were calculated by integrating both the initial and the middle part of the decay curve. These ages were compared with optically stimulated luminescence (OSL) ages from quartz, infrared radiofluorescence (IR-RF) ages obtained from K-feldspars and also with independent ages, provided by radiocarbon dating of shells and charcoal, and uranium-series dating of travertine.  相似文献   

10.
When electron spin resonance (ESR) is applied to sedimentary quartz, dealing with the poor bleachability of the signals is particularly challenging. In this study, we used both the single-grain optically stimulated luminescence (OSL) and the single aliquot ESR dating of quartz from deep sand deposits preserving a Stone Age archaeological sequence to combine the advantages of the two methods: good bleaching behaviour and extended age range. Using the youngest samples at each sampling site we were able to calculate the mean ESR residual age from the difference between the OSL ages and the apparent ESR ages. Focusing mainly on the single aliquot regenerative dose (SAR) protocol here, we were able to calculate the mean ESR residual age for the Ti and Al centres, including the non-bleachable signal component for the latter. For the NP site, residual ages of 209 ± 13 ka and 695 ± 23 ka were calculated for the two centres, whereas for the ZS site 268 ± 39 ka and 742 ± 118 ka were determined. These residual ages are significant and cannot be neglected. Thus, the residual age was subtracted from the apparent ESR ages. The validity of the residual subtraction method was tested through a comparison of the oldest OSL age from each site with the residual subtracted ESR age. For both NP and ZS sites, the residual subtracted Ti and Al ages were consistent with the OSL age within 2-σ uncertainty, and therefore confirm the robustness of the subtraction method. Within the NP sequence, we were able to locate the end of the Early Stone Age at 590 ± 86 ka, and this provides a maximum age for the transition to the Middle Stone Age in this part of south-central Africa.  相似文献   

11.
Quartz optically stimulated luminescence (OSL) forms the basis for the chronology of Weichselian ice advances in Arctic Eurasia developed over the last few years. There is almost no age control on this chronology before 40 ka, except for some marine sediments correlated with marine isotope stage (MIS) 5e on the basis of their palaeofauna. Results from more southern latitudes have shown that dose estimates based on quartz OSL and the single aliquot regenerative (SAR) dose procedure may underestimate the age of MIS 5e deposits. Here we use the same method to date well-described marine sediments, thought to have been deposited during the very beginning of the Eemian interglacial at 130 ka, and exposed in two sections on the river Sula in northern Russia. Various quality-control checks are used to show that the OSL behaviour is satisfactory; the mean of 16 ages is 112±2 ka (σ=9 ka). This represents an underestimate of 14% compared to the expected age, a discrepancy similar to that reported elsewhere. In contrast to SAR, the single aliquot regeneration and added (SARA) dose procedure corrects for any change in sensitivity during the first OSL measurement. The SARA results are shown to be 10% older than those from SAR, confirming the geological age estimate and suggesting that SAR ages may underestimate older ages (larger doses), despite their good performance in the younger age range.  相似文献   

12.
选择西安临潼-长安断裂带上韩峪乡范家村剖面的一个典型崩积楔样品进行测试.用3种不同的释光测试方法测出了9个不同的年龄数据.根据地层信息和矿物的释光生长曲线确定只有采用混合矿物简单多片再生法、纯石英矿物简单多片再生法以及纯石英矿物单片再生法的光释光测年法所得结果更接近于崩积楔的真实年龄.这些断层崩积楔年龄接近于围岩的形成...  相似文献   

13.
In this study we test, for the first time, the potential of an elevated temperature post-IR IR (pIRIR290) SAR protocol for the dating of young heated artefacts. Seven heated stones and seven potshards were collected from three different archaeological sites in Denmark: one site from the early Pre-Roman Iron Age 200 BC to AD 100, and two from the Viking period between AD 800 and 1200.We first derive quartz OSL ages for these samples, to support the archaeological age control. The luminescence characteristics of the pIRIR290 signal are then investigated; in particular the dose recovery ratios are shown to be close to unity. The performance of the feldspar pIRIR290 protocol is then examined by comparing the pIRIR290 ages with those based on the quartz OSL signal; the average ratio of pIRIR290 to OSL ages is 1.14 ± 0.05 (n = 14) and there is some suggestion that the possible overestimation of the feldspar ages compared to quartz is only of significance for the heated stone samples. Nevertheless, there is no indication of incomplete heating of the stones; the ratios of De derived from the IR50 and pIRIR290 signals are independent of sample type, and consistent with complete resetting by heating. Comparison with the archaeological age control is not able to identify whether quartz or feldspar provides the most reliable dating signal.  相似文献   

14.
Loess deposits distributed in southeastern China play an important role for paleoclimate reconstruction of the subtropical regions. These loess-paleosol deposits are mainly spread within the middle and lower reaches of the Yangtze River as well as in the drainage area of the Huai River. The ages of loess paleosol sequences that are distributed along the Huai River are not well constrained. In this study, the standard single-aliquot regenerative dose (SAR) optically stimulated luminescence (OSL) protocol and two elevated temperature post infrared-infrared stimulated luminescence SAR protocols (pIRIR225 and pIRIR290) were applied on 4–11 μm quartz and polymineral fine grains, respectively, in order to obtain the first numerical luminescence chronology for a loess-paleosol sequence in northern Jiangsu Province. Our results show a good agreement between quartz SAR-OSL and polymineral pIRIR ages up to ~70 ka. These findings confirm that Xiashu loess accumulated during the Last Glaciation. For samples older than this, the ages increasingly deviate with depth. Fine quartz ages beyond 70 ka are interpreted as underestimates, as previous studies reported that quartz ages >70 ka from various sedimentary origins worldwide may underestimate even if they pass rejection criteria and dose recovery tests. On the other hand, the pIRIR ages are most likely overestimating the true depositional ages as indicated by the results of dose recovery tests, where a 30–60% overestimation of the recovered dose is reported for values larger than ~400 Gy. The overestimation of pIRIR protocols was also confirmed by the results obtained when large beta doses were added on top of the natural accrued dose. Moreover, our dating results suggest that L1/S1 transition (corresponding to MIS 5/4 boundary) occurred much higher in the stratigraphic sequence than may have been interpreted from the magnetic susceptibility enhancement. This inconsistency can be assigned to invalidity of magnetic susceptibility as a chronostratigraphical proxy due to ferrimagnetic minerals dissolution or transformation during paedogenesis processes in this humid subtropical region in the southeastern China.  相似文献   

15.
细颗粒石英光释光测年:简单多片再生法   总被引:30,自引:13,他引:30       下载免费PDF全文
文中报道了细颗粒石英光释光测年中测量等效剂量的一种可靠技术——简单多片再生法。该技术的核心是引入单片再生法中试验剂量校正感量变化的功能,即在天然和再生多测片光释光信号测量后,再对各测片辐照以试验剂量,利用试验剂量的光释光信号响应对各测片归一化,同时校正可能发生的感量变化。从方法学上,这一技术具有以下优点1)试验剂量可以校正各测片的感量变化;2)对各测片归一化,克服了实验数据分散度的问题;3)通过对比简单多片再生法与单片再生法在测年中的表现,证实简单多片再生法可以克服单片再生法中可能发生的光释光信号的积累问题。最后,文中通过测定参考年龄样品,即洛川剖面末次冰期马兰黄土(L1)的开始堆积年龄,验证了简单多片再生法的可靠性,即在提高测量准确度和精度的同时,更节约时间  相似文献   

16.
选择中国不同地区的冲洪积相等水成相沉积物样品,根据其简单多片再生法(SMAR)测量数据建立了细颗粒石英光释光信号的综合生长曲线(Standardised growth curves,SGC)。对未知年龄的水成相沉积物细颗粒石英样品,通过测量其天然光释光信号和试验剂量响应信号,并利用上述SGC方程可计算出其等效剂量值。将此值与简单多片再生法(SMAR)测量结果相比较,统计得出对于天然等效剂量为12~65Gy的样品,其误差可达19%;对于天然剂量>65Gy的样品,其误差更大;对于等效剂量<12Gy的样品,最大误差也达25%。实验表明,应用这个SGC估计未知年龄样品的等效剂量值范围,再对样品采用简单多片再生法(或单片再生法)进一步测量,可大大节省测量时间  相似文献   

17.
One of the most important foundations of luminescence dating is the assumption that the growth of the luminescence signal in nature can be reproduced under laboratory conditions by performing irradiations with a calibrated beta or gamma source. When optically stimulated luminescence (OSL) of quartz with a dominant fast component is measured using the single aliquot regenerative dose (SAR) protocol, laboratory dose response curves that display continuing growth at high doses are increasingly reported in literature. In this study we investigate fine (4–11 μm) and coarse (63–90 μm) quartz extracted from 25 samples taken from L1, S1 and L2 units from the loess-palaeosol section at Costineşti in Romania. Our results indicate that the growth of the OSL signal in nature does not correspond to the laboratory generated laboratory dose response curve. The growth of the signal in nature is consistent with a single saturating exponential function, with the signal of coarse grains starting to saturate at 100–200 Gy, and for fine grains at 200–300 Gy, respectively. Laboratory dose response curves continue to grow for high doses (>300 Gy) for both quartz fractions. The differences observed between the natural and the laboratory dose response for the two quartz fractions are believed to be a cause for the different chronologies previously reported using the two grain sizes of quartz on Romanian loess. In addition, we have applied the single aliquot regeneration and added dose (SARA) procedure to both fine and coarse grains from the youngest sample. Our findings question the reliability of obtaining high equivalent doses for quartz samples displaying laboratory dose response curves obtained by the SAR protocol for which a single saturating exponential model does not describe the data.  相似文献   

18.
This study presents results from 20 optically stimulated luminescence (OSL) ages from one of the world's largest beach ridge plains, the Jerup beach ridge plain at the base of the Skagen Spit in the northernmost part of Jutland, Denmark. The OSL ages were obtained using quartz and a SAR protocol, and used to establish a chronology for the beach ridge plain and for the underlying coastal plain. The accuracy of the chronology is tested both by laboratory tests (recuperation, recycling ratio and dose recovery) and by comparison with independent age controls, e.g. previously reported radiocarbon dates, map sources, anecdotal evidence and settlement names. It is concluded that the OSL signals are internally consistent, and that the derived OSL ages are in good agreement with a large range of independent age controls. The ridge plain is shown to cover a time span from 1000 to 2700 years ago; this chronology is more detailed and precise than those previously available, and gives an average beach ridge formation rate of 15 yr/ridge and an average lateral migration rate of 2.0 m/yr. This study adds to the growing knowledge that OSL dating has a large potential for establishing detailed and precise chronologies in coastal marine sediments, including beach ridges.  相似文献   

19.
Luminescence dating has become a key tool in studies of the Quaternary. The typically stable luminescence response of quartz grains and the absence of a significant internal dose, make quartz minerals the preferred dosimeter for monitoring the burial dose in sediments. Unfortunately, the reliability of conventional OSL (optically stimulated luminescence) dating, based on blue stimulation, can be compromised when the luminescence decay is not dominated by a rapidly decaying and stable part of the luminescence signal (i.e. the fast component). On the other hand, standard methods in luminescence dating are limited to ages of a few hundred kiloyears. In this study, violet stimulated luminescence (VSL) has been used as a means to overcome both problems, applied to a series of colluvial deposits in the Atacama Desert, Chile. Quartz from this region, characterized by poor blue-OSL response, showed a reproducible and stable VSL signal capable of recovering given doses up to ∼500 Gy and a saturation dose twice as high as conventional OSL. The VSL response from these samples has been studied in detail and the estimated ages have been compared with an already established chronology for the same site, based on IRSL of potassium feldspar single grains. Results agree for the dose range of the profile studied, ∼100–250 Gy, equivalent to ages of 29–79 ka confirming the suitability of VSL for dating sedimentary quartz with unreliable blue-OSL response and to extend the age range of conventional OSL dating.  相似文献   

20.
Parallel multiple aliquot calibration transfer is combined with the use of standardized optically stimulated luminescence signals and evaluation of single aliquot regenerative dose response characteristics, to produce a robust and efficient transfer protocol for mineral samples used in dating and retrospective dosimetry. Transfer was made from an IST-LPSR 60Co primary air kerma standard to four Risø and Daybreak 90Sr/90Y irradiators, for quartz or polymineral grains of 90/100–160 μm or 160–250 μm diameter from seven samples. Grains were pretreated by activation, heating, or bleaching, and mounted on 0.5 mm thick aluminium or stainless steel disks, or 0.25 mm thick stainless steel cups. Multiple aliquot conversion coefficients based on parallel irradiations (mGy60Co per s of 90Sr/90Y exposure) were corrected for non linearity in dose response using the regenerative measurements, and compared with “single aliquot” coefficients obtained directly from the regenerative, i.e. retrospectively measured, dose responses. Ratios of measured/given β exposure time provide controls: these were close to unity for activated and heated material, which exhibited predose sensitization, and vice versa for optically bleached samples. Parallel multiple aliquot calibration transfer, using OSL integrated over the main signal decay, was found to offer better accuracy and precision than retrospective single aliquot measurements, and was robust for polyminerals as well as quartz. Differences in conversion coefficient between grain-sizes and supports on a given irradiator ranged up to 25% and were specific to the irradiator-support-grainsize permutation. Geometric effects are quantitatively explained by the solid angle subtended at the source by the sample, and the effect of support material (and thickness) by differences in electron backscatter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号