首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A conceptual water‐balance model was modified from a point application to be distributed for evaluating the spatial distribution of watershed water balance based on daily precipitation, temperature and other hydrological parameters. The model was calibrated by comparing simulated daily variation in soil moisture with field observed data and results of another model that simulates the vertical soil moisture flow by numerically solving Richards' equation. The impacts of soil and land use on the hydrological components of the water balance, such as evapotranspiration, soil moisture deficit, runoff and subsurface drainage, were evaluated with the calibrated model in this study. Given the same meteorological conditions and land use, the soil moisture deficit, evapotranspiration and surface runoff increase, and subsurface drainage decreases, as the available water capacity of soil increases. Among various land uses, alfalfa produced high soil moisture deficit and evapotranspiration and lower surface runoff and subsurface drainage, whereas soybeans produced an opposite trend. The simulated distribution of various hydrological components shows the combined effect of soil and land use. Simulated hydrological components compare well with observed data. The study demonstrated that the distributed water balance approach is efficient and has advantages over the use of single average value of hydrological variables and the application at a single point in the traditional practice. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
An efficient calibration with remotely sensed (RS) data is important for accurate predictions at ungauged catchments. This study investigates the advantages of streamflow-sensitive regionalization on calibration with RS evapotranspiration (ET). Regionalization experiments are performed at 28 catchments in Australia. The catchments are classified into three groups based on annual rainfall and runoff coefficients. Streamflow, RS ET, and a multi-objective RS ET-streamflow calibration are performed using the DiffeRential Evolution Adaptive Metropolis algorithm in each catchment. Simplified Australian Water Resource Assessment-Landscape model is calibrated for a selection of five parameters. Posterior probability distributions of parameters from three calibrations performed at donor catchments in each group are inspected to find the parameter for regionalization in the individual group. In group 1 of wetter catchments, regionalization of parameter FsoilEmax (soil evaporation scaling factor) helps to simplify the calibration without any deterioration in ET, soil moisture (SM) and streamflow predictions. Regionalization of parameter Beta (coefficient describing rate of hydraulic conductivity increase with water content) in group 2 assists to improve the streamflow predictions with no decrement in ET and SM predictions. However, regionalization is not able to provide satisfactory results in group 3. Group 3 includes low-yielding catchments, with average annual rainfall below 1000 mm/year and runoff coefficient less than 0.1, where traditional streamflow calibration also fails to produce accurate results. This study concludes that streamflow-sensitive regionalization is effective for improving the efficacy of RS ET calibration in wetter catchments.  相似文献   

3.
Abstract

In this study, a fully-coupled surface–subsurface, distributed, physics-based hydrological model was calibrated using the pilot-point method. A minimum variance field rule was included in the objective function to regularize the extensive calibration exercise that included 74 parameters (72 associated with pilot points and two spatially-invariant channel parameters). Because the overland and vadose zone systems are not in permanent hydrological connection, the information contained in the observation points may not be accessible by the pilot points at all times, rendering them insensitive to the observations and hindering the calibration process. An analysis of the spatial and temporal variability of parameter sensitivities was done to explore how the information contained in local observations spreads from the observation points to the pilot points, where parameter values are identified. The results show that the channel flow time series is valuable to identify the parameters at all pilot-point locations, indicating that the information in channel flow propagates to the entire basin. However, information in soil moisture measurements is of local extent and thus only valuable to identify the parameters at locations close to the observation point.

Editor D. Koutsoyiannis; Associate editor I. Nalbantis

Citation Maneta, M.P. and Wallender, W.W., 2013. Pilot-point based multi-objective calibration in a surface–subsurface distributed hydrological model. Hydrological Sciences Journal, 58 (2), 390–407.  相似文献   

4.
This paper proposes a new orientation to address the problem of hydrological model calibration in ungauged basin. Satellite radar altimetric observations of river water level at basin outlet are used to calibrate the model, as a surrogate of streamflow data. To shift the calibration objective, the hydrological model is coupled with a hydraulic model describing the relation between streamflow and water stage. The methodology is illustrated by a case study in the Upper Mississippi Basin using TOPEX/Poseidon (T/P) satellite data. The generalized likelihood uncertainty estimation (GLUE) is employed for model calibration and uncertainty analysis. We found that even without any streamflow information for regulating model behavior, the calibrated hydrological model can make fairly reasonable streamflow estimation. In order to illustrate the degree of additional uncertainty associated with shifting calibration objective and identifying its sources, the posterior distributions of hydrological parameters derived from calibration based on T/P data, streamflow data and T/P data with fixed hydraulic parameters are compared. The results show that the main source is the model parameter uncertainty. And the contribution of remote sensing data uncertainty is minor. Furthermore, the influence of removing high error satellite observations on streamflow estimation is also examined. Under the precondition of sufficient temporal coverage of calibration data, such data screening can eliminate some unrealistic parameter sets from the behavioral group. The study contributes to improve streamflow estimation in ungauged basin and evaluate the value of remote sensing in hydrological modeling. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
F. Viola  D. Pumo  L. V. Noto 《水文研究》2014,28(9):3361-3372
  相似文献   

6.
Yanchun Zhou 《水文科学杂志》2015,60(7-8):1340-1360
Abstract

This paper quantifies the impacts of bushfire and climate variability on streamflow from three southeast Australian catchments where bushfires occurred in February 1983. Three hydrological models (AWRA-L, Xinanjiang and GR4J) were first calibrated against streamflow data from the pre-bushfire period and then used to simulate runoff for the post-bushfire period with the calibrated parameters. The difference in simulated streamflow between pre- and post-bushfire periods provides an estimate of the impact of climate variability on streamflow. The impact of bushfire on streamflow is quantified by removing the climate variability impact from the difference in mean annual observed streamflow between post- and pre-bushfire periods. For the first 15 years after the 1983 bushfires, the results from hydrological models for the three catchments indicate that there is a substantial increase in streamflow; this is attributed to initial decreases in evapotranspiration and soil infiltration rates resulting from the fires, followed by logging activity. After 15 years, streamflow dynamics are more heavily influenced by climate effects, although some impact from fire and logging regeneration may still occur. The results show that hydrological models provide reasonably consistent estimates of bushfire and climate impacts on streamflow for the three catchments. The models can be used to quantify relative contributions of forest disturbance (bushfire, logging and other forest management) and climate variability. The results presented can also help forest managers understand the relationship between bushfire and climate variability impacts on water yield in the context of climate variability.  相似文献   

7.
Many methods developed for calibration and validation of physically based distributed hydrological models are time consuming and computationally intensive. Only a small set of input parameters can be optimized, and the optimization often results in unrealistic values. In this study we adopted a multi‐variable and multi‐site approach to calibration and validation of the Soil Water Assessment Tool (SWAT) model for the Motueka catchment, making use of extensive field measurements. Not only were a number of hydrological processes (model components) in a catchment evaluated, but also a number of subcatchments were used in the calibration. The internal variables used were PET, annual water yield, daily streamflow, baseflow, and soil moisture. The study was conducted using an 11‐year historical flow record (1990–2000); 1990–94 was used for calibration and 1995–2000 for validation. SWAT generally predicted well the PET, water yield and daily streamflow. The predicted daily streamflow matched the observed values, with a Nash–Sutcliffe coefficient of 0·78 during calibration and 0·72 during validation. However, values for subcatchments ranged from 0·31 to 0·67 during calibration, and 0·36 to 0·52 during validation. The predicted soil moisture remained wet compared with the measurement. About 50% of the extra soil water storage predicted by the model can be ascribed to overprediction of precipitation; the remaining 50% discrepancy was likely to be a result of poor representation of soil properties. Hydrological compensations in the modelling results are derived from water balances in the various pathways and storage (evaporation, streamflow, surface runoff, soil moisture and groundwater) and the contributions to streamflow from different geographic areas (hill slopes, variable source areas, sub‐basins, and subcatchments). The use of an integrated multi‐variable and multi‐site method improved the model calibration and validation and highlighted the areas and hydrological processes requiring greater calibration effort. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
9.
Accuracy of the Copernicus snow water equivalent (SWE) product and the impact of SWE calibration and assimilation on modelled SWE and streamflow was evaluated. Daily snowpack measurements were made at 12 locations from 2016 to 2019 across a 4104 km2 mixed-forest basin in the Great Lakes region of central Ontario, Canada. Sub-basin daily SWE calculated from these sites, observed discharge, and lake levels were used to calibrate a hydrologic model developed using the Raven modelling framework. Copernicus SWE was bias corrected during the melt period using mean bias subtraction and was compared to daily basin average SWE calculated from the measured data. Bias corrected Copernicus SWE was assimilated into the models using a range of parameters and the parameterizations from the model calibration. The bias corrected Copernicus product agreed well with measured data and provided a good estimate of mean basin SWE demonstrating that the product shows promise for hydrology applications within the study region. Calibration to spatially distributed SWE substantially improved the basin scale SWE estimate while only slightly degrading the flow simulation demonstrating the value of including SWE in a multi-objective calibration formulation. The particle filter experiments yielded the best SWE estimation but moderately degraded the flow simulation. The particle filter experiments constrained by the calibrated snow parameters produced similar results to the experiments using the upper and lower bounds indicating that, in this study, model calibration prior to assimilation was not valuable. The calibrated models exhibited varying levels of skill in estimating SWE but demonstrated similar streamflow performance. This indicates that basin outlet streamflow can be accurately estimated using a model with a poor representation of distributed SWE. This may be sufficient for applications where estimating flow is the primary water management objective. However, in applications where understanding the physical processes of snow accumulation, melt and streamflow generation are important, such as assessing the impact of climate change on water resources, accurate representations of SWE are required and can be improved via multi-objective calibration or data assimilation, as demonstrated in this study.  相似文献   

10.
Hydrological processes in karst basins are controlled by permeable multimedia, consisting of soil pores, epikarst fractures, and underground conduits. Distributed modelling of hydrological dynamics in such heterogeneous hydrogeological conditions is a challenging task. Basing on the multilayer structure of the distributed hydrology‐soil‐vegetation model (DHSVM), a distributed hydrological model for a karst basin was developed by integrating mathematical routings of porous Darcy flow, fissure flow and underground channel flow. Specifically, infiltration and saturated flow movement within epikarst fractures are expressed by the ‘cubic law’ equation which is associated with fractural width, direction, and spacing. A small karst basin located in Guizhou province of southwest China was selected for this hydrological simulation. The model parameters were determined on the basis of field measurement and calibrated against the observed soil moisture contents, vegetation interception, surface runoff, and underground flow discharges from the basin outlet. The results show that due to high permeability of the epikarst zone, a significant amount of surface runoff is only generated after heavy rainfall events during the wet season. Rock exposure and the epikarst zone significantly increase flood discharge and decrease evapotranspiration (ET) loss; the peak flood discharge is directly proportional to the size of the aperture. Distribution of soil moisture content (SMC) primarily depends on topographic variations just after a heavy rainfall, while SMC and actual ET are dominated by land cover after a period of consecutive non‐rainfall days. The new model was able to capture the sharp increase and decrease of the underground streamflow hydrograph, and as such can be used to investigate hydrological effects in such rock features and land covers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
In hydrological modelling, the challenge is to identify an optimal strategy to exploit tools and available observations in order to enhance model reliability. The increasing availability of data promotes the use of new calibration techniques able to make use of additional information on river basins. In the present study, a lumped hydrological model—designed with the aim of utilizing remotely sensed data—is introduced and calibrated, adopting four different schemes that adopt, to varying extents, available physical information. The physically consistent conceptualization of the hydrological model used allowed development of a step by step calibration based on a combination of information, such as remotely sensed data describing snow cover, recession curves obtained from streamflow measurements, and time series of surface run‐off obtained with a baseflow mathematical filter applied to the streamflow time‐series. Results suggest that the use of physical information in the calibration procedure tends to increase model reliability with respect to approaches where the parameters are calibrated using an overall statistic based, considerably or exclusively, on streamflow data.  相似文献   

12.
13.
The objective of this study is to incorporate a time‐dependent Soil Moisture Accounting (SMA) based Curve Number method (SMA_CN) in Soil and Water Assessment Tool (SWAT) and compare its performance with the existing CN method in SWAT by simulating the hydrology of two agricultural watersheds in Indiana, USA. Results show that fusion of the SMA_CN method causes decrease in runoff volume and increase in profile soil moisture content, associated with larger groundwater contribution to the streamflow. In addition, the higher amount of moisture in the soil profile slightly elevates the actual evapotranspiration. The SMA‐based SWAT configuration consistently produces improved goodness‐of‐fit scores and less uncertain outputs with respect to streamflow during both calibration and validation. The SMA_CN method exhibits a better match with the observed data for all flow regimes, thereby addressing issues related to peak and low flow predictions by SWAT in many past studies. Comparison of the calibrated model outputs with field‐scale soil moisture observations reveals that the SMA overhauling enables SWAT to represent soil moisture condition more accurately, with better response to the incident rainfall dynamics. While the results from the modification of the CN method in SWAT are promising, more studies including watersheds with various physical and climatic settings are needed to validate the proposed approach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Streamflow modelling results from the GR4H and PDM hydrological models were evaluated in two Australian sub-catchments, using (1) calibration to streamflow and (2) joint-calibration to streamflow and soil moisture. Soil moisture storage in the models was evaluated against soil moisture observations from field measurements. The PDM had the best performance in terms of both streamflow and soil moisture estimations during the calibration period, but was outperformed by GR4H during validation. It was also shown that the soil moisture estimation was improved significantly by joint-calibration for the case where streamflow and soil moisture estimations were poor. In other cases, addition of the soil moisture constraint did not degrade the results. Consequently, it is recommended that GR4H be used, in preference to the PDM, in the foothills of the Murrumbidgee catchment or other Australian catchments with semi-arid to sub-humid climate, and that soil moisture data be used in the calibration process.  相似文献   

15.
ABSTRACT

We evaluated precipitation estimates, TRMM (Tropical Rainfall Measuring Mission 3B42V7), CFSR (Climate Forecast System Reanalysis), GHCN-D (Global Historical Climatology Network-Daily Version 3.24), and Daymet, using the Soil and Water Assessment Tool (SWAT). The suitability and quality of TRMM, CFSR and Daymet in forcing the SWAT-based hydrological model was examined by means of model calibration. A calibrated TRMM-driven model slightly overestimated streamflow, while a calibrated CFSR-driven model performed worst. The Daymet-driven model performance was as good as the GHCN-D-driven model in reproducing observations. In addition, the temperature was far less sensitive compared with precipitation in driving SWAT. TRMM 3B42V7 showed great potential in streamflow simulation. The results and findings from this study provide new insights into the suitability of precipitation products for hydrological and climate impact studies in large basins, particularly those in typical climates and physiographic settings similar to the Midwestern USA.  相似文献   

16.
Flow duration curve provides an important synthesis of the relevant hydrological processes occurring at the basin scale, and, although it is typically obtained from field observations, different theoretical approaches finalized to its indirect reconstruction have been developed in recent years. In this study a recent ecohydrological model for the probabilistic characterization of base flows is tested through its application to a study catchment located in southern Italy, where long historical series of daily streamflow are available. The model, coupling soil moisture balance with a simplified scheme of the hydrological response of the basin, provides the daily flow duration curve. The original model is here modified in order to account for rainfall reduction due to canopy interception and stress its potential applicability to most of the ephemeral Mediterranean basins, where measurements of air temperature and rainfall often represent the only meteorological data available. The model shows a high sensitivity to two parameters related to the transport and evapotranspiration processes. Two different operational approaches for the identification of such parameters are explored and compared: by the first approach, these parameters are considered as time invariant quantities, while, in the second approach, empirical relationships between such parameters and the underlying climatic forcings are first derived and then adopted in the parameters calibration procedure. The model ability in reproducing the empirical flow duration curves and the model sensitivity to climate forcings, here referred as elasticity of the model, are investigated and it is shown how the adoption of the second approach leads to a general improvement of the model elasticity.  相似文献   

17.
Abstract

Grid-based distributed models have become popular for describing spatial hydrological processes. However, the influence of non-homogeneity within a grid on streamflow simulation was not adequately addressed in the literature. In this study, we investigated how the statistical characteristics of soil moisture storage within a grid impacts on streamflow simulations. The spatial variation of the topographic index, TI, within a grid was used to determine parameter B of the statistical curve of soil moisture storage in the Xinanjiang model. For comparison of influences of the non-homogeneity within a grid on streamflow simulation, two parameterization schemes of soil moisture storage capacity were developed: a grid-parameterization scheme for a distributed model and a catchment-averaged scheme for a semi-distributed model. The practicability and usefulness of the grid-parameterization method were evaluated through model comparisons. The two models were applied in Jiangwan experimental catchment Zhejiang Province, China. Streamflow discharge data at the catchment outlet from 1971 to 1986 at different temporal resolutions, e.g. 15 min and daily time step, were used for model calibration and validation. Statistical results for different grid scales demonstrated that the mean and variation of TI and B decline significantly as the grid scale increases. The simulated streamflow discharges of the two models were similar and the semi-distributed model outperformed the distributed model slightly when the streamflow at the outlet of the catchment was used as the only basis for comparison. In addition, a relatively larger bias in the predicted discharges between these two models was observed along with an abrupt increase of soil moisture saturation ratio. A further analysis of the simulated soil moisture content distribution revealed that the distributed model can provide a reasonable representation of the variable source area concept, which was justified to some extent by the field experiment data.

Editor D. Koutsoyiannis

Citation Liu, J.T., Chen, X., Wu, J.C., Zhang, X.N., Feng, D.Z. and Xu, C.-Y., 2012. Grid parameterization of a conceptual, distributed hydrological model through integration of a sub-grid topographic index: necessity and practicability. Hydrological Sciences Journal, 57 (2), 282–297.  相似文献   

18.
Using the defined sensitivity index, the sensitivity of streamflow, evapotranspiration and soil moisture to climate change was investigated in four catchments in the Haihe River basin. Climate change contained three parts: annual precipitation and temperature change and the change of the percentage of precipitation in the flood season (Pf). With satisfying monthly streamflow simulation using the variable infiltration capacity model, the sensitivity was estimated by the change of simulated hydrological variables with hypothetical climatic scenarios and observed climatic data. The results indicated that (i) the sensitivity of streamflow would increase as precipitation or Pf increased but would decrease as temperature increased; (ii) the sensitivity of evapotranspiration and soil moisture would decrease as precipitation or temperature increased, but it to Pf varied in different catchments; and (iii) hydrological variables were more sensitive to precipitation, followed by Pf, and then temperature. The nonlinear response of streamflow, evapotranspiration and soil moisture to climate change could provide a reference for water resources planning and management under future climate change scenarios in the Haihe River basin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Abstract

The complexity of distributed hydrological models has led to improvements in calibration methodologies in recent years. There are various manual, automatic and hybrid methods of calibration. Most use a single objective function to calculate estimation errors. The use of multi-objective calibration improves results, since different aspects of the hydrograph may be considered simultaneously. However, the uncertainty of estimates from a hydrological model can only be taken into account by using a probabilistic approach. This paper presents a calibration method of probabilistic nature, based on the determination of probability functions that best characterize different parameters of the model. The method was applied to the Real-time Interactive Basin Simulator (RIBS) distributed hydrological model using the Manzanares River basin in Spain as a case study. The proposed method allows us to consider the uncertainty in the model estimates by obtaining the probability distributions of flows in the flood hydrograph.

Citation Mediero, L., Garrote, L. & Martín-Carrasco, F. J. (2011) Probabilistic calibration of a distributed hydrological model for flood forecasting. Hydrol. Sci. J. 56(7), 1129–1149.  相似文献   

20.
Images from satellite platforms are a valid aid in order to obtain distributed information about hydrological surface states and parameters needed in calibration and validation of the water balance and flood forecasting. Remotely sensed data are easily available on large areas and with a frequency compatible with land cover changes. In this paper, remotely sensed images from different types of sensor have been utilized as a support to the calibration of the distributed hydrological model MOBIDIC, currently used in the experimental system of flood forecasting of the Arno River Basin Authority. Six radar images from ERS‐2 synthetic aperture radar (SAR) sensors (three for summer 2002 and three for spring–summer 2003) have been utilized and a relationship between soil saturation indexes and backscatter coefficient from SAR images has been investigated. Analysis has been performed only on pixels with meagre or no vegetation cover, in order to legitimize the assumption that water content of the soil is the main variable that influences the backscatter coefficient. Such pixels have been obtained by considering vegetation indexes (NDVI) and land cover maps produced by optical sensors (Landsat‐ETM). In order to calibrate the soil moisture model based on information provided by SAR images, an optimization algorithm has been utilized to minimize the regression error between saturation indexes from model and SAR data and error between measured and modelled discharge flows. Utilizing this procedure, model parameters that rule soil moisture fluxes have been calibrated, obtaining not only a good match with remotely sensed data, but also an enhancement of model performance in flow prediction with respect to a previous calibration with river discharge data only. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号