首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Post‐wildfire runoff was investigated by combining field measurements and modelling of infiltration into fire‐affected soils to predict time‐to‐start of runoff and peak runoff rate at the plot scale (1 m2). Time series of soil‐water content, rainfall and runoff were measured on a hillslope burned by the 2010 Fourmile Canyon Fire west of Boulder, Colorado during cyclonic and convective rainstorms in the spring and summer of 2011. Some of the field measurements and measured soil physical properties were used to calibrate a one‐dimensional post‐wildfire numerical model, which was then used as a ‘virtual instrument’ to provide estimates of the saturated hydraulic conductivity and high‐resolution (1 mm) estimates of the soil‐water profile and water fluxes within the unsaturated zone. Field and model estimates of the wetting‐front depth indicated that post‐wildfire infiltration was on average confined to shallow depths less than 30 mm. Model estimates of the effective saturated hydraulic conductivity, Ks, near the soil surface ranged from 0.1 to 5.2 mm h?1. Because of the relatively small values of Ks, the time‐to‐start of runoff (measured from the start of rainfall), tp, was found to depend only on the initial soil‐water saturation deficit (predicted by the model) and a measured characteristic of the rainfall profile (referred to as the average rainfall acceleration, equal to the initial rate of change in rainfall intensity). An analytical model was developed from the combined results and explained 92–97% of the variance of tp, and the numerical infiltration model explained 74–91% of the variance of the peak runoff rates. These results are from one burned site, but they strongly suggest that tp in fire‐affected soils (which often have low values of Ks) is probably controlled more by the storm profile and the initial soil‐water saturation deficit than by soil hydraulic properties. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

2.
Soil moisture is widely recognized as a fundamental variable governing the mass and energy fluxes between the land surface and the atmosphere. In this study, the soil moisture modelling at sub‐daily timescale is addressed by using an accurate representation of the infiltration component. For that, the semi‐analytical infiltration model proposed by Corradini et al. (1997) has been incorporated into a soil water balance model to simulate the evolution in time of surface and profile soil moisture. The performances of this new soil moisture model [soil water balance module‐semi‐analytical (SWBM‐SA)] are compared with those of a precedent version [SWBM‐Green–Ampt (GA)] where the GA approach was employed. Their capability to reproduce in situ soil moisture observations at three sites in Italy, Spain and France is analysed. Hourly observations of quality‐checked rainfall, temperature and soil moisture data for a 2‐year period are used for testing the modelling approaches. Specifically, different configurations for the calibration and validation of the models are adopted by varying a single parameter, that is, the saturated hydraulic conductivity. Results indicate that both SWBMs are able to reproduce satisfactorily the hourly soil moisture temporal pattern for the three sites with root mean square errors lower than 0.024 m3/m3 both in the calibration and validation periods. For all sites, the SWBM‐SA model outperforms the SWBM‐GA with an average reduction of the root mean square error of ~20%. Specifically, the higher improvement is observed for the French site for which in situ observations are measured at 30 cm depth, and this is attributed to the capability of the SA infiltration model to simulate the time evolution of the whole soil moisture profile. The reasonable models performance coupled with the need to calibrate only a single parameter makes them useful tools for soil moisture simulation in different regions worldwide, also in scarcely gauged areas. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Determination of saturated hydraulic conductivity, Ks, and the van Genuchten water retention curve θ(h) parameters is crucial in evaluating unsaturated soil water flow. The aim of this work is to present a method to estimate Ks, α and n from numerical analysis of an upward infiltration process at saturation (Cap0), with (Cap0 + h) and without (Cap0) an overpressure step (h) at the end of the wetting phase, followed by an evaporation process (Evap). The HYDRUS model as well as a brute-force search method were used for theoretical loam soil parameter estimation. The uniqueness and the accuracy of solutions from the response surfaces, Ks–n, α–n and Ks–α, were evaluated for different scenarios. Numerical experiments showed that only the Cap0 + Evap and Cap0 + h + Evap scenarios were univocally able to estimate the hydraulic properties. The method gave reliable results in sand, loam and clay-loam soils.  相似文献   

4.
Abstract

Shrub-induced spatial heterogeneity of soil and hydrological properties are common in arid and semi-arid ecosystems. To examine the influence of shrubs on spatial patterns of soil physical, chemical and hydrological properties, the typical sand-fixation species, Caragana korshinskii, was studied in the Shapotou area of the Tengger Desert, China. Miniature cylinder infiltrometers were used to quantify the spatial variations of infiltration rate in the soils, and were installed at 20-cm intervals around the shrubs. Meanwhile, soil samples were collected at 0–5 cm depth every 10 cm to analyse their physical and chemical properties and soil moisture content. The results indicate that the various measured parameters showed a gradational change from sub-canopy to open space. The establishment of shrubs formed obvious “fertile islands” where more soil nutrients collected. The total nitrogen (TN), soil organic matter (SOM), electrical conductivity (EC) and surface soil moisture content decreased gradually from around shrub stems to the interspace. The sand content around shrub stems was significantly higher (< 0.05), and decreased gradually from the centre towards the outside microsites. The silt and clay contents showed opposite variability characteristics. The variation of soil bulk density was less within 140 cm distance from the stem, and no abrupt change was found at the shrub’s drip line. No significant tendency was found for the soil pH values. The steady infiltration rates declined with increasing stem distance and then tended to be stable, and no abrupt change occurred at the position of the overhead canopy margin. The increase of infiltration rate was rapid nearer to the stem; the variability trend can be fitted by a log-log (power function) model. This study indicated the gradational change in soil and hydrological properties, which was not consistent with the binary division of shrubs into “canopy” and “interspace” zones.
Editor Z.W. Kundzewicz  相似文献   

5.
In this paper, the feasibility of using magnetic resonance imaging (MRI) to study water infiltration into a heterogeneous soil is examined, together with its difficulties and limitations. MRI studies of ponded water infiltration into an undisturbed soil core show that the combination of one- and two-dimensional imaging techniques provides a visual and non-destructive means of monitoring the temporal changes of soil water content and the moisture profile, and the movement of the wetting front. Two-dimensional images show air entrapment in repetitive ponded infiltration experiments. During the early stages of infiltration, one-dimensional images of soil moisture profiles clearly indicate preferential flow phenomena. The observed advance of wetting fronts can be described by a linear relationship between the square root of infiltration time (√t) and the distance of the wetting front from the soil surface. Similarly, the cumulative infiltration is also directly proportional to √t. Furthermore, from the MRI infiltration moisture profiles, it is possible to estimate the parameters that feature in infiltration equations. © 1997 by John Wiley & Sons, Ltd.  相似文献   

6.
《水文科学杂志》2013,58(2):349-362
Abstract

A methodology of time-step estimation for numerically solving the Richards equation is discussed. Its importance in simulating water movement in unsaturated—saturated soils is shown for infiltration into a soil profile by applying various time-step estimations and boundary conditions for different soils. In order to test the results of the computations, infiltration theory was applied. According to infiltration theory, the pressure head in the initially unsaturated part will not take positive values as long as the moisture front has not reached the phreatic level, or, in the case of a profile with a free-draining lower boundary, it is not saturated at the base. In other cases, the appearance of positive values of the pressure head produces incorrect values for the inflow rate q.  相似文献   

7.
Infiltration experiments have been performed at three sites along a well-known catena under virgin tropical rain forest using a portable sprinkling infiltrometer. Experimentally determined infiltration curves are presented. Infiltration curves are also simulated on the basis of the Mein-Larson equation. The parameters for this model have been obtained from the infiltration curves (saturated conductivity) and simple soil moisture determinations (fillable porosity). The agreement between experimentally determined and modelled infiltration is reasonable, provided (a) saturated conductivity as derived from the experimental data is corrected, (b) a storage parameter, also derived from the experimental data, is added to the Mein-Larson model, and (c) the decline in soil porosity with depth is either small or occurs abruptly at shallow depth. Comparison of observed infiltration rates with rainfall intensity shows that Horton Overland Flow has to occur naturally at least on the middle and lower section of the catena. Despite the fact that most parameters can be estimated in principle from basic soil data, it remains advisable to obtain sprinkling infiltrometer field measurements, because of soil variability due to dynamic surface conditions, macroporosity, air entrapment, and irregularity of the wetting front.  相似文献   

8.
Water repellency (WR) from fire‐affected soils can affect infiltration processes and increase runoff rates. We investigated the effects of fire‐induced changes in soil WR and the related soil hydrological response after one of the largest wildfires in Spain in recent years. The vertical distribution of WR in soil profiles was studied under oak and pine forests and the wetting pattern was analysed after rainfall simulations (85 mm h?1 during 60 min). After burning, the persistence of WR in soils under oaks increased in the upper 0–5 cm of soil in comparison with pre‐fire WR, but no significant changes were observed under pines. After a fire, WR was stronger and the thickness of the water‐repellent layer increased in soils under pines in the upper 0–16 cm of soil. The hydrophobic layer was thinner under oaks, where no strong to extremely water‐repellent samples were observed below 12 (in burnt soils) and 8 cm (in unburnt soils). Uniform wetting was observed through soil depth in burnt and unburnt soils under oaks, as a consequence of the prevailing matrix flux infiltration. Water was mostly stored in the upper few centimetres and soil became rapidly saturated, favouring a continuous rise in the runoff rate during the experiments. Moisture profiles under pines showed a heterogeneous wetting pattern, with highly irregular wetting fronts, as a result of wettable and water‐repellent three‐dimensional soil patches. In this case, runoff rates on burnt plots increased in relation to unburnt plots, but runoff generation reached a steady state after 25–30 min of simulated rainfall at an intensity of 85 mm h?1. Rainfall water infiltrated over a small part of the ponded area, where the vertical pressure of the water column overcame the WR. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Abstract

Advances in the traditional method of subsurface porous clay pipe irrigation rely on knowledge of the distribution of water in the soil. Knowing the relationships among the hydraulic and physical parameters in the system is important for both the design and management of the system. To simulate the infiltration from the porous clay pipe and predict the wetted zone geometry in the soil, a computer model is developed herein. Laboratory experiments were conducted on soil samples representing two different soil textures in a specially designed bin to understand the flow phenomenon and to validate the developed model. In a given soil texture, the installation depth of the pipe and the volume of water applied in the soil are the major factors affecting the wetted zone. The relationships among various parameters, namely lateral spacing, installation depth, irrigation run time, hydraulic conductivity of the body of the pipe, and hydraulic head in the system, were established using the developed model.  相似文献   

10.
Abstract

Electromagnetic induction measurements (EM) were taken in a saline gypsiferous soil of the Saharan-climate Fatnassa oasis (Tunisia) to predict the electrical conductivity of saturated soil extract (ECe) and shallow groundwater properties (depth, Dgw, and electrical conductivity, ECgw) using various models. The soil profile was sampled at 0.2 m depth intervals to 1.2 m for physical and chemical analysis. The best input to predict the log-transformed soil salinity (lnECe) in surface (0–0.2 m) soil was the EMh/EMv ratio. For the 0–0.6 m soil depth interval, the performance of multiple linear regression (MLR) models to predict lnECe was weaker using data collected over various seasons and years (R a 2 = 0.66 and MSE = 0.083 dS m-1) as compared to those collected during the same period (R a 2 = 0.97, MSE = 0.007 dS m-1). For similar seasonal conditions, for the DgwEMv relationship, R 2 was 0.88 and the MSE was 0.02 m for Dgw prediction. For a validation subset, the R 2 was 0.85 and the MSE was 0.03 m. Soil salinity was predicted more accurately when groundwater properties were used instead of soil moisture with EM variables as input in the MLR.

Editor D. Koutsoyiannis; Associate editor K. Heal

Citation Bouksila, F., Persson, M., Bahri, A., and Berndtsson, R., 2012. Electromagnetic induction predictions of soil salinity and groundwater properties in a Tunisian Saharan oasis. Hydrological Sciences Journal, 57 (7), 1473–1486.  相似文献   

11.
12.
Spatial distribution of soil macroporosity was determined for a forest podzol from tension infiltrometer measurements at the soil surface. Surface‐derived macroporosity values were compared with point infiltration characteristics obtained from soil water content and soil water chemistry measurements during an experimental irrigation, and with parameters of a kinematic wave model applied to soil water content data. Macroporosity estimated by the tension infiltrometer ranged from 0·00087 to 0·0219% of soil volume, and infiltration at these two sites was dominated by propagation of a well‐defined wetting front through the soil profile and bypass flow via soil macropores, respectively. Infiltration at sites with intermediate macroporosities reflected a combination of these two processes, although results were inconclusive at one site owing to lateral flow at the base of the soil profile. There was no agreement between macroporosities estimated by the tension infiltrometer and the kinematic wave model. The maximum soil conductance parameter within the profile at a site, however, was related directly to the surface‐derived macroporosity. The partial agreement between surface‐derived macroporosity estimates and point infiltration characteristics shown here supports the use of tension infiltrometry as a rapid, non‐destructive method of assessing spatial variations in the relative contribution of macropore flow to the infiltration process. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
Abstract

The study analyses a 2-year period of hourly rates of real evapotranspiration (ETr) derived from eddy covariance measurements and soil water contents at depths from 8 to 90 cm, monitored by time domain reflectometry probes at the grass-covered boundary-layer field site Falkenberg of the Lindenberg Meteorological Observatory – Richard-Aßmann-Observatory, operated by the German Meteorological Service (DWD). The ETr rates and soil water contents were compared with the results of a modelling approach consisting of the Penman-Monteith equation and the soil water balance model Hydrus-1D using a noncompensatory and a compensatory root-water uptake model. After optimization of soil hydraulic parameters by inverse modelling, using measured soil water contents as the objective function, simulated and measured model outputs showed good agreement for soil water contents above 90 cm depth and for ETr rates simulated by our modelling approaches using noncompensatory root-water uptake. The application of a compensatory root-water uptake model led to a decrease in the simulation quality for the total investigation period.

Editor Z.W. Kundzewicz

Citation Wegehenkel, M. and Beyrich, F., 2014. Modelling of hourly evapotranspiration and soil water content at the grass-covered boundary-layer field site Falkenberg, Germany. Hydrological Sciences Journal, 59 (2), 376–394.  相似文献   

14.
Abstract

The impact of fire on daily discharges from two mountainous basins located in the permafrost region of Eastern Siberia, the Vitimkan (969 km2) and Vitim (18 200 km2) rivers, affected by fire over 78% and 49% of their areas, respectively, in 2003, was investigated. The results of hydrological and meteorological data analysis suggest that the Vitimkan River basin had a rapid and profound hydrological response to wildfire in 2003 expressed through a 41% (133 mm) increase of summer flow. Conversely, the larger Vitim River basin showed no significant changes in discharge after the fire. The parameters of the process-based hydrological model Hydrograph were estimated for pre-fire conditions. The results of runoff simulations conducted for the continuous pre-fire periods of 1966–2002 and 1970–2002 for the Vitimkan and Vitim river basins, respectively, on a daily time step, showed satisfactory agreement with the observed flow series of both basins. Significant underestimation of precipitation and its poor representativeness for mountainous watersheds was revealed as the main cause of observed and simulated flow discrepancies, especially for high flood events. The set of dynamic parameters was developed based on data analysis and post-fire landscape changes as derived from a literature review. The model was applied to investigate the processes in the soil column and their effect on runoff formation during the post-fire period. The new set of model parameters implied the intensification of soil thaw, reduction of infiltration rate and evapotranspiration, and increase of upper subsurface flow fraction in summer flood events following the fire. According to modelling results, the post-fire thaw depth exceeded the pre-fire thaw depth by 0.4–0.7 m. Total evapotranspiration reduced by 40% in summer months, while surface flow increased almost 2.5 times during maximum flood events.  相似文献   

15.
Precipitation is often the sole source of water replenishment in arid and semi‐arid areas and, thus, plays a pertinent role in sustaining desert ecosystems. Revegetation over 40 years using mainly Artemisia ordosica and Caragana korshinskii at Shapotou Desert Experimental Research Station near Lanzhou, China, has established a dwarf‐shrub and microbiotic soil crust cover on the stabilized sand dunes. The redistribution of infiltrated moisture through percolation, root extraction, and evapotranspiration pathways was investigated. Three sets of time‐domain reflectometry (TDR) probes were inserted horizontally at 5, 10, 15, 20, 30 and 40 cm depths below the ground surface in a soil pit. The three sets of TDR probes were installed in dwarf‐shrub sites of A. ordosica and C. korshinskii community with and without a microbiotic soil crust cover, and an additional set was placed in a bare sand dune area that had neither vegetation nor a microbiotic soil crust present. Volumetric soil moisture content was recorded at hourly intervals and used in the assessment of infiltration for the different surface covers. Infiltration varied greatly, from 7·5 cm to more than 45 cm, depending upon rainfall quantity and soil surface conditions. In the shrub community area without microbiotic soil crust cover, infiltration increased due to preferential flow associated with root tunnels. The microbiotic soil crust cover had a significant negative influence on the infiltration for small rainfall events (~10 mm), restricting the infiltration depth to less than 20 cm and increasing soil moisture content just beneath the soil profile of 10 cm, whereas it was not as strong or clear for larger rainfall events (~60 mm). For small rainfall events, the wetting front depth for the three kinds of surface cover was as follows: shrub community without microbiotic soil crust > bare area > shrub community with microbiotic soil crust. In contrast, for large rainfall events, infiltration was similar in shrub communities with and without microbiotic soil crust cover, but significantly higher than measured in the bare area. Soil water extraction by roots associated with evapotranspiration restricted the wetting front penetration after 1 to 3 h of rainfall. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Abstract

Guidelines of effective soil hydraulic parameters were developed to be applicable in simulating average infiltration and subsequent moisture redistribution over a large-scale heterogeneous field. Average large-scale infiltration and redistribution in heterogeneous soils were quantified through multiple simulations of local-scale processes. The effective hydraulic parameters were derived to simulate the average amount of infiltrating water, and to capture the subsequent surface soil moisture redistribution averaged over the large heterogeneous landscape. The results demonstrated that the effective hydraulic parameters typically exhibited a step change from infiltration to redistribution, with the size of the step change being related to the degree of hydraulic parameter heterogeneity and the correlations among the hydraulic parameters. However, the effective hydraulic parameters did not change significantly over time for the moisture redistribution. It was further demonstrated that the size of the step change was smallest for effective saturated hydraulic conductivity.

Editor Z.W. Kundzewicz; Associate editor Y. Guttman

Citation Zhu, J.T. and Sun, D.M., 2012. Soil hydraulic properties for moisture redistribution in a large-scale heterogeneous landscape. Hydrological Sciences Journal, 57 (6), 1196–1206.  相似文献   

17.
Hysteresis is a common feature exhibited in hydraulic properties of an unsaturated soil. The movement of wetting front and the hysteresis effect are important factors which impact the shear strength of the unsaturated soil and the mechanics of shallow landslides. These failures are mainly triggered by the deepening of the wetting front accompanied by a decrease in matric suction induced by infiltration. This research establishes a method for determining a stability analysis of unsaturated infinite soil slopes, integrating the influence of infiltration and the water retention curve hysteresis. Furthermore, the present stability analysis method including the infiltration model and the advanced Mohr–Coulomb failure criterion calculates the variations of the safety factor (FS) in accordance with different slope angle, depth and hydrological processes. The experimentally measured data on the effect of hysteresis are also carried out for comparison. Numerical analyses, employing both wetting and drying hydraulic behaviour of unsaturated soil, are performed to study the difference in soil‐water content as observed in the experiments. The simulating approximations also fully responded to the experimental data of sand box. The results suggest that the hysteresis behaviour affect the distribution of soil‐water content within the slope indeed. The hysteresis made the FS values a remarkable recovery during the period of non‐rainfall in a rainfall event. The appropriate hydraulic properties of soil (i.e. wetting or drying) should be used in accordance with the processes that unsaturated soil actually experience. This method will enable us to acquire more accurate matric suction head and the unsaturated soil‐shear strength as it changes with the hysteretic flow, in order to calculate into the stability analysis of shallow landslides. An advanced understanding of the process mechanism afforded by this method is critical to realizing a reliable and appropriate design for slope stabilization. It also offers some immediate reference information to the disaster reduction department of the government. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Simulation of soil moisture content requires effective soil hydraulic parameters that are valid at the modelling scale. This study investigates how these parameters can be estimated by inverse modelling using soil moisture measurements at 25 locations at three different depths (at the surface, at 30 and 60 cm depth) on an 80 by 20 m hillslope. The study presents two global sensitivity analyses to investigate the sensitivity in simulated soil moisture content of the different hydraulic parameters used in a one‐dimensional unsaturated zone model based on Richards' equation. For estimation of the effective parameters the shuffled complex evolution algorithm is applied. These estimated parameters are compared to their measured laboratory and in situ equivalents. Soil hydraulic functions were estimated in the laboratory on 100 cm3 undisturbed soil cores collected at 115 locations situated in two horizons in three profile pits along the hillslope. Furthermore, in situ field saturated hydraulic conductivity was estimated at 120 locations using single‐ring pressure infiltrometer measurements. The sensitivity analysis of 13 soil physical parameters (saturated hydraulic conductivity (Ks), saturated moisture content (θs), residual moisture content (θr), inverse of the air‐entry value (α), van Genuchten shape parameter (n), Averjanov shape parameter (N) for both horizons, and depth (d) from surface to B horizon) in a two‐layer single column model showed that the parameter N is the least sensitive parameter. Ks of both horizons, θs of the A horizon and d were found to be the most sensitive parameters. Distributions over all locations of the effective parameters and the distributions of the estimated soil physical parameters from the undisturbed soil samples and the single‐ring pressure infiltrometer estimates were found significantly different at a 5% level for all parameters except for α of the A horizon and Ks and θs of the B horizon. Different reasons are discussed to explain these large differences. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
Guotao Cui 《水文科学杂志》2017,62(13):2222-2237
A Green-Ampt type model for sloping layered soils (GASLS) was developed to investigate infiltration processes. We introduced a factor c, which is the same for all layers and represents the ratio of effective hydraulic conductivity over saturated hydraulic conductivity. Guidelines to estimate the factor c were established based on 234 scenarios under various conditions. The model with the estimated factor c can describe infiltration processes better than that with c = 1. For fine soils, or layered formations with finer soils on the top, c is smaller than 1. The factor c for coarse soils, or layer formations with coarse soils on the top is close to 1. Comparison with laboratory experiments on a sloping surface indicated that the GASLS model with a slope factor that is adjusted by the sine of the slope angle can represent the sloping surface effects. The GASLS model can incorporate any slope factor.  相似文献   

20.
ABSTRACT

Soil structure-dependent parameters can vary rapidly as a consequence of perturbing events such as intense rainfall. Investigating their short-term changes is therefore essential to understand the general behaviour of a porous medium. The aim of this study is to gain insight into the effects of wetting, perturbation and recovery processes through different sequences of Beerkan infiltration experiments performed on a sandy-loam soil. Two different three-run infiltration experiments (LHL and LLL) were carried out by pouring water at low (L, non-perturbing) and high (H, perturbing) heights above the soil surface and at short time intervals (hours, days). The results demonstrate that the proposed method allows one to capture short-term variations in soil structure-dependent parameters. The developed methodology is expected to simplify the parameterization of hydrological models with temporally variable soil hydraulic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号