首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
经典土压力理论的应用是基于半无限土体,但当墙后土体范围有限时经典土压力理论可能就不再适用,出现有限土体土压力问题。针对较复杂条件下无黏性土的有限土体土压力问题,建立了计算模型,并采用薄层单元法推导出解析公式,证明经典的郎肯土压力和库仑土压力皆为所提出的新公式的特解。在综合考虑不同计算条件后,制定土压力计算流程,涵盖了各个条件下土压力计算方法。通过计算分析表明:极限破裂角不为定值,随计算参数的变化而变化;不存在有限土体时,所提新公式解与库仑解较接近;出现有限土体时,新公式解趋近于模拟解,从而证明了新公式解的合理性。此时与库仑解相比,则存在明显差异。  相似文献   

2.
魏纲  姜鑫  张鑫海  金睿 《岩土力学》2018,39(3):993-1001
对地面出入式盾构法隧道施工引起的土体垂直变形计算方法进行研究。考虑盾构轴线与水平面的夹角 (即隧道埋深变化),对林存刚公式进行修正,结合正面附加推力、盾壳摩擦力、附加注浆压力和土体损失的共同作用,提出全新的土体垂直变形计算公式。算例分析结果表明:在隧道埋深较浅工况下,新方法计算结果与林存刚公式的计算结果差异较大,新方法计算得到的开挖面前方地面隆起和后方地面沉降均较大;盾构上仰掘进时,随着 增大,由正面附加推力、盾壳摩擦力及土体损失引起的纵向土体垂直变形曲线呈上移趋势,由附加注浆压力引起的纵向土体垂直变形曲线则呈下移趋势;地面沉降最大值变小,但地面横向沉降槽范围逐渐变大。  相似文献   

3.
考虑土体硬化的基坑开挖性状及隆起稳定性分析   总被引:1,自引:1,他引:0       下载免费PDF全文
基坑开挖过程中,土体应力路径、卸载回弹再压缩特性与简单加载或卸载不同,采用常规的理想弹塑性模型模拟基坑开挖,得到的围护墙位移、坑内土体回弹以及坑外沉降较大。分析了基坑开挖不同区域土体的性状,采用土体硬化模型模拟基坑开挖的卸载与土体硬化行为,结合工程算例,对比土体硬化模型和理想弹塑性模拟以及实测的围护结构土压力、围护墙水平位移和坑外土体沉降,并利用强度折减法分析基坑的稳定性。计算结果表明,考虑土体硬化的HS模型有限元方法能体现土体卸载再加载与开挖的特性,所得土压力、围护结构水平位移以及基坑抗隆起稳定性符合软土地区基坑工程的实践。  相似文献   

4.
土体渗流固结参数识别方法   总被引:6,自引:1,他引:6  
根据土体固结过程中超孔隙水压力观测资料,建立了基于遗传算法的土体渗流团结参数非线性识别方法,解决了经典高斯-牛顿极小化问题所存在的局部极小问题和最小二乘法所存在的当初始值选择不合适时迭代过程发散的问题,提出了根据观测仪器的精度,建立 工终止条件的方法,数值计算结果表明,本文所提出的非线性反演方法适合于土体团结参数识别等类似的反问题。  相似文献   

5.
地铁开挖和衬砌之后衬砌背后的空区和因其未填实而导致土层破坏,破坏产生的土体松散甚至发展到地面,是影响地面交通和建筑物安全的重大隐患。地铁开挖时,掌子面前方的岩土分界线、含水层的预报,是保证施工安全的重要工作。笔者采用陆地声纳法进行探查工作,取得了直观的效果。在北京通州地铁6号线穿过京哈(北京-哈尔滨)铁路下方的剖面和沿隧道拱顶正上方设置的长60 m的剖面上,可以看到有3处长2 m左右的空区,上方土体已发生松动。在南京4号线某段沿隧道拱顶顶正上方的一条剖面上50 m长度内就发现了9处衬砌背后空区及土体松动区,都诱发了上方土体的松动,松动埋深为8 m,其中有5处土体松动已达到沥青路面下。开挖时出现坍方的一段剖面,虽然坍体仅达地面下约4 m的黏土层,但坍体旁的土体已松动达到沥青路面之下。  相似文献   

6.
水平旋喷桩施工引起周围土体变形分析   总被引:1,自引:0,他引:1  
王志丰  沈水龙  谢永利 《岩土力学》2016,37(4):1083-1088
水平旋喷桩施工期间,大量高压流体注入土层,引起土层内部产生较大的膨胀作用,致使周围一定区域的土体发生变形。水平旋喷桩施工引起土体变形可以归结为压力膨胀和体积膨胀共同作用的问题。依托单根水平旋喷桩施工的现场实例,建立了水平旋喷桩施工引起土体变形的数值模型。将水平旋喷桩施工引起的土体变形问题简化为圆孔的膨胀问题,可以统筹考虑注浆压力和注浆流量的影响。首先需要确定注浆压力的影响半径和注浆流量引起的体积膨胀比,然后可以通过数值模型计算膨胀引起的土体变形。数值分析结果与现场实测值的对比表明,当注浆压力影响半径为成桩半径的6倍时,数值计算结果与现场实测值吻合较好。  相似文献   

7.
韩月旺  钟小春  朱伟  虞兴福 《岩土力学》2007,28(Z1):516-520
在渗透性大且富含地下水的砂砾地层中进行土压平衡式盾构施工,切削下来的土体具有渗透系数大、流动性差的特点,由于地下水的渗透使压力舱内支护土压力不能有效地施加到开挖面。通过压力舱土体改良技术,降低土体渗透性和提高土体的流动性是改善压力舱土体状态和提高支护土压力的重要措施。利用能够考虑大变形破坏的快速拉格朗日有限差分计算程序研究了压力舱土体改良效果对开挖面稳定性的影响,分析了压力舱土体渗透系数的降低对开挖面支护压力的影响关系,为土压平衡式盾构施工开挖面支护压力的确定提供参考。  相似文献   

8.
经典朗肯土压力墙后土体滑裂面机制研究   总被引:2,自引:0,他引:2  
陈文胜  赵勤彦  凌同华 《岩土力学》2011,32(12):3571-3576
朗肯土压力理论至今仍是计算土压力的重要方法。由于朗肯主动土压力分布是根据墙后土体应力达到极限状态而得到的,根据极限应力状态认为墙后极限土体的滑动面为一簇平面,由此计算墙后极限土体与土压力的力学平衡不能满足。从极限平衡理论出发,针对朗肯主动土压力下墙后土体极限滑动面问题,明确提出墙后极限土体边界为滑动平面和开裂面的组合,提出的滑裂面(包含滑动面和开裂段)从力学平衡、土压力分布、土压力合力大小等方面完全符合朗肯主动土压力的理论解,可认为是朗肯主动土压力所对应的墙后土体真实滑裂面。同时对朗肯理论的墙后拉应力问题也作出了相应解释,并论证了被动土压力的墙后土体滑动面为一簇平面。研究结论对朗肯土压力理论是一个补充和完善  相似文献   

9.
考虑注浆压力的顶管施工引起土体变形计算方法   总被引:1,自引:0,他引:1  
顶管施工引起周围地层变形的计算预测是顶管施工中必须加以重视的问题。地层的沉降变形与顶管施工的几个环节有密切的联系,如:①顶管姿态与开挖面土压;②顶进与换管;③注浆过程等。理论分析应考虑这几个施工中的关键因素。针对上述施工影响因素,提出了考虑注浆压力的顶管施工的地层移动的计算方法。用Mindlin的位移解分析模拟开挖面土压、顶进与换管过程中的侧面摩擦力的变化引起的位移;以Sagaseta的土体损失引起的土体位移模式分析姿态控制、土体损失等引起的变形;将圆孔扩张的Verruijt解拓展到三维,用于计算注浆压力引起的位移与变形。结果表明,考虑注浆压力的变化,可以得到更为合理的预测结果。  相似文献   

10.
韩同春  谢灵翔  刘振 《岩土力学》2018,39(12):4404-4412
坑中坑在基坑工程实践中普遍存在,使得基坑底部土体成为有限土体,因此,常规的建立在半无限空间土体假定上的朗肯土压力理论对于坑中坑条件下的基坑不再适用。基于极限平衡理论和平面滑裂面假定,考虑土体黏聚力和滑动土体不同的形状,推导了4种情况下被动土压力的计算公式,并给出了滑裂面剪切破坏角的数学表达式。通过算例,计算了不同内坑位置条件下被动土压力的大小和变化趋势。结果表明,滑裂面剪切破坏角是与土体内摩擦角、黏聚力、计算深度、内坑大小及位置有关的变量,内坑的存在将降低围护结构上的被动土压力,且存在一个内坑影响最不利位置,此时的被动土压力值最小。成果为基坑围护设计中被动土压力的计算提供了理论基础。  相似文献   

11.
为探讨斜支撑支护基坑与相邻地下空间有限土体土压力分布规律,对某基坑现场监测数据进行反演分析。研究基于试算法改进后的三次样条法,运用Matlab软件进行反演计算得到支护结构弯矩值和桩后土压力值,结果表明:受有限土体位移模式、非极限状态、边界条件的影响,有限土体主动土压力在开挖面以上,呈现明显的"R"字形分布,比经典土压力计算值小约16.3%;被动土压力与主动土压力差值在开挖面以下,呈现近似矩形分布,比经典土压力计算值小约65%,分析结果可为该类工程支护设计及计算提供依据和参考。   相似文献   

12.
针对现有刚性挡土墙与支护结构工程有限土体土压力研究大都基于墙背光滑的假定,本文考虑挡土墙与填土之间及建(构)筑物与填土间的摩擦作用,挡土墙背倾角及填土顶面竖向荷载的影响,引入极限分析上限理论进行研究。根据临近建(构)筑物有限宽度土体的工程特性,基于平动模式采用直线滑动破裂面,在土压力上限求解中引入粗糙挡土墙及粗糙建(构)筑物与土界面间的摩擦能耗计算,分别建立有限宽度土体在主动极限状态和被动极限状态下的土压力计算模型,并利用数值计算方法求解。通过对有限土体主动土压力进行参数分析,表明极限破裂角是一个不确定角,其随着计算深度增大而非线性增大,随有限土体宽度和挡土墙背倾角增大而减小;主动土压力合力随墙土间外摩擦角、挡土墙背倾角及超载增大而增大,墙土间外摩擦角对极限破裂角影响较小,而对土压力合力影响较大。通过工程算例分析并与其它方法计算结果进行对比,表明有限土体主动土压力和被动土压力均小于无限土体土压力。  相似文献   

13.
刘新喜  李彬  王玮玮  贺程  李松 《岩土力学》2022,43(5):1175-1186
为了研究挡墙后有限土体的主动土压力,以墙后无黏性土体为研究对象,假定破裂面为通过墙踵的平面,且在挡墙平动模式下,墙后土体形成圆弧形小主应力拱。采用沿小主应力迹线分层的方法,将挡墙后土体划分为若干个圆弧形曲线薄层单元,考虑了单元体上下表面应力分布的不均匀性,提出了一种有限土体挡墙主动土压力计算方法,给出了主动土压力合力及其作用点高度的表达式,并验证了该方法的正确性。研究结果表明:采用曲线薄层单元法可以准确考虑单元体复杂的受力情况,能更好地反映挡墙后有限土体主动土压力的变化规律;有限填土时主动土压力沿墙高 呈非线性分布,土压力先随着土体深度增加呈单调递增趋势,然后在接近墙底位置处呈单调递减趋势。分析参数敏感性时取不同土体宽高比与墙背粗糙程度对挡墙主动土压力分布及合力作用点高度进行分析,结果表明:随着土体宽高比n的增大,主动土压力值逐渐增大,土压力分布曲线非线性越来越明显,合力作用点高度逐渐降低且恒大于 。当 0.71时,均趋于稳定。可将 0.71作为有限土体与半无限土体的临界宽高比。随着摩擦角 的增大,主动土压力值逐渐减小,土压力分布曲线非线性越来越明显,合力作用点高度逐渐增大且恒大于 。  相似文献   

14.
盾构施工中土体损失引起的地面沉降预测   总被引:10,自引:0,他引:10  
魏纲 《岩土力学》2007,28(11):2375-2379
土质软硬决定了隧道周围土体的移动方向,移动焦点在隧道中心点与隧道底部位置之间变动。采用两圆相切的土体损失模型,通过引入移动焦点的坐标参数,建立了统一的土体移动模型,该模型能将Park模型与Loganathan模型包括在内。假定土体不排水,利用源汇法推导了由土体损失引起的地面沉降通用计算公式,该方法适用于施工阶段。算例分析表明该方法的计算结果与实测值非常吻合,适用于各种土质条件。Loganathan公式只适用于土质较差的情况,当土质较好时计算得到的地面沉降量要比实测值偏小。  相似文献   

15.
在一般土力学及挡土墙研究中,计算土压力的方法往往是传统的朗肯土压力理论和库仑土压力理论,其都是建立在半无限土体假定基础上的.由于城市用地紧张,建筑物与支护结构的距离常常比较小,支护结构的作用越来越复杂.城市开发建设过程中,不仅要保证自身的稳定性、经济性,还要保证临近建筑物和设施的安全.对四种有限土体土压力计算方法进行推导探究,分析对比得到在同等条件下,利用极限平衡受力分析法所得到的有限土体土压力值较小,更具经济效益,而在不同的地层和墙间距情况下不同的算法有不同的特点,充分考虑特殊条件下的土压力计算方法,可以使施工设计方案更优化.  相似文献   

16.
软土中盾构法隧道引起的土体移动计算研究   总被引:3,自引:1,他引:2  
魏纲  魏新江  龚慈  丁智 《岩土力学》2006,27(6):995-999
对盾构法隧道施工引起的土体扰动范围进行了分析,根据极限平衡原理,认为Loganathan公式中假定的土体损失边界条件存在误差。考虑到土体内摩擦角对土体移动的影响,认为垂直土体变形区域边界线的水平倾角应等于(45°+? /2),而不是45°。给出了修正的Loganathan公式,该公式适用于软土地区不排水条件。提出了盾构剪切扰动区范围的计算公式。算例分析表明,与Loganathan公式的计算结果相比,修正公式使沉降槽宽度和土体水平位移有所减小,计算结果与实测数据更加吻合。  相似文献   

17.
黄土体工程地质的研究体系及若干问题探讨   总被引:2,自引:2,他引:0  
针对黄土的结构性、水敏性和裂隙性等特殊性质,建立了适合黄土体特征及特性的黄土体工程地质研究体系--研究对象、理论基础、内容、路线和方法,指出其研究对象是黄土体。黄土体结构面及其相关问题是黄土体工程地质研究的薄弱环节。探讨了黄土体结构面的分类和分级、黄土体结构类型、洞室围岩类别和黄土体的水敏性等问题,并根据结构面的规模、活动特征及其对工程的危害程度,将黄土体结构面分为6级。 依据黄土的沉积特点、结构面的特征和工程黄土体的范围将黄土体结构分为均质结构、层状结构、柱状结构、块裂结构和碎裂结构。认为加强和突出黄土体工程地质研究,有助于正确认识黄土体工程地质特征和解决相关的工程地质问题。  相似文献   

18.
放坡状态有限土体刚性挡土墙主动土压力研究   总被引:1,自引:0,他引:1       下载免费PDF全文
针对现有有限土体刚性挡土墙主动土压力研究大都集中于临近建筑物墙体或地下室外墙的狭窄土体,相邻基坑、路堤与切坡挡土墙形成放坡状态有限土体研究甚少,本文考虑填土黏聚力及墙土间黏结力、墙土间摩擦作用、墙背倾角及填土顶面竖向荷载等的影响,利用刚体极限平衡理论进行研究。根据相邻基坑与边坡挡土墙放坡状有限土体的工程特性,分析挡土墙平动位移模式下平面滑动破裂面的形成特征,建立放坡状态有限土体主动土压力计算模型,并利用数值计算方法可以求解。通过对放坡状有限土体主动土压力进行算例分析与参数分析,表明极限破裂角与宽高比、黏聚力、墙背倾角及墙土间外摩擦角为负相关,不同黏聚力下随着宽高比增大,极限破裂角趋近于考虑黏聚力作用库伦方法得到的极限破裂角值,不同黏聚力下有限土体宽度临界值亦是变化的;主动土压力随黏聚力、墙背倾角及墙土外摩擦角增大而减小,随着宽高比增大而增大并逐步趋近于库伦方法计算的土压力值。最后,通过模型试验验证表明按本文方法计算的极限破裂角与实测破裂角吻合,PIV系统测试得到的临界宽高比与库伦方法的结果一致。  相似文献   

19.
土体水分蒸发是土体-大气物质和能量交换的主要过程之一,对土体的工程性质有重要影响,是许多工程和环境问题的直接诱因,但长期被本学科所忽视。基于国内外近些年来其他学科领域围绕土体水分蒸发问题所取得的研究成果,分别从土体蒸发量确定方法、试验方法、蒸发过程、影响因素及理论模型等几个重要方面总结了该课题的研究现状及进展,取得如下主要认识:(1)准确确定土体的实际蒸发量是土体水分蒸发研究的核心课题,目前主要有理论计算法和直接测量法两种途径;(2)开展蒸发试验是掌握土体水分蒸发过程和研究土体水分蒸发机制的重要途径,目前主要有室内试验和原位试验两种。相比而言,基于环境箱的室内蒸发试验方法具有较好的应用前景;(3)土体水分的蒸发过程可划分为3个阶段:常速率、减速率和残余阶段;(4)影响土体水分蒸发的因素归纳起来可分为内部土性和外部环境因素两类,前者主要影响土体水分的传输能力,后者主要影响蒸发能量的供应强度;(5)当前关于土体水分蒸发量的计算和预测模型较多,但往往存在误差大、适应范围窄或参数难于获取等不足。基于上述认识,并结合本学科的研究背景,提出了今后该课题的研究重点和方向,包括减速率阶段的蒸发机制、土性参数与蒸发速率之间的量化关系、黏性土尤其是膨胀土中水分的蒸发和迁移机制、高精度原位土体水分蒸发试验设备的研发和构建通用型的土体水分蒸发理论模型等。  相似文献   

20.
顶管施工技术已经广泛用于给排水管道和小直径隧道工程中,同时其施工扰动引起的土体变形问题也越来越受到重视。顶管施工引起周围土体变形的主要因素有:刀盘正面附加推力、顶管机及后续管道与土体之间的摩阻力、注浆压力和土体损失。针对上述影响因素,分析各影响因素单独作用产生的土体变形,然后叠加得出土体总变形计算公式,最后结合港珠澳大桥珠海连接线工程中0#试验管的工程实例分析了其适用性。工程实例分析结果表明:土体损失、注浆压力和顶管机与土体间摩阻力产生的最大土体变形分别为-8.000、2.500和±2.020 mm,这三者是引起土体变形的主要因素;而正面附加推力和后续管道与土体摩阻力产生的最大变形量分别为±0.075和±0.230 mm,影响程度不显著。与Peck公式对比,本文公式除了在最大沉降值处偏差较大以外,其他位置土体变形比Peck公式更接近实测值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号