共查询到20条相似文献,搜索用时 15 毫秒
1.
Hong-Qi Zhang National Astronomical Observatories Chinese Academy of Sciences Beijing 《中国天文和天体物理学报》2006,6(1):96-112
We present the evolution of magnetic field and its relationship with mag- netic(current)helicity in solar active regions from a series of photospheric vector magnetograms obtained by Huairou Solar Observing Station,longitudinal magne- tograms by MDI of SOHO and white light images of TRACE.The photospheric current helicity density is a quantity reflecting the local twisted magnetic field and is related to the remaining magnetic helicity in the photosphere,even if the mean current helicity density brings the general chiral property in a layer of solar active regions.As new magnetic flux emerges in active regions,changes of photospheric cur- rent helicity density with the injection of magnetic helicity into the corona from the subatmosphere can be detected,including changes in sign caused by the injection of magnetic helicity of opposite sign.Because the injection rate of magnetic helicity and photospheric current helicity density have different means in the solar atmosphere, the injected magnetic helicity is probably not proportional to the current helicity den- sity remaining in the photosphere.The evidence is that rotation of sunspots does not synchronize exactly with the twist of photospheric transverse magnetic field in some active regions(such as,delta active regions).They represent different aspects of mag- netic chirality.A combined analysis of the observational magnetic helicity parameters actually provides a relative complete picture of magnetic helicity and its transfer in the solar atmosphere. 相似文献
2.
Using the data on magnetic field maps and continuum intensity for Solar Cycles 23 and 24,we explored 100 active regions (ARs) that produced M5.0 or stronger flares.We focus on the presence/absence of the emergence of magnetic flux in these ARs 2–3 days before the strong flare onset.We found that 29 ARs in the sample emerged monotonically amidst quiet-Sun.A major emergence of a new magnetic flux within a pre-existing AR yielding the formation of a complex flare-productive configuration was observ... 相似文献
3.
Sequences of line-of-sight (LOS) magnetograms recorded by the Michelson Doppler Imager are used to quantitatively characterize photospheric magnetic structure and evolution in three active regions that rotated across the Sun??s disk during the Whole Heliosphere Interval (WHI), in an attempt to relate the photospheric magnetic properties of these active regions to flares and coronal mass ejections (CMEs). Several approaches are used in our analysis, on scales ranging from whole active regions, to magnetic features, to supergranular scales, and, finally, to individual pixels. We calculated several parameterizations of magnetic structure and evolution that have previously been associated with flare and CME activity, including total unsigned magnetic flux, magnetic flux near polarity-inversion lines, amount of canceled flux, the ??proxy Poynting flux,?? and helicity flux. To catalog flare events, we used flare lists derived from both GOES and RHESSI observations. By most such measures, AR 10988 should have been the most flare- and CME-productive active region, and AR 10989 the least. Observations, however, were not consistent with this expectation: ARs 10988 and 10989 produced similar numbers of flares, and AR 10989 also produced a few CMEs. These results highlight present limitations of statistics-based flare and CME forecasting tools that rely upon line-of-sight photospheric magnetic data alone. 相似文献
4.
Hongqi Zhang 《Solar physics》2016,291(12):3501-3517
We present the photospheric energy density of magnetic fields in two solar active regions (one of them recurrent) inferred from observational vector magnetograms, and compare it with other available differently defined energy parameters of magnetic fields in the photosphere. We analyze the magnetic fields in Active Regions NOAA 6580-6619-6659 and 11158. The quantity \(\frac{1}{4\pi}{\mathbf{B}}_{n}\cdot{\mathbf{B}}_{p}\) is an important energy parameter that reflects the contribution of magnetic shear to the difference between the potential (\(\mathbf{B}_{p}\)) and the non-potential magnetic field (\(\mathbf{B}_{n}\)), and also the contribution to the free magnetic energy near the magnetic neutral lines in the active regions. It is found that the photospheric mean magnetic energy density shows clear changes before the powerful solar flares in Active Region NOAA 11158, which is consistent with the change in magnetic fields in the flaring lower atmosphere. 相似文献
5.
This paper analyzes the magnetic field structure of active regions at coronal heights determined by means of multi-wavelength observations of polarized radio emission in the microwave range, and compares it with the force-free magnetic field extrapolation into the corona from the photospheric magnetograms. Our method of one-dimensional radio stereoscopy indicates higher magnetic field strength compared with the field reconstructed from photospheric magnetograms. It is shown that the sense of inclinations of the field lines we obtained from the radio data matches the shape of the reconstructed magnetic field lines, although the degree of the inclinations is very different. 相似文献
6.
Spectro-polarimetric observations of active regions were carried out in the spectral lines of Sii 10827.1 Å and Hei 10830 Å to study the three-dimensional magnetic field structure and associated plasma flow properties. Comparison of Sii and Hei magnetograms with the potential field model shows that a large fraction of the magnetic field is consistent with the potential field structure, by assuming that the height difference between the origin of the two lines is about 1200 km. The slope of the scatter plot between Sii and Hei magnetograms is 0.5, 0.76 in an emerging flux and a larger active region, respectively. These values are lower than the scatter plot slopes obtained from Kitt Peak photospheric and chromospheric magnetograms, in which case the corresponding values are 0.83 and 0.9, respectively. Considering the height difference between these two sets of chromospheric magnetograms, this implies that the magnetic field spreads out faster near the transition region heights. Dopplergrams obtained by determining the centroid of the asymmetric line profiles show that, in case of emerging flux region, the chromospheric upflow regions are located in the magnetic neutral line areas. 相似文献
7.
Force-free magnetic fields can be computed by making use of a new numerical technique, in which the fields are represented
by a boundary integral equation based on a specific Green's function. Vector magnetic fields observed on the photospheric
surface can be taken as the boundary conditions of this equation. In this numerical computation, the following two points
are emphasized: (1) A new method for data reduction is proposed, for removing uncertainties in boundary data and determining
the parameter in this Green's function, which is important for solving the boundary integral equation. In this method, the
transverse components of the observed boundary field are calibrated with a linear force-free field model without changing
their azimuth. (2) The computed 3-D fields satisfy the divergence-free and force-free conditions with high precision. The
alignment of these field lines is mostly in agreement with structures in Hα and Yohkoh soft X-ray images. Since the boundary data are calibrated with a linear force-free field model, the computed 3-D magnetic
field can be regarded as a quasi-linear force-free field approximation. The reconstruction of 3-D magnetic field in active
region NOAA 7321 was taken as an example to quantitatively exhibit the capability of our new numerical technique. 相似文献
8.
9.
Solar Physics - We develop an approach of the Grad–Shafranov (GS) reconstruction for toroidal structures in space plasmas, based on in situ spacecraft measurements. The underlying theory is... 相似文献
10.
S. Kholikov 《Solar physics》2013,287(1-2):229-237
Using SOHO/MDI and GONG observations we present time–distance deep-focusing measurements to examine the deeper layers of the solar convective zone. The constructed travel-time maps show 10?–?15 second perturbations at depths of 40?–?75 Mm around active region locations before their emergence to the solar surface. The majority of the active regions used in this study were the same as those used in the recent work published by Ilonidis, Zhao, and Kosovichev (Science 333, 993, 2011). In order to confirm the capability of time–distance measurements to detect emerging active regions, we used a technique similar to their time–distance scheme. Our measurements only in some cases show a similar travel-time anomaly. Additionally, we have shown that the technique utilized in our study can provide more spatial details of the emerging flux configurations. 相似文献
11.
Radio observations of some active regions (ARs) obtained with the Nobeyama radioheliograph at λ=1.76cm are used for estimating the magnetic field strength in the upper chromosphere, based on thermal bremsstrahlung. The results are compared with the magnetic field strength in the photosphere from observations with the Solar Magnetic Field Telescope (SMFT) at Huairou Solar Observing Station of Beijing Astronomical Observatory. The difference in the magnetic field strength between the two layers seems reasonable. The solar radio maps of active regions obtained with the Nobeyama radioheliograph, both in total intensity (I-map) and in circular polarizations (V-map), are compared with the optical magnetograms obtained with the SMFT. The comparison between the radio map in circular polarization and the longitudinal photospheric magnetogram of a plage region suggest that the radio map in circular polarization is a kind of magnetogram of the upper chromosphere. The comparison of the radio map in total intensity with the photospheric vector magnetogram of an AR shows that the radio map in total intensity gives indications of magnetic loops in the corona, thus we have a method of defining the coronal magnetic structure from the radio I-maps at λ=1.76 cm. Analysing the I-maps, we identified three components: (a) a compact bright source; (b) a narrow elongated structure connecting two main magnetic islands of opposite polarities (observed in both the optical and radio magnetograms); (c) a wide, diffuse, weak component that corresponds to a wide structure in the solar active region which shows in most cases an S or a reversed S contour, which is probably due to the differential rotation of the Sun. The last two components suggest coronal loops on different spatial scales above the neutral line of the longitudinal photospheric magnetic field. 相似文献
12.
We study the magnetic structure of five well-known active regions that produced great flares (X5 or larger). The six flares under investigation are the X12 flare on 1991 June 9 in AR 6659, the X5.7 flare on 2000 July 14 in AR 9077, the X5.6 flare on 2001 April 6 in AR 9415, the X5.3 flare on 2001 August 25 in AR 9591, the X17 flare on 2003 October 28 and the X10 flare on 2003 October 29, both in AR 10486. The last five events had corresponding LASCO observations and were all associated with Halo CMEs. We analyzed vector magne-tograms from Big Bear Solar Observatory, Huairou Solar Observing Station, Marshall Space Right Center and Mees Solar Observatory. In particular, we studied the magnetic gradient derived from line-of-sight magnetograms and magnetic shear derived from vector magne-tograms, and found an apparent correlation between these two parameters at a level of about 90%. We found that the magnetic gradient could be a better proxy than the shear for predicting where a major flare might occur: all six flares occurred in neutral lines with maximum gradient. The mean gradient of the flaring neutral lines ranges from 0.14 to 0.50 G km-1, 2.3 to 8 times the average value for all the neutral lines in the active regions. If we use magnetic shear as the proxy, the flaring neutral line in at least one, possibly two, of the six events would be mis-identified. 相似文献
13.
Hong-Qi ZhangNational Astronomical Observatories Chinese Academy of Sciences Beijing 《中国天文和天体物理学报》2004,4(6):563-577
We analyze the process of formation of delta configuration in some well-known super active regions based on photospheric vector magnetogram observations. It is found that the magnetic field in the initial developing stage of some delta active regions shows a potential-like configuration in the solar atmosphere, the magnetic shear develops mainly near the magnetic neutral line with magnetic islands of opposite polarities, and the large-scale photospheric twisted field forming gradually later. Some results are obtained: (1) The analysis of magnetic writhe of whole active regions cannot be limited in the strong field of sunspots, because the contribution of the fraction of decayed magnetic field is non-negligible. (2) The magnetic model of kink magnetic ropes, supposed to be generated in the subatmosphere, is not consistent with the evolution of large-scale twisted photospheric transverse magnetic field and not entirely consistent with the relationship with magnetic shear in some delta active regions. (3) T 相似文献
14.
15.
L. van Driel-Gesztelyi J. L. Culhane D. Baker P. Démoulin C. H. Mandrini M. L. DeRosa A. P. Rouillard A. Opitz G. Stenborg A. Vourlidas D. H. Brooks 《Solar physics》2012,281(1):237-262
During 2??C?18 January 2008 a pair of low-latitude opposite-polarity coronal holes (CHs) were observed on the Sun with two active regions (ARs) and the heliospheric plasma sheet located between them. We use the Hinode/EUV Imaging Spectrometer (EIS) to locate AR-related outflows and measure their velocities. Solar-Terrestrial Relations Observatory (STEREO) imaging is also employed, as are the Advanced Composition Explorer (ACE) in-situ observations, to assess the resulting impacts on the solar wind (SW) properties. Magnetic-field extrapolations of the two ARs confirm that AR plasma outflows observed with EIS are co-spatial with quasi-separatrix layer locations, including the separatrix of a null point. Global potential-field source-surface modeling indicates that field lines in the vicinity of the null point extend up to the source surface, enabling a part of the EIS plasma upflows access to the SW. We find that similar upflow properties are also observed within closed-field regions that do not reach the source surface. We conclude that some of plasma upflows observed with EIS remain confined along closed coronal loops, but that a fraction of the plasma may be released into the slow SW. This suggests that ARs bordering coronal holes can contribute to the slow SW. Analyzing the in-situ data, we propose that the type of slow SW present depends on whether the AR is fully or partially enclosed by an overlying streamer. 相似文献
16.
We investigate the connections between the occurrence of major solar flares and subsurface dynamic properties of active regions. For this analysis, we select five active regions that produced a total of 11 flares with peak X-ray flux intensity higher than M5.0. The subsurface velocity fields are obtained from time–distance helioseismology analysis using SDO/HMI (Solar Dynamics Observatory/Helioseismic and Magnetic Imager) Doppler observations, and the X-ray flux intensity is taken from GOES (Geostationary Operational Environmental Satellites). It is found that among the eight amplitude bumps in the evolutionary curves of subsurface kinetic helicity, five (62.5%) of them had a flare stronger than M5.0 occurring within 8 hours, either before or after the bumps. Another subsurface parameter is the Normalized Helicity Gradient Variance (NHGV), reflecting kinetic helicity spread in different depth layers; it also shows bumps near the occurrence of these solar flares. Although there is no one-to-one correspondence between the flare and the subsurface properties, these observational phenomena are worth further studies to better understand the flares’ subsurface roots, and to investigate whether the subsurface properties can be used for major flare forecasts. 相似文献
17.
18.
C. Cid M.A. Hidalgo J. Sequeiros J. Rodríguez-pacheco E. Bronchalo 《Solar physics》2001,198(1):169-177
We have examined WIND magnetic field and plasma data during the first half of 1998 in order to find encounters of this spacecraft with magnetic clouds. From the events obtained through this search, we have selected four of them taking into account their solar origin. The four magnetic clouds are related to halo or partial halo CMEs, but the morphology of the active region before the eruption is sigmoidal for three of them and non-sigmoidal for the other one. We have analyzed these events in the solar wind by fitting the experimental data to a non-force-free flux-rope model. We conclude that both kinds of active regions develop in the solar wind an ejection with a flux-rope topology. 相似文献
19.
Analysis of the Transverse Magnetic Field in Solar Active Regions by the Huairou Vector Magnetograph
In this paper, we analyse Stokes parameters I,Q,U of the Fei 5324.19Å line, calculated with radiative transfer equations in a solar model atmosphere with a magnetic field, and the influence of magneto-optical effects on the measurement of transverse magnetic field. It is found that the measurement of azimuthal angles of the transverse field is obviously disturbed by the magneto-optical effects. We compare with the observational Stokes images Q and U at different wavelengths from the center to the wing of the Fei 5324.19Å line obtained at Huairou Solar Observing Station of Beijing Astronomical Observatory to confirm azimuthal angles of the transverse field, because the insignificant influence of magneto-optical effects in the far wing of the line was found by the theoretical analysis. The accuracy of azimuthal angles of the transverse field measured near the Fei 5324.19Å line center has been estimated. 相似文献
20.
The STEREO mission provides an unprecedented opportunity to reconstruct the 3D configuration of solar features. In this work, we combine SECCHI/EUVI data from both spacecraft by means of a local correlation tracking method. The technique allows an automatic (without user intervention) matching of pixels in both images. This information is then used to triangulate the 3D coordinates of each pixel. We use the method in order to reconstruct and analyze the 3D structure of active regions. In particular, we focus on the extraction of coronal loop heights, observed nearly simultaneously in the 171, 195 and 284 Å passbands. We compare the properties of loops in the different wavelengths and extract valuable information regarding their geometry. In particular, we demonstrate that some loops that look co-spatial in the 171 Å and 195 Å images have in fact different heights and thus occupy different volumes. Our results have important implications for multi-wavelength studies of coronal loops, especially for calculations using filter-ratio techniques. 相似文献