首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The hydrological influence of fault zones in tectonic areas is usually difficult to depict from field data. Numerical simulation allows representation of such flow systems and an estimation of flow lines and rates. This paper reports on simulations of the groundwater flow in a range‐and‐basin area affected by a regional fault zone, which may drain or recharge an overlaying alluvial aquifer. Different hydraulic conductivity values for the range rocks, the fault‐zone, and the sedimentary infill of the basin are considered, as well as different fault‐zone widths and boundary conditions. Results show that upward and downward fluxes develop in the upper part of the fault zone, controlled by the action of the alluvial aquifer, influencing the recharge of the sedimentary basin. This paper shows the hydrological efficiency of fault zones as preferential flow; it also analyses the constraints that determine groundwater recharge to the surrounding basins. These results contribute to the understanding of hydrogeological dynamics in tectonic areas. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Sand rivers are ephemeral watercourses containing sand that are occasionally flooded with rainwater runoff during the rainy season. Although the riverbed appears dry for most of the year, there is perennial groundwater flow within the sand. This water flowing beneath the surface is a valuable resource for local communities; nonetheless our understanding of such river systems is limited. Hence, this paper aims to improve our understanding of the hydrology of sand rivers and to examine the potential use of remote sensing to detect the presence of water in the sand. The relationship between rainfall events and changes in the water level of two sand rivers in the Matabeleland South Province of Zimbabwe was investigated. A lagged relationship was observed for the Manzamnyama River but for the Shashani River the relationship was seen only when considering cumulative rainfall events. The comparison of the modelled flow as simulated by a water balance model with observations revealed the important influence of the effective sediment depth on the recharge and recession of the alluvial channels in addition to the length of the channel. The possibility of detecting water in the alluvial sands was investigated using remote sensing. During the wet season, optical images showed that the presence of water on the riverbed was associated with a smooth signal, as it tends to reflect the incident radiation. A chronological analysis of radar images for different months of the year demonstrates that it is possible to detect the presence of water in the sand rivers. These results are a first step towards the development of a methodology that would aim to use remote sensing to help reducing survey costs by guiding exploratory activities to areas showing signs of water abstraction potential.  相似文献   

4.
A conceptual water‐balance model was modified from a point application to be distributed for evaluating the spatial distribution of watershed water balance based on daily precipitation, temperature and other hydrological parameters. The model was calibrated by comparing simulated daily variation in soil moisture with field observed data and results of another model that simulates the vertical soil moisture flow by numerically solving Richards' equation. The impacts of soil and land use on the hydrological components of the water balance, such as evapotranspiration, soil moisture deficit, runoff and subsurface drainage, were evaluated with the calibrated model in this study. Given the same meteorological conditions and land use, the soil moisture deficit, evapotranspiration and surface runoff increase, and subsurface drainage decreases, as the available water capacity of soil increases. Among various land uses, alfalfa produced high soil moisture deficit and evapotranspiration and lower surface runoff and subsurface drainage, whereas soybeans produced an opposite trend. The simulated distribution of various hydrological components shows the combined effect of soil and land use. Simulated hydrological components compare well with observed data. The study demonstrated that the distributed water balance approach is efficient and has advantages over the use of single average value of hydrological variables and the application at a single point in the traditional practice. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
Estimation of specific yield (Sy) of an aquifer is of great importance in water resource management. In this study, an experimental drainage method was developed to determine specific yield of an alluvial aquifer of the Platte River valley, Nebraska, USA. Sets of sediment cores with continuous interval depth were collected to plastic tubes using the direct push technique and then taken to the laboratory. During the Sy experiment, those sediment cores were re-saturated by placing them vertically in a large water tank. Sy was determined by the water drained from the sediments by force of gravity in a bracket. Our results show that the values of Sy varied largely with depth at each site and the variability for Sy with interval depth between the test sites is also observed. This spatial heterogeneity in Sy might result from the variation of grain size, grain shape, sorting and compaction of sediments in different cores with interval depth. The Sy for all sediment cores ranged from 0.01 to 0.18 and the mean value was 0.08±0.04. Our drainage method can functionally preserve the sedimentary structures in their original state and it is easier to experiment at a lower expense.  相似文献   

6.
Inundation marks the shift from a terrestrial ecosystem to an aquatic ecosystem in ephemeral rivers. The forms and rates of responses by aquatic invertebrates and sediment microbes to inundation depend on desiccation resistance during preceding dry periods. We assessed invertebrate and microbial responses to inundation over a range of preceding dry periods in an ephemeral reach of the Selwyn River, New Zealand. Microbial response variables were dissolved oxygen consumption and non-specific esterase activity. Sampling sites along the reach had been continuously dry for 1–592 d prior to sample collection. The onset of flow simulated by an experimental inundation led to the appearance of aquatic invertebrates in all samples, but the assemblages varied with the length of the preceding dry period. Taxon richness decreased linearly with dry period length while density decreased exponentially. These patterns indicate that a large number of individuals from desiccation-sensitive taxa were eliminated soon after flow ceased, and a low-density assemblage composed of a small number of desiccation-resistant taxa persisted during prolonged dry periods. As with invertebrate density, sediment respiration and nonspecific esterase activity decreased with length of dry period, and were characterized by exponential decay functions. The results of the inundation experiments suggest that a temporal ecotone exists for about one week after the disappearance of flowing water, and before the terrestrial system stabilizes.  相似文献   

7.
Ephemeral ponds (EPs) are seasonally flooded isolated wetlands that provide a variety of hydroecological benefits, including the provision of breeding habitat for several amphibian and invertebrate species. However, the lack of their explicit representation in hydrological models limits a comprehensive understanding of their interaction with surrounding landscapes and their vulnerability in the context of human interventions and climate change. The purpose of this research was to improve the isolated wetland module of the Soil Water Assessment Tool (SWAT) to better represent EP hydrology. The changes include (1) representation of groundwater and hypodermic flow as the only inflows from the pond drainage surface, due to the intermittent and negligible presence of inflow from surface runoff in forested ponds, (2) revision of how evapotranspiration within EPs is represented and (3) implementation of distinct volume-area-depth relationships for ponds based on their geometrical shape. The accuracy of these improvements was assessed against that of a previous isolated wetland formulation in replicating water depth observations of 10 EPs of a portion of the Kenauk forest (68 km2) in the Canadian Shield of the Outaouais region (Québec, Canada). The comparison results show that the revised SWAT model presented here significantly improves the distinct filling and drying water cycle of EPs (average root mean square error of 0.1 m of the revised model vs. 0.23 m for the original model). Besides, the new module allowed to identify that hypodermic flow, evapotranspiration and seepage to the underlying soil are the main EP source and sinks. The new module also allowed to explicitly quantify the differences in filling/drying pattern of the EPs of the Kenauk forest and unlike the original model structure, the new module was able to closely replicate the interannual variation of spring and annual hydroperiod duration.  相似文献   

8.
Research into global hot spots of dust emission has focused on exposed fine‐grained sediments in palaeo‐ or ephemeral dryland lake basins including Etosha (Namibia) and Makgadikgadi (Botswana) in southern Africa. Namibia's western ephemeral river valleys are also known to produce dust but have remained largely overlooked as a regionally significant source. Nutrient enrichment of valley sediments and proximity to the South Atlantic suggests aeolian dust could play an important role in ocean fertilization. The fertility of valley dust is dependent on fluvial sediments originating in the upper catchments on the Southern African Central Plateau. In this study we investigate climate, geology, vegetation and land use variability and how these may influence the nitrogen, phosphorus and iron availability in the catchments. We intensely sampled the Huab, Kuiseb and Tsauchab river systems to map the spatial distribution of nutrients from upper catchments to river termini. Samples were analysed for the bioavailable fractions of iron, nitrogen and phosphorus as well as total nitrogen and phosphorus. Results show that the lower valley reaches are sources of aeolian dust enriched in nutrients. Nitrogen levels correlate with precipitation and vegetation levels and phosphorus levels with geology. However, differences in upper catchment sediment nutrient levels were not representative of downstream nutrient differences between valleys. Rather, it is the hydrological and geomorphological processes of the ephemeral river systems that are key for producing the enriched sediments in the lower reaches. We demonstrate that the ephemeral river valleys of western Namibia are an extensive and enriched source of mineral dust that could play a critical role in marine productivity of the southern Atlantic. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

9.
A cellular model of Holocene upland river basin and alluvial fan evolution   总被引:1,自引:0,他引:1  
The CAESAR (Cellular Automaton Evolutionary Slope And River) model is used to simulate the Holocene development of a small upland catchment (4·2 km2) and the alluvial fan at its base. The model operates at a 3 m grid scale and simulates every flood over the last 9200 years, using a rainfall record reconstructed from peat bog wetness indices and land cover history derived from palynological sources. Model results show that the simulated catchment sediment discharge above the alluvial fan closely follows the climate signal, but with an increase in the amplitude of response after deforestation. The important effects of sediment storage and remobilization are shown, and findings suggest that soil creep rates may be an important control on long term (>1000 years) temperate catchment sediment yield. The simulated alluvial fan shows a complex and episodic behaviour, with frequent avulsions across the fan surface. However, there appears to be no clear link between fan response and climate or land use changes suggesting that Holocene alluvial fan dynamics may be the result of phases of sediment storage and remobilization, or instabilities and thresholds within the fan itself. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
To investigate the origin and behaviour of nitrate in alluvial aquifers adjacent to Nakdong River, Korea, we chose two representative sites (Wolha and Yongdang) having similar land‐use characteristics but different geology. A total of 96 shallow groundwater samples were collected from irrigation and domestic wells tapping alluvial aquifers. About 63% of the samples analysed had nitrate concentrations that exceeded the Korean drinking water limit (44·3 mg l?1 NO3?), and about 35% of the samples had nitrate concentrations that exceeded the Korean groundwater quality standard for agricultural use (88·6 mg l?1 NO3?). Based on nitrogen isotope analysis, two major nitrate sources were identified: synthetic fertilizer (about 4‰ δ15N) applied to farmland, and animal manure and sewage (15–20‰ δ15N) originating from upstream residential areas. Shallow groundwater in the farmland generally had higher nitrate concentrations than those in residential areas, due to the influence of synthetic fertilizer. Nitrate concentrations at both study sites were highest near the water table and then progressively decreased with depth. Nitrate concentrations are also closely related to the geologic characteristics of the aquifer. In Yongdang, denitrification is important in regulating nitrate chemistry because of the availability of organic carbon from a silt layer (about 20 m thick) below a thin, sandy surface aquifer. In Wolha, however, conservative mixing between farmland‐recharged water and water coming from a village is suggested as the dominant process. Mixing ratios estimated based on the nitrate concentrations and the δ15N values indicate that water originating from the village affects the nitrate chemistry of the shallow groundwater underneath the farmland to a large extent. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents an approach to estimate the effects of a managed recharge experiment in a multilayer aquifer characterized by the presence of perched water tables in the Medina del Campo groundwater body, Douro basin, central Spain. A numerical model was developed to evaluate the effect of artificial recharge on the shallow sector of a regional-scale aquifer and on formerly active wetlands. The model was developed in the Visual MODFLOW Pro v.2011.1 environment in order to represent and analyse the regional impact of this artificial recharge event. Results suggest that the assumption of a single perched system may prove useful in regional contexts where data is limited. From a study site perspective, managed recharge is observed to increase shallow storage along the riverbanks, which is considered valuable for environmental purposes. However, downstream wetlands are unlikely to experience a significant recovery. Furthermore, only a small percentage of artificial recharge is expected to reach the deep regional aquifer. This method can be exported to settings characterized by the presence of perched aquifers and associated groundwater dependent ecosystems.  相似文献   

12.
13.
Hydrological interaction between surface and subsurface water systems has a significant impact on water quality, ecosystems and biogeochemistry cycling of both systems. Distributed models have been developed to simulate this function, but they require detailed spatial inputs and extensive computation time. The soil and water assessment tool (SWAT) model is a semi‐distributed model that has been successfully applied around the world. However, it has not been able to simulate the two‐way exchanges between surface water and groundwater. In this study, the SWAT‐landscape unit (LU) model – based on a catena method that routes flow across three LUs (the divide, the hillslope and the valley) – was modified and applied in the floodplain of the Garonne River. The modified model was called SWAT‐LUD. Darcy's equation was applied to simulate groundwater flow. The algorithm for surface water‐level simulation during flooding periods was modified, and the influence of flooding on groundwater levels was added to the model. Chloride was chosen as a conservative tracer to test simulated water exchanges. The simulated water exchange quantity from SWAT‐LUD was compared with the output of a two‐dimensional distributed model, surface–subsurface water exchange model. The results showed that simulated groundwater levels in the LU adjoining the river matched the observed data very well. Additionally, SWAT‐LUD model was able to reflect the actual water exchange between the river and the aquifer. It showed that river water discharge has a significant influence on the surface–groundwater exchanges. The main water flow direction in the river/groundwater interface was from groundwater to river; water that flowed in this direction accounted for 65% of the total exchanged water volume. The water mixing occurs mainly during high hydraulic periods. Flooded water was important for the surface–subsurface water exchange process; it accounted for 69% of total water that flowed from the river to the aquifer. The new module also provides the option of simulating pollution transfer occurring at the river/groundwater interface at the catchment scale. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Water driven soil erosion is a major cause of land degradation worldwide. Ephemeral gullies (EGs) are considered key contributors to agricultural catchment soil loss. Despite their importance, the parameters and drivers controlling EG dynamics have not been adequately quantified. Here we investigate the effects of rainfall characteristics on EGs, using the physically based landform evolution model (LEM) CAESAR‐Lisflood. An initial goal of this study was to test the feasibility of using a LEM to estimate EG dynamics based on an easily obtainable and moderate spatial resolution (2 × 2 m) Digital Elevation Model (DEM). EG evolution was simulated for two rainfall seasons in a 0.37 km2 agricultural plot situated in a semiarid catchment in central Israel. The 2014 rainfall season was used to calibrate the model and the 2015 season was used for validation. The model overall well predicted the EG network structure and average depth but tended to underestimate the EG length. The effects of rainfall characteristics on EG dynamics were investigated by comparing simulations employing seven rainfall scenarios. Four of these scenarios differ in their overall rainfall volume relative to observed precipitation (+20%, +10%, ?10%, ?20%). The remaining three scenarios vary in the temporal distribution of rainfall during each storm, allowing us to isolate the effect of rainfall intensity on EG evolution. The results show that: (1) EG dynamics strongly correlated with changes in rainfall volume; (2) small‐scale morphological behavior varies between rainfall scenarios, resulting in different meandering and connectivity variability; (3) EG evolution is divided into two main stages, an initial rapid development occurring after the first two weeks of the rainy season, followed by a stable development period; (4) a 12 mm h?1 intensity threshold was observed to initiate and, later, modify EGs; and (5) inner storm rainfall variability can have a considerable effect on EG evolution. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
The Antinaco-Los Colorados valley is a wide N–S tectonic depression, located between the Sa. de Velazco and the Sa. de Famatina, both ranges belonging to the Sierras Pampeanas thick-skinned deformation province in Argentina. From previously reported magnetotelluric (MT) data, it is known that the thickness of the sedimentary sequences may reach up to 8 km in the central zone of this basin. In particular, the Quaternary-to-recent alluvial filling contains an aquifer complex of great importance for this semiarid zone providing water for irrigation and also for human consumption. To obtain information about the electrical structure of the alluvial cover, 17 vertical electric soundings were carried out along an E–W traverse profile extending from one side of the valley to the other. A geoelectrical model is proposed taking into account complementary hydrogeological and geophysical information. In this model, the various layers which could contain fresh water are identified and the level of the water table inferred from the model is almost coincident with that observed from existing wells in the surveyed zone.  相似文献   

16.
The distribution of trace metals in alluvial sediments depends on their natural background concentrations, and on the dynamics of contemporary depositional and erosional (mainly flood‐induced) processes. Geological and geochemical investigations were carried out in the valley of Vistula River near Magnuszew (central Poland). Sediment samples were collected from a depth of 35 cm and comprise sediments of all defined geomorphological features. Identification and geological interpretation of the morphodynamic sediment features was supported by aerial photographs and high‐resolution satellite images. These studies revealed that the distribution of trace metals is closely linked to the morphogenesis of the alluvial floodplain. The highest concentrations of Cu, Co, Zn, V, Cr and Ni were observed in crevasse‐splays deposits. By contrast, Sr, Pb and As were concentrated in deposits which fill oxbow lakes (partly infilled with organic deposits). The lowest concentrations of trace metals were detected in flood sediments deposited within erosional troughs. The geomorphological and sedimentological history of the fluvial features explains the pattern of heavy metal distribution on the current floodplain surface. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
昌黎井含水层系统的水位水温动态关系与地震活动   总被引:2,自引:2,他引:2  
研究深层含水系统水位,水温动态,目前多以变化形态的描述和年动态特征的分析为主,本文根据水位,水温的变化关系,研究了两者线性相关系数r值的稳定和回归系数b值随时间的变化,发现地震活动平静时间段的r值和b值相对稳定,而在地城活动频敏,强度较高时间段为r值和b 值变化较大,文章对1989年10月19日大同6.1级地震和1995年以来地震活动性及1998年1月10日张北6.2级地震前后r值和b值的变化进行了讨论,显示了比单一分析水位或水温动态能够获得更多的信息,从对深层地下水动态与水温关系的分析认为,水位动态是深层含水系统热动平衡状态的反应,研究水位动态必须同时研究地下水热动态。  相似文献   

18.
This paper presents an approach to incorporate time‐dependent dune evolution in the determination of bed roughness coefficients applied in hydraulic models. Dune roughness is calculated by using the process‐based dune evolution model of Paarlberg et al. ( 2009 ) and the empirical dune roughness predictor of Van Rijn ( 1984 ). The approach is illustrated by applying it to a river of simple geometry in the 1‐D hydraulic model SOBEK for two different flood wave shapes. Calculated dune heights clearly show a dependency on rate of change in discharge with time: dunes grow to larger heights for a flood wave with a smaller rate of change. Bed roughness coefficients computed using the new approach can be up to 10% higher than roughness coefficients based on calibration, with the largest differences at low flows. As a result of this larger bed roughness, computed water depths can be up to 15% larger at low flow. The new approach helps to reduce uncertainties in bed roughness coefficients of flow models, especially for river systems with strong variations in discharge with time. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
We evaluated sources and pathways of groundwater recharge for a heterogeneous alluvial aquifer beneath an agricultural field, based on multi‐level monitoring of hydrochemistry and environmental isotopes of a riverside groundwater system at Buyeo, Korea. Two distinct groundwater zones were identified with depth: (1) a shallow oxic groundwater zone, characterized by elevated concentrations of NO3? and (2) a deeper (>10–14 m from the ground surface) sub‐oxic groundwater zone with high concentrations of dissolved Fe, silica, and HCO3?, but little nitrate. The change of redox zones occurred at a depth where the aquifer sediments change from an upper sandy stratum to a silty stratum with mud caps. The δ18O and δ2H values of groundwater were also different between the two zones. Hydrochemical and δ18O? δ2H data of oxic groundwater are similar to those of soil water. This illustrates that recharge of oxic groundwater mainly occurs through direct infiltration of rain and irrigation water in the sandy soil area where vegetable cropping with abundant fertilizer use is predominant. Oxic groundwater is therefore severely contaminated by agrochemical pollutants such as nitrate. In contrast, deeper sub‐oxic groundwater contains only small amounts of dissolved oxygen (DO) and NO3?. The 3H contents and elevated silica concentrations in sub‐oxic groundwater indicate a somewhat longer mean residence time of groundwater within this part of the aquifer. Sub‐oxic groundwater was also characterized by higher δ18O and δ2H values and lower d‐excess values, indicating significant evaporation during recharge. We suggest that recharge of sub‐oxic groundwater occurs in the areas of paddy rice fields where standing irrigation and rain water are affected by strong evaporation, and that reducing conditions develop during subsequent sub‐surface infiltration. This study illustrates the existence of two groundwater bodies with different recharge processes within an alluvial aquifer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Australian arid zone ephemeral rivers are typically unregulated and maintain a high level of biodiversity and ecological health. Understanding the ecosystem functions of these rivers requires an understanding of their hydrology. These rivers are typified by highly variable hydrological regimes and a paucity, often a complete absence, of hydrological data to describe these flow regimes. A daily time‐step, grid‐based, conceptual rainfall–runoff model was developed for the previously uninstrumented Neales River in the arid zone of northern South Australia. Hourly, logged stage data provided a record of stream‐flow events in the river system. In conjunction with opportunistic gaugings of stream‐flow events, these data were used in the calibration of the model. The poorly constrained spatial variability of rainfall distribution and catchment characteristics (e.g. storage depths) limited the accuracy of the model in replicating the absolute magnitudes and volumes of stream‐flow events. In particular, small but ecologically important flow events were poorly modelled. Model performance was improved by the application of catchment‐wide processes replicating quick runoff from high intensity rainfall and improving the area inundated versus discharge relationship in the channel sections of the model. Representing areas of high and low soil moisture storage depths in the hillslope areas of the catchment also improved the model performance. The need for some explicit representation of the spatial variability of catchment characteristics (e.g. channel/floodplain, low storage hillslope and high storage hillslope) to effectively model the range of stream‐flow events makes the development of relatively complex rainfall–runoff models necessary for multisite ecological studies in large, ungauged arid zone catchments. Grid‐based conceptual models provide a good balance between providing the capacity to easily define land types with differing rainfall–runoff responses, flexibility in defining data output points and a parsimonious water‐balance–routing model. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号