共查询到20条相似文献,搜索用时 20 毫秒
1.
《水文科学杂志》2012,57(1):57-70
ABSTRACTLeading patterns of observed seasonal extreme and mean streamflow on the Korean peninsula were estimated using an empirical orthogonal teleconnection (EOT) technique. In addition, statistical correlations on a seasonal basis were calculated using correlation and regression analyses between the leading streamflow patterns and various climate indices based on atmospheric–ocean circulation. The spatio-temporal patterns of the leading EOT modes for extreme and mean streamflow indicate an upstream mode for the Han River, with increasing trends in summer, and a downstream mode for the Nakdong River, with oscillations mainly on inter-decadal time scales in winter. The tropical ENSO (El Niño Southern Oscillation) forcing for both extreme and mean streamflow is coherently associated with summer to winter streamflow patterns. The western North Pacific monsoon has a negative correlation with winter streamflow variability, and tropical cyclone indices also exhibit significant positive correlation with autumn streamflow. Leading patterns of autumn and winter streamflow time series show predictability up to two seasons in advance from the Pacific sea-surface temperatures. 相似文献
2.
ABSTRACTIn this study, we investigate the temporal oscillations of precipitation extremes in different climate regions of the United States. We apply quantile perturbation analysis to average daily precipitation and, to 1041 weather stations with high-quality data from 1900 to 2016. Moreover, we explore the relationship between the extreme precipitation and different well-known cyclical climate modes. Overall, the analysis of average daily precipitation identifies a drier condition in the middle decades of the twentieth century and, a wetter climate in the early century and recent decades. Moreover, the in situ analysis reveals a significant anomaly, mainly prevalent in the Central and Southern regions of the United States. We applied a finite set of linear regression models with different combinations of cyclical climate modes to inform the variability of anomalies with best performing models. Our results highlight the dominant effect of ENSO and NAO in the wide area of the United States. 相似文献
3.
ENSO and the natural variability in the flow of tropical rivers 总被引:1,自引:0,他引:1
Kishan N. Amarasekera Robert F. Lee Earle R. Williams Elfatih A. B. Eltahir 《Journal of Hydrology》1997,200(1-4):24-39
This paper examines the relationship between the annual discharges of the Amazon, Congo, Paran á, and Nile rivers and the sea surface temperature (SST) anomalies of the eastern and central equatorial Pacific Ocean, an index of El Niño-Southern Oscillation (ENSO). Since river systems are comprehensive integrators of rainfall over large areas, accurate characterization of the flow regimes in major rivers will increase our understanding of large-scale global atmospheric dynamics. Results of this study reveal that the annual discharges of two large equatorial tropical rivers, the Amazon and the Congo, are weakly and negatively correlated with the equatorial Pacific SST anomalies with 10% of the variance in annual discharge explained by ENSO. Two smaller subtropical rivers, the Nile and the Paraná, show a correlation that is stronger by about a factor of 2. The Nile discharge is negatively correlated with the SST anomaly, whereas the Paraná river discharge shows a positive relation. The tendency for reduced rainfall/discharge over large tropical convection zones in the ENSO warm phase is attributed to global scale subsidence associated with major upwelling in the eastern Pacific Ocean. 相似文献
4.
Increases in the frequency and magnitude of extreme water levels and storm surges are correlated with known indices of climatic variability (CV), including the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), along some areas of the British Columbia coast. Since a shift to a positive PDO regime in 1977, the effects of ENSO events have been more frequent, persistent, and intense. Teleconnected impacts include more frequent storms, higher surges, and enhanced coastal erosion. The response of oceanographic forcing mechanisms (i.e. tide, surge, wave height, wave period) to CV events and their role in coastal erosion remain unclear, particularly in western Canada. As a first step in exploring the interactions between ocean–atmosphere forcing and beach–dune responses, this paper assembles the historic erosive total water level (TWL) regime and explores relations with observed high magnitude storms that have occurred in the Tofino‐Ucluelet region (Wickaninnish Bay) on the west coast of Vancouver Island, British Columbia, Canada. Extreme events where TWL exceeded an erosional threshold (i.e. elevation of the beach–foredune junction) of 5·5 m aCD are examined to identify dominant forcing mechanisms and to classify a regime that describes erosive events driven principally by wave conditions (61·5%), followed by surge (21·8%), and tidal (16·7%) effects. Furthermore, teleconnections between regional CV phenomena, extreme storm events and, by association, coastal erosion, are explored. Despite regional sea level rise (eustatic and steric), rapid crustal uplift rates have resulted in a falling relative sea level and, in some sedimentary systems, shoreline progradation at rates approaching +1·5 m a–1 over recent decades. Foredune erosion occurs locally with a recurrence interval of approximately 1·53 years followed by rapid rebuilding due to high onshore sand supply and often in the presence of large woody debris and rapidly colonizing vegetation in the backshore. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
5.
This paper examines the impacts of climate variability upon the regional hydrological regimes of the Yellow River in China. Results indicate that the average annual precipitation is 494·8 mm in La Niña years and only 408·8 mm in El Niño years. The difference is 86·0 mm, or 18·8% over the long-term average. The stream-flows in the La Niña years are higher than that in El Niño years: 9·2% at the Lan-Zhou station, 9·5% for Tou-Dao-Guai station, 11·8% for Long-Men, 17·6% for San-Men-Xia, 19·2% at the Hua-Yuan-Hou station, and 22·0% at the Li-Jin station. Both precipitation and stream-flow responses show temporal and spatial patterns. The relationship among the stream-flow, precipitation, and temperature, which was obtained by ArcGIS Geostatistical Analyst based on observed data, indicates stream-flow is sensitive to both precipitation and temperature. For small precipitation increases (less than 13%), the stream-flow percentage change is less than the precipitation change for the Yellow River. The results of this paper can be used as a reference for watershed water resources planning and management to maintain the healthy life and proper function of the river. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
6.
利用中国740站45年降水资料按5种分辨率分气候区计算了降水年际和年代际变率. 降水年际和年代际变率对空间尺度的敏感性分析表明,中国各气候区降水年际变率对空间尺度的敏感性都随空间尺度的增加而逐渐减小,且存在明显的季节变化,而年代际变率对空间尺度的敏感性却随空间尺度的增加而增大,但不存在季节变化;由于中国各气候区降水的特殊性,各气候区降水年际和年代际变率对空间尺度的敏感程度存在不可忽视的差异.在年际和年代际尺度上,西南地区降水变率对空间尺度都是最敏感的,因而该区域降水年际和年代际变率信号的检测最困难.而华南地区在年际尺度上比较敏感,年代际尺度却不敏感,但华南地区在年际和年代际尺度上区域内降水分布的非均匀程度对空间尺度的敏感性都最大. 相似文献
7.
In order to analyse the long‐term trend of precipitation in the Asian Pacific FRIEND region, records from 30 river basins to represent the large range of climatic and hydrological characteristics in the study area are selected. The long‐term trend in precipitation time series and its association with the southern oscillation index (SOI) series are investigated. Application of the nonparametric Mann–Kendall test for 30 precipitation time series has shown that only four of these 30 time series have a long‐term trend at the 5% level of significance. Nevertheless, most of the records tend to decrease over the last several decades. The dataset is further divided geographically into northern, middle, and southern zones, with 20°N and 20°S latitude as the dividing lines. The middle zone has the greatest variation and the southern zone the least variation over the past century. Also, the southern zone has greater variation during the past 30 years. The association between precipitation and SOI is investigated by dividing the precipitation records of each station into El Niño, La Niña, and neutral periods. The Wilcoxon rank‐sum test showed that differences in precipitation for the three classes were most marked in the southern zone of the study area. The frequencies of below‐ and above‐average precipitation for El Niño, La Niña, and neutral periods are estimated for the 30 precipitation time series as well. The results show that the frequencies of precipitation under each set of conditions, with lower precipitation generally associated with El Niño periods in the southern zone. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
8.
Many of the world’s coral reefs suffered high coral mortality during the 1998 ENSO, with the highest mortality in the western Indian Ocean (WIO). A meta-analysis of field data on change in coral cover across the 1998 ENSO event was conducted for 36 major reef areas in the WIO, and relationship of the change with the historical sea-surface temperature (SST) variability investigated. WIO reefs were categorized into three major SST groups of differing coral cover change. Cover change was negatively associated with standard deviation (SD) SST until about SD 2.3, with increasing flatness of the SST frequency distributions. It increased with further increase in SD as the SST distributions became strongly bimodal in the Arabian/Persian Gulf area. The study indicates that environmental resistance/tolerance to extreme anomalous events could be predicted and management priorities directed accordingly for a warmer and more variable future climate. 相似文献
9.
The relationship between El Niño–Southern Oscillation (ENSO) events versus precipitation anomalies, and the response of seasonal precipitation to El Niño and La Niña events were investigated for 30 basins that represent a range of climatic types throughout South‐east Asia and the Pacific region. The teleconnection between ENSO and the hydroclimate is tested using both parametric and non‐parametric approaches, and the lag correlations between precipitation anomalies versus the Southern Oscillation Index (SOI) several months earlier, as well as the coherence between SOI and precipitation anomalies are estimated. The analysis shows that dry conditions tend to be associated with El Niño in the southern zone, and part of the middle zone in the study area. The link between precipitation anomalies and ENSO is statistically significant in the southern zone and part of the middle zone of the study area, but significant correlation was not observed in the northern zone. Patterns of precipitation response may differ widely among basins, and even the response of a given river basin to individual ENSO events also may be changeable. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
10.
Abstract El Niño Southern Oscillation (ENSO) has been linked to climate anomalies throughout the world. This paper presents an overview of global ENSO-streamflow teleconnection and identifies regions where the relationship may be exploited to forecast streamflow several months ahead. The teleconnection is investigated by fitting a first harmonic to 24-month El Niño streamflow composites from 581 catchments worldwide and the potential for forecasting is investigated by calculating the lag correlation between streamflow and two indicators of ENSO. The analyses indicate clear ENSO-streamflow teleconnections in many catchments, some of which are consistent across large geographical regions. Strong and regionally consistent ENSO-streamflow teleconnections are identified in Australia and New Zealand, South and Central America, and weaker signals are identified in some parts of Africa and North America. The results suggest that the ENSO-streamflow relationship and the serial correlation in streamflow can be used to successfully forecast streamflow. The streamflow forecasts can be used to help manage water resources, particularly in systems with high interannual variability in Australia, southern and drier parts of Africa and some areas of North America. 相似文献
11.
The global rate of fossil fuel combustion continues to rise, but the amount of CO2 accumulating in the atmosphere has not increased accordingly. The causes for this discrepancy are widely debated. Particularly, the location and drivers for the interannual variability of atmospheric CO2 are highly uncertain. Here we examine links between global atmospheric CO2 growth rate (CGR) and the climate anomalies of biomes based on (1986–1995) global climate data of ten years and accompanying satellite data sets. Our results show that four biomes, the tropical rainforest, tropical savanna, C4 grassland and boreal forest, and their responses to climate anomalies, are the major climate-sensitive CO2 sinks/sources that control the CGR. The nature and magnitude by which these biomes respond to climate anomalies are generally not the same. However, one common influence did emerge from our analysis; the extremely high CGR observed for the one extreme El Niño year was caused by the response of the tropical biomes (rainforest, savanna and C4 grassland) to temperature. 相似文献
12.
The impact of interannual variability of precipitation and potential evaporation on the long-term mean annual evapotranspiration as well as on the interannual variability of evapotranspiration is studied using a stochastic soil moisture model within the Budyko framework. Results indicate that given the same long-term mean annual precipitation and potential evaporation, including interannual variability of precipitation and potential evaporation reduces the long-term mean annual evapotranspiration. This reduction effect is mostly prominent when the dryness index (i.e., the ratio of potential evaporation to precipitation) is within the range from 0.5 to 2. The maximum reductions in the evaporation ratio (i.e., the ratio of evapotranspiration to precipitation) can reach 8–10% for a range of coefficient of variation (CV) values for precipitation and potential evaporation. The relations between the maximum reductions and the CV values of precipitation and potential evaporation follow power laws. Hence the larger the interannual variability of precipitation and potential evaporation becomes, the larger the reductions in the evaporation ratio will be. The inclusion of interannual variability of precipitation and potential evaporation also increases the interannual variability of evapotranspiration. It is found that the interannual variability of daily rainfall depth and that of the frequency of daily rainfall events have quantitatively different impacts on the interannual variability of evapotranspiration; and they also interact differently with the interannual variability of potential evaporation. The results presented in this study demonstrate the importance of understanding the role of interannual variability of precipitation and potential evaporation in land surface hydrology under a warming climate. 相似文献
13.
Monthly precipitation data from meteorological stations in Nigeria are analysed from 1950 to 1992, in relation to sea surface temperatures (SSTs) in the tropical Pacific and Atlantic Oceans. The analyses have shed some light on understanding the variability of rainfall anomalies observed in Nigeria for this period. The correlation values between rainfall anomaly indices (RAI) and different meteorological indices are not all significant. Thus, the analyses show some indication that rainfall in Nigeria is associated with El Niño-related circulation and rainfall anomalies. The low correlations between RAI and SST in the Pacific confirm low correlations between rainfall and southern oscillation indices (SOI). SST correlations in the tropical Atlantic suggest that warm surface water in this part of the Atlantic moves the Inter Tropical Convergence Zone (ITCZ) southward and away from the SouthEast of Nigeria, indicating less rainfall, while, in SouthWest of Nigeria, the warm surface waters in this part of the Atlantic are likely to be responsible for a more northern position of the ITCZ, which produces more rainfall. The lower correlation in Northern Nigeria may be attributed to its continentality, away from the influence of the sea surface conditions in the Gulf of Guinea and the tropical Atlantic. The drought, or rainfall, cycles in Northern Nigeria are more closely connected to the land surface conditions in the nearby Sahel region. 相似文献
14.
Huasheng Hong Caiyun Zhang Shaoling Shang Bangqin Huang Yonghong Li Xueding Li Shimin Zhang 《Continental Shelf Research》2009
This study dealt with the interannual variability of summer coastal upwelling in the Taiwan Strait, based on empirical orthogonal function (EOF) analysis. Three datasets were used for the analysis: the National Oceanic and Atmospheric Administration (NOAA), Advanced Very High Resolution Radiometer (AVHRR) sea surface temperature dataset from 1985 to 2005; hydrographic records at two coastal stations from 1970 to 2001; and cruise measurements in 1988 and 2004. The results indicated that the first mode (85.3%) of the spatial variance showed a persistent front, which was generally aligned northeast–southwestward in the western Taiwan Strait. This front separated colder water on the west side from warmer water on the east side. The eigenvector time series showed that the variability of this front with time was closely correlated with the change in the wind stress anomaly of the alongshore wind component, derived from 17 years of the European remote sensing (ERS) satellite and QuickScat wind dataset from 1992 to 2005. Records of water temperature and salinity anomaly at Pingtan Island (Is.) located in the northwestern Taiwan Strait, and Dongshan Is. located in the southwestern Taiwan Strait, showed that a negative temperature anomaly appeared along with a positive salinity anomaly in some years. This suggested a dominant influence of cold and saline upwelling water at the surface. The years of notable cooling events derived from the station measurements were generally consistent with the time series of the EOF Mode 1. The change in upwelling derived from cruise measurements further confirmed the change shown by the EOF Mode 1 time series. These 1985–2005 results indicated that for the entire western Taiwan Strait summer coastal upwelling was strong in 1987, 1993, and 1998, and that upwelling in the northwest and the southwest Taiwan Strait showed different behavior. A delayed ENSO (El Niño Southern Oscillation) effect was suggested as a major mechanism for the interannual variability of Taiwan Strait coastal upwelling. 相似文献
15.
Davison Mwale Thian Yew Gan Kevin Devito Carl Mendoza Uldis Silins Richard Petrone 《水文研究》2009,23(21):3040-3056
By applying wavelet‐based empirical orthogonal function (WEOF) analysis to gridded precipitation (P) and empirical orthogonal function (EOF) analysis to gridded air temperature (T), potential evapotranspiration (PET), net precipitation (P‐PET) and runoff (Q), this paper examines the spatial, temporal and frequency patterns of Alberta's climate variability. It was found that only WEOF‐based precipitation patterns, possibly modulated by El Nino Southern Oscillation (ENSO) and Pacific Decadal Oscillation(PDO), delineated Alberta into four major regions which geographically represent northern Alberta Boreal forests, southern Alberta grasslands and Aspen Parklands and the Rocky Mountains and Foothills. The leading mode of wavelet‐based precipitation variability WPC1 showed that between 1900 and 2000, a wet climate dominated northern Alberta with significant 4–8, 11 and 25‐year periodic cycles, while the second mode WPC2 showed that between 1960 and 2000, southern Alberta grasslands were characterized by decreasing precipitation, dominated by 11‐year cycles, and the last two modes WPC3 and WPC4 were characterized by 4–7 and 25‐year cycles and both delineated regions where moisture from the Pacific Ocean penetrated the Rocky Mountains, accounted for much of the sub‐alpine climate. These results show that WEOF is superior to EOF in delineating Alberta precipitation variability to sub‐regions that more closely agree with its eco‐climate regions. Further, it was found that while WPC2 could not explain runoff variations in southern Alberta, WPC1, WPC3 and WPC4 accounted for runoff variability in their respective sub‐regions. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
16.
Effect of ENSO on annual maximum floods and volume over threshold in the southwestern region of Iran
In this paper, the effects of the El Niño-Southern Oscillation (ENSO) on the annual maximum flood (AMF) and volume over threshold (VOT) in two major neighbouring river basins in southwest Iran are investigated. The basins are located upstream of the Dez and Karun-I dams and cover over 40?000 km2 in total area. The effects of ENSO on the frequency, magnitude and severity (frequency times magnitude) of flood characteristics over the March–April period were analysed. ENSO indices were also correlated with both AMF and VOT. The results indicate that, in the Dez and Karun basins, the El Niño phenomenon intensifies March–April floods compared with neutral conditions. The opposite is true in La Niña conditions. The degree of the effect is more intense in the El Niño period. 相似文献
17.
River flow constitutes an important element of the terrestrial branch of the hydrological cycle, yet knowledge regarding the extent to which its variability, at a range of timescales, is linked to a number of modes of atmospheric circulation is meagre. This is especially so in the Southern Hemisphere where strong candidates, such as El Niño Southern Oscillation and the Southern Annular Mode (SAM), for influencing climate and thus river flow variability can be found. This paper presents the results of an analysis of the impact of the SAM on winter and summer river flow variability across New Zealand, purposefully controlling for the influence of El Niño Southern Oscillation and the tendency for the SAM to adopt a positive phase over the last 10–20 years. Study results, based on identifying hydrological regions and applying circulation‐to‐environment and environment‐to‐circulation approaches commonly used in synoptic climatology, reveal a seasonal asymmetry of the response of river flow variability to the SAM; winter flows demonstrate a higher degree of statistical association with the SAM compared to summer flows. Further, because of the complex orography of New Zealand and its general disposition normal to zonal flows of moisture bearing winds, there are intraseasonal spatial variations in river flow SAM associations with clear rain shadow effects playing out in resultant river flow volumes. The complexity of SAM river flow associations found in this study warns against using indices of large scale modes of atmospheric circulation as blunt tools for hydroclimatological prediction at scales beyond hydroclimatological regions or areas with internal hydrological consistency. 相似文献
18.
Yédjinnavènan Ahokpossi 《水文科学杂志》2013,58(15-16):2097-2123
ABSTRACTThe temporal variation and trends of annual rainfall distribution in Benin were examined using data from 1940 to 2015 at six meteorological stations and three raingauges stationed throughout the country. The nonparametric modified Mann-Kendal (MK) and Levene tests were applied to detect trends and heteroscedasticity, respectively. For six of the time series, no significant trends were detected. A Bayesian multiple change points detection approach was applied to the rainfall time series, and most (six of nine) exhibited abrupt change points, corresponding to the alternation between wet (before 1968 and after 1990) and dry (1969–1990) periods. No significant trends or breakpoints and changes in the variance were observed for the spatial average rainfall time series. Seven modified MK trend tests were applied; the trends are affected by the selected MK method and rainfall statistics. Oceanic and/or atmospheric influences on the rainfall in Benin were examined by investigating the correlation between the precipitation time series and several indices. Negative seasonal correlations were determined for the North Atlantic Oscillation, Pacific Decadal Oscillation and Niño3, while positive seasonal correlations were observed for the Southern Oscillation, Antarctic Oscillation and Dipole Mode Index. 相似文献
19.
The 2018 typhoon season in the western North Pacific(WNP) was highly active, with 26 named tropical cyclones(TCs) from June to November, which exceeded the climatological mean(22) and was the second busiest season over the past twenty years. More TCs formed in the eastern region of the WNP and the northern region of the South China Sea(SCS). More TCs took the northeast quadrant in the WNP, recurving from northwestward to northward and causing heavy damages in China's Mainland(69.73 billion yuan) in 2018. Multiscale climate variability is conducive to an active season via an enhanced monsoon trough and a weakened subtropical high in the WNP. The large-scale backgrounds in 2018 showed a favorable environment for TCs established by a developing central Pacific(CP) El Ni?o and positive Pacific meridional mode(PMM)episode on interannual timescales. The tropical central Pacific(TCP) SST forcing exhibits primary control on TCs in the WNP and large-scale circulations, which are insensitive to the PMM. During CP El Ni?o years, anomalous convection associated with the TCP warming leads to significantly increased anomalous cyclonic circulation in the WNP because of a Gill-type Rossby wave response. As a result, the weakened subtropical high and enhanced monsoon trough shift eastward and northward, which favor TC genesis and development. Although such increased TC activity in 2018 might be slightly suppressed by interdecadal climate variability, it was mostly attributed to the favorable interannual background. In addition, high-frequency climate signals,such as intraseasonal oscillations(ISOs) and synoptic-scale disturbances(SSDs), interacted with the enhanced monsoon trough and strongly modulated regional TC genesis and development in 2018. 相似文献
20.
利用GPCP(Global Precipitation Climatology Project)与CMAP(CPC Merged Analysis of Precipitation)降水资料以及欧洲天气预报中心月平均SST(Sea Surface Temperature)资料,统计分析了中东太平洋热带辐合带(Centre and Eastern Pacific ITCZ,CEP-ITCZ)降水在两类厄尔尼诺年的基本特征及其与两类厄尔尼诺的相关性.结果表明:在普通年份,CEP-ITCZ平均位置约为7.6°N,强度7.25 mm/day,东部型厄尔尼诺年位置偏南约2.9°,强度增强1.9 mm/day;而中部型厄尔尼诺年位置偏南仅有0.2°,强度增强1.7 mm/day.不同Niño海区对CEP-ITCZ位置与强度的影响具有显著差异,与CEP-ITCZ位置相关性最大的海区为超前一个月的Niño 3海区,而与CEP-ITCZ强度相关性最大的海区则为超前一个月的Niño 3.4(8月-次年2月)或Niño 4(3-7月)海区,影响CEP-ITCZ位置的海区主要为东太平洋,影响CEP-ITCZ强度的海区则为中太平洋.此外,CEP-ITCZ位置和强度的异常对SST异常的敏感性均在4月份达到最强,11月份达到最弱. 相似文献