首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper defines the intertropical convergence zone. (ITCZ) in the Indian monsoon region during the northern summer, identifies it with the northern boundary of the advancing monsoon and suggests that its seasonal movement can serve as an indicator of onset, advance and withdrawal of the monsoon. Evidence suggesting the movement of the ITCZ which is associated with the equatorial trough of low pressure is indirectly furnished by an analysis of the isallobaric or height-tendency field which reveals a distinct gradient towards the north/south during period of advance/withdrawal of the monsoon. A comparative study of the dates of onset of monsoon during two successive years appears to suggest that some of the problems encountered in using rainfall as the sole criterion for determining the onset and advance of the monsoon may be over-come by using the ITCZ concept as proposed in the present paper. Attention is drawn to the effects of synoptic-scale disturbances on the normal dates of onset, advance and withdrawal of the monsoon.  相似文献   

2.
Two years of contrasting monsoon rainfall over the Indian subcontinent are studied with reference to (a) total precipitable water and precipitation efficiencies during the respective years and (b) the correlation between the dew point temperature at a particular level and the total precipitable water. It is found that the maximum correlation occurs between the dew point temperature at the 850 mb level and the total precipitable water at an individual station. The precipitation efficiencies are less during the year of bad monsoon. A linear regression equation is attempted between the total precipitable water and dew point temperature.  相似文献   

3.
Indian summer monsoon and El Nino   总被引:1,自引:0,他引:1  
The associations between strong to moderate El Nino events and the all-India and subdivisional summer monsoon rainfall is examined for the period 1871 to 1978. The significance of the association is assessed by applying the Chi-square test to the contingency table. The analysis indicates that during 22 El Nino years the Indian monsoon rainfall was mostly below normal over most parts of the country. However, the association between El Nino and deficient rainfall or drought is statistically significant over the subdivisions west of longitude 80°E and north of 12°N. During the five strong El Nino years—1877, 1899, 1911, 1918, and 1972—many areas of India suffered large rainfall deficiencies and severe droughts. There are four moderate El Nino years—1887, 1914, 1953, and 1976—when the suffering was marginal. The relationship between El Nino and the Indian monsoon rainfall is expected to be useful in forecasting large-scale anomalies in the monsoon over India.  相似文献   

4.
Based on the Indian and Chinese precipitation data and the NCEP-NCAR reanalysis circulation data, the relationship between the Indian summer monsoon (ISM) onset and the Meiyu over the Yangtze River Valley has been discussed by the methods of correlation analysis and composite analysis. The results show that the date of ISM onset over Kerala in the southwestern coast of the Indian Peninsula is about two weeks earlier than the beginning of the Meiyu over the Yangtze River Valley. After the outbreak of ISM, the teleconnection mode sets up from the western coast of India via the Bay of Bengal (BOB) to the Yangtze River Valley and southern Japan. It is different both in time and space from the telecon- nection mode which is from the northwest of India via the Tibetan Plateau to northern China. The for- mer mode is defined as the "south" teleconnection of the Asian summer monsoon, forming in the pe- riod of ISM onset; while the latter mode is called the "north" teleconnection, mainly occurring in the Asian monsoon culminant period. During the process of the "south" teleconnection’s formation, the Asian monsoon circulation has experienced a series of important changes: ISM onset, the northward movement of the south Asia high (SAH), the onset vortex occurrence, the eastward extension of the stronger tropical westerly belt, and the northeastward jump of the western Pacific subtropical high (WPSH), etc. Consequently, since ISM sets up over Kerala, the whole Asian continent is covered by the upper SAH after about two weeks, while in the mid- and lower troposphere, a strong wind belt forms from the Arabian Sea via the southern India, BOB and the South China Sea (SCS), then along the western flank of WPSH, to the Yangtze River Valley and southern Japan. With the northward moving of the subtropical jet streams, the upper westerly jet stream and the low level jet have been coupled ver- tically over east Asia, while the Yangtze River Valley happens to locate in the ascending motion area between the upper jet stream and the low level jet, i.e. right of the entrance of the upper jet stream and left of the low level jet. Such a structure of the vertical circulation can trigger the Meiyu onset over the Yangtze River Valley.  相似文献   

5.
通过一系列的理想数值试验,研究了亚、非地区热带次尺度的海陆分布和青藏高原大地形在亚洲夏季风形成中的作用.试验结果显示:海陆分布的存在以及海陆分布的几何形状对亚洲夏季风的形成有非常重要的影响.下垫面全是海洋,没有陆地时,无季风现象的存在.当仅有副热带大尺度陆地,而缺乏南亚次尺度陆地和非洲大陆热带陆地时,夏季无明显的越赤道气流,仅在欧亚副热带陆地的东南部有弱的季风,无印度、孟加拉湾和南海夏季风.中南半岛、印度半岛和非洲大陆热带陆地的存在,在夏季引导南半球的东南信风越赤道转向为西南气流,使得南海的北部、中南半岛、孟加拉湾和印度半岛、阿拉伯海上空的低层为强西南气流控制,印度、孟加拉湾和南海夏季风产生.副热带陆地向热带的深入对副热带陆上产生夏季强对流性降水起着至关重要的作用.青藏高原的存在加强了高原东侧的季风,使得季风区向北发展,青藏高原对东亚季风起放大器的作用;减弱了高原西侧的季风,使得季风区向南收缩.  相似文献   

6.
孟加拉湾夏季风爆发的判断指标及其年际特征   总被引:1,自引:0,他引:1       下载免费PDF全文
晏红明  孙丞虎  王灵  李蕊  金燕 《地球物理学报》2018,61(11):4356-4372

利用高低层大气环流、OLR(向外长波辐射)、CMAP降水、SST(海表温度)等资料分析了孟加拉湾地区3—5月多年气候平均大气环流及不同要素的演变特征,定义了一个新的孟加拉湾夏季风(BOBSM,下同)爆发指标为孟加拉湾地区(5°N—15°N,90°E—97.5°E)850 hPa和200 hPa纬向风区域平均的变化同时满足U850 > 3 m·s-1和U200 < -5 m·s-1,并持续5天的第一天即作为BOBSM爆发日期.该季风指数有明确的天气学意义,可以反映孟加拉湾低层西南风持续稳定和南亚高压在青藏高原建立早晚的特征.文章进一步分析了BOBSM爆发的年际特征及其前兆海洋信号特征,结果表明:1981—2010年BOBSM爆发的平均日期为5月10日,季风爆发有显著的年际波动,爆发最早在1999年(4月11日)和最晚在1968年(6月1日),年代际尺度上表现为由爆发偏晚至偏早的变化趋势;BOBSM爆发早(晚)与热带印度洋地区850 hPa的越赤道气流和西风异常加强(减弱),以及200 hPa青藏高原南亚高压的季节性建立偏早(晚)等密切联系;前期冬季赤道西太平洋的海温冷(暖)变化对BOBSM爆发早(晚)有很好的指示意义,前期冬季海温偏高(低)有利于季风偏早(晚),其影响的主要途径是通过热源变化激发纬向垂直环流及其热带印度洋和太平洋低层环流异常,进而影响季风爆发早晚.

  相似文献   

7.
The future potential changes in precipitation and monsoon circulation in the summer in East Asia are projected using the latest generation of coupled climate models under Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A1B scenario (a medium emission scenario).The multi-model ensemble means show that during the period of 2010-2099,the summer precipitation in East Asia will increase and experience a prominent change around the 2040s,with a small increase (~1%) before the end of the 2040s and a large increase (~9%) afterward.This kind of two-stage evolution characteristic of precipitation change can be seen most clearly in North China,and then in South China and in the mid and lower Yangtze River Valley.In 2010-2099,the projected precipitation pattern will be dominated by a pattern of "wet East China" that explains 33.6% of EOF total variance.The corresponded time coefficient will markedly increase after the 2040s,indicating a great contribution from this mode to the enhanced precipitation across all East China.Other precipitation patterns that prevail in the current climate only contribute a small proportion to the total variance,with no prominent liner trend in the future.By the late 21st century,the monsoon circulation will be stronger in East Asia.At low level,this is due to the intensification of southwesterly airflow north of the anticyclone over the western Pacific and the SCS,and at high level,it is caused by the increased northeasterly airflow east of the anticyclone over South Asia.The enhanced monsoon circulation will also experience a two-stage evolution in 2010-2099,with a prominent increase (by ~0.6 m s-1) after the 2040s.The atmospheric water vapor content over East Asia will greatly increase (by ~9%) at the end of 21st century.The water vapor transported northward into East China will be intensified and display a prominent increase around the 2040s similar to other examined variables.These indicate that the enhanced precipitation over East Asia is caused by the increases in both monsoon circulation and water vapor,which is greatly different from South Asia.Both the dynamical and thermal dynamic variables will evolve consistently in response to the global warming in East Asia,i.e.,the intensified southwesterly monsoon airflow corresponding to the increased water vapor and southwesterly moisture transport.  相似文献   

8.
The NCEP/NCAR R1 reanalysis data are employed to investigate the impact of forced and inertial instability in the lower troposphere over the Arabian Sea on the onset process of Indian summer monsoon(ISM),and to reveal the important role of zonal advection of zonal geostrophic momentum played in the forced unstable convection.Results show that during the ISM onset the zero absolute vorticity contour(??=0)shifts northward due to the strong cross-equatorial pressure gradient in the lower troposphere over southern Arabian Sea.Thus a region with negative absolute vorticity is generated near the equator in the northern hemisphere,manifesting the evident free inertial instability.When a southerly passes through this region,under the influence of friction a lower convergence that facilitates the convection flourishing at the lower latitudes appears to the north of zero absolute vorticity contour.However,owing to such a traditional inertial instability,the convection is confined near the equator which does not have direct influence on the ISM onset.On the contrary in the region to the north of the zero absolute vorticity contour and to the south of the low pressure center near the surface,although the atmosphere there is inertially stable,the lower westerly jet can develop and bring on the apparent zonal advection of zonal geostrophic momentum.Both theoretical study and diagnosing analysis present that such a zonal advection of geostrophic momentum is closely associated with the zonal asymmetric distribution of meridional land-sea thermal contrast,which induces a convergence center near and further north of the westerly jet in the lower troposphere over the southwestern coast of the Indian Peninsula,providing a favorable lower circulation for the ISM onset.It illustrates that the development of convection over the Arabian Sea in late spring and early summer is not only due to the frictional inertial instability but also strongly affected by the zonal asymmetric distribution of land-sea thermal contrast.Moreover,before the ISM onset due to the eastward development of the South Asian High(SAH)in the upper troposphere,high potential vorticity is transported to the region over the Arabian Sea.Then a local trumpet-shaped stream field is generated to cause the evident upper divergence-pumping effect which favors the ISM onset.When the upper divergence is vertically coupled with the lower convergence resulted from the aforementioned forced unstable convection development near the southwestern coast of Indian Peninsula,the atmospheric baroclinic unstable development is stimulated and the ISM onset is triggered.  相似文献   

9.
L. Wen  T. Yao  D. Li  L. Tian  W. Ma 《水文研究》2007,21(3):379-386
Sensible heat flux greatly influences the Indian monsoon. In this study, we calculated sensible heat flux time‐series for 12 sites over the western Tibetan Plateau using Price and Dunne's formula and adjusting the stability function. The time‐series were derived from the field observations from the GEWEX Asian Monsoon Experiment (GAME)/Tibet programme under the Global Energy and Water Cycle Experiment (GEWEX). This paper demonstrates that monthly sensible heat fluxes show strong correlations with corresponding precipitation, and that the correlation coefficients increase with precipitation amount. The preceding winter and spring solid precipitation (snowfall and resulting snowpack) can also influence sensible heat flux in May, but the situation is complex. The correlations between heat flux and snowfall at Amdo, Naqu, and Lhasa are negative, but they are positive at Gaize (also known as Gerze) and Dingri. There is a significant relationship between how the variations from the mean calculated heat fluxes at Amdo differ from those at Rikaze, or Dingri, Cuona and Longzi, and their respective June–September precipitation amounts. This phenomenon may result from changes in circulation. When the sensible heat fluxes are above average north of the influence of the Indian monsoon and below average to the south, the summer monsoon circulation develops early and with greater intensity and precipitation, and vice versa. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
As early as in the 1980s, Chinese scientists hadfirst proposed that there exits two summer monsoonsystems in Asia, namely the East Asian summer mon-soon (EASM) and the Indian summer monsoon(ISM)[1-4]. The two monsoon systems are quite dif-ferent in characteristics. Since then, such issue andconclusion had been documented and approved by alot of studies in the past two decades, and was appliedin the guideline of the South China Sea summer mon-soon experiment (SCSMEX), which was undertak…  相似文献   

11.
新疆夏季降水年代际转型的归因分析   总被引:4,自引:0,他引:4       下载免费PDF全文
本研究针对我国内陆新疆地区在20世纪80年代末出现由暖干向暖湿的年代际转型,从大气环流因子进行归因分析.结果显示,位于东亚沿海地区的东亚-太平洋型遥相关波列(EAP)的强度和位置的年代际加强和偏移对于新疆地区此次气候的干湿转型具有重要贡献.转型之前EAP强度偏弱,位置相对偏东,对新疆夏季降水变化没有明显贡献,且影响新疆夏季降水发生的主要环流系统是位于中纬度欧亚大陆上空的异常纬向波列.转型后EAP强度偏强,位置相对前期向西偏移,因此从西北太平洋向我国内陆地区的异常水汽输送显著增强,使得新疆地区大气含水量增加,从而导致20世纪80年代末以后新疆夏季降水的增加.  相似文献   

12.
The Asian-Australian "land bridge" is an area with the most vigorous convection in Asian monsoon region in boreal spring, where the onset and march of convection are well associated with the onset of East Asian summer monsoon. The convection occurs over Indo-China Peninsula as early as mid-April, which exerts critical impact on the evolution of monsoon circulation. Before mid-April there are primarily sensible heatings to the atmosphere over Indo-China Peninsula and Indian Peninsula, so the apparent heating ratios over them decrease with height. However, after mid-April it changes into latent heating over Indo-China Peninsula due to the onset of convection, and the apparent heating ratio increases with height in mid- and lower troposphere. The vertical distribution of heating ratio and its differences between Indo-China Peninsula and Indian Peninsula are the key factors leading to the splitting of boreal subtropical high belt over the Bay of Bengal. Such mechanism is strongly supported by the fact that the evolution of the vertical heating ratio gradient above Indo-China Peninsula leads that of 850 hPa vorticity over the Bay of Bengal. Convections over Indo-China Peninsula and its surrounding areas further increase after the splitting. Since then, there is a positive feedback lying among the convective heating, the eastward retreat of the subtropical high and the march of monsoon, which is a possible mechanism of the advance of summer monsoon and convection from Indo-China Peninsula to South China Sea.  相似文献   

13.
印度夏季风(ISM)是全球季风系统的重要组成部分,其异常变化会对我国西南地区的生态环境和社会经济带来巨大影响。晚全新世是距离当下最近的地质历史时段,了解晚全新世以来ISM变化及其对区域水文的影响历史与规律,对预测我国西南地区未来的季风降水变化具有重要的参考价值。本文选择位于横断山区且对ISM变化响应敏感的高山湖泊贡卡湖(海拔3529 m)为研究对象,在湖泊中心获取204.5 cm的连续高质量沉积岩芯(GK20B钻孔),利用陆生植物残体AMS14C测年方法建立了过去3300年来可靠的地层年代序列。通过开展XRF元素扫描、烧失量、总有机碳氮(TOC、TN)及有机碳同位素(δ13Corg)等气候与环境代用指标的分析测试,重建了贡卡湖距今3300年以来的水文变化历史。研究结果显示,贡卡湖泥炭与湖相沉积互层的沉积结构与对应的代用指标变化共同揭示了湖泊水位波动,贡卡湖的水位自晚全新世以来整体呈现降低的趋势,响应了在北半球不断减弱的夏季太阳辐射驱动下ISM强度的衰退过程。同时湖泊水位指示的ISM强度存在着百年时间尺度的波动,这可能与地...  相似文献   

14.
The Asian-Australian “land bridge” is an area with the most vigorous convection in Asian monsoon region in boreal spring, where the onset and march of convection are well associated with the onset of East Asian summer monsoon. The convection occurs over Indo-China Peninsula as early as mid-April, which exerts critical impact on the evolution of monsoon circulation. Before mid-April there are primarily sensible heatings to the atmosphere over Indo-China Peninsula and Indian Peninsula, so the apparent heating ratios over them decrease with height. However, after mid-April it changes into latent heating over Indo-China Peninsula due to the onset of convection, and the apparent heating ratio increases with height in mid-and lower troposphere. The vertical distribution of heating ratio and its differences between Indo-China Peninsula and Indian Peninsula are the key factors leading to the splitting of boreal subtropical high belt over the Bay of Bengal. Such mechanism is strongly supported by the fact that the evolution of the vertical heating ratio gradient above Indo-China Peninsula leads that of 850 hPa vorticity over the Bay of Bengal. Convections over Indo-China Peninsula and its surrounding areas further increase after the splitting. Since then, there is a positive feedback lying among the convective heating, the eastward retreat of the subtropical high and the march of monsoon, which is a possible mechanism of the advance of summer monsoon and convection from Indo-China Peninsula to South China Sea.  相似文献   

15.
赤道MJO活动对南海夏季风爆发的影响   总被引:6,自引:0,他引:6       下载免费PDF全文
利用1979-2013年NCEP/DOE再分析资料的大气多要素日平均资料、美国NOAA日平均向外长波辐射资料和ERSST月平均海温资料,分析赤道大气季节内振荡(简称MJO)活动对南海夏季风爆发的影响及其与热带海温信号等的协同作用.结果表明,赤道MJO活动与南海夏季风爆发密切联系,MJO的湿位相(即对流活跃位相)处于西太平洋位相时,有利于南海夏季风爆发,而MJO湿位相处于印度洋位相时,则不利于南海夏季风爆发.赤道MJO活动影响南海夏季风爆发的物理过程主要是大气对热源响应的结果,当MJO湿位相处于西太平洋位相时,一方面热带西太平洋对流加强使潜热释放增加,导致处于热源西北侧的南海-西北太平洋地区对流层低层由于Rossby响应产生气旋性环流异常,气旋性环流异常则有利于西太平洋副热带高压的东退,另一方面菲律宾附近热源促进对流层高层南亚高压在中南半岛和南海北部的建立,使南海地区高层为偏东风,从而有利于南海夏季风建立;当湿位相MJO处于印度洋位相时,热带西太平洋对流减弱转为大气冷源,情况基本相反,不利于南海夏季风建立.MJO活动、孟加拉湾气旋性环流与年际尺度海温变化协同作用,共同对南海夏季风爆发迟早产生影响,近35年南海夏季风爆发时间与海温信号不一致的年份,基本上是由于季节转换期间的MJO活动特征及孟加拉湾气旋性环流是否形成而造成,因此三者综合考虑对于提高季风爆发时间预测水平具有重要意义.  相似文献   

16.
The present climate of the Loess Plateau is dominantly controlled by East Asian monsoon. The well-preserved loess-paleosol sequence on the Loess Plateau is commonly interpreted as a product of intensive interactions between the winter and summer paleomons…  相似文献   

17.
Based on the theory of potential vorticity(PV),the unstable development of the South Asia High(SAH)due to diabatic heating and its impacts on the Indian Summer Monsoon(ISM)onset are studied via a case diagnosis of 1998.The Indian Summer Monsoon onset in 1998 is related to the rapidly strengthening and northward moving of a tropical cyclone originally located in the south of Arabian Sea.It is demonstrated that the rapid enhancement of the cyclone is a consequence of a baroclinic development characterized by the phase-lock of high PV systems in the upper and lower troposphere.Both the intensification of the SAH and the development of the zonal asymmetric PV forcing are forced by the rapidly increasing latent heat released from the heavy rainfall in East Asia and South East Asia after the onsets of the Bay of Bengal(BOB)monsoon and the South China Sea(SCS)monsoon.High PV moves southwards along the intensified northerlies on the eastern side of the SAH and travels westwards on its south side,which can reach its northwest.Such a series of high PV eddies are transported to the west of the SAH continuously,which is the main source of PV anomalies in the upper troposphere over the Arabian Sea from late spring to early summer.A cyclonic curvature on the southwest of the SAH associated with increasing divergence,which forms a strong upper tropospheric pumping,is generated by the anomalous positive PV over the Arabian Sea on 355 K.The cyclone in the lower troposphere moves northwards from low latitudes of the Arabian Sea,and the upper-layer high PV extends downwards and southwards.Baroclinic development thus occurs and the tropical low-pressure system develops into an explosive vortex of the ISM,which leads to the onset of the ISM.In addition,evolution of subtropical anticyclone over the Arabian Peninsula is another important factor contributing to the onset of the ISM.Before the onset,the surface sensible heating on the Arabian Peninsula is very strong.Consequently the subtropical anticyclone which dominated the Arabian Sea in spring retreats westwards to the Arabian Peninsula and intensifies rapidly.The zonal asymmetric PV forcing develops gradually with high PV eddies moving southwards along northerlies on the eastern side of the anticyclone,and a high PV trough is formed in the middle troposphere over the Arabian Sea,which is favorable to the explosive barotropic development of the tropical cyclone into the vortex.Results from this study demonstrate that the ISM onset,which is different from the BOB and the SCS monsoon onset,is a special dynamical as well as thermodynamic process occurring under the condition of fully coupling of the upper,middle,and lower tropospheric circulations.  相似文献   

18.
Western disturbances (WDs) and Indian summer monsoon (ISM) led precipitation play a central role in the Himalayan water budget. Estimating their contributions to water resource is although a challenging but essential for hydrologic understanding and effective water resource management. In this study, we used stable water isotope data of precipitation and surface waters to estimate the contribution of ISM and WDs to the water resources in three mountainous river basins - Indus, Bhagirathi and Teesta river basins of western, central and Eastern Himalayas. The study reveals distinct seasonality in isotope characteristics of precipitation and surface waters in each river basin is due to changes in moisture source, hydrometeorology and relief. Despite steady spatial variance in the slope and intercept of regression lines from the Teesta to Indus and the Bhagirathi river basins, the slope and intercept are close to the global meteoric water line and reported local meteoric water line of other regions in the Himalayas and the Tibetan Plateau. The two-component end-member mixing method using d-excess as tracer were used to estimate the contribution from ISM and WD led precipitation to surface water in aforementioned river basins. The results suggest that the influence of the ISM on the water resources is high (>72% to annual river flow) in Teesta river basin (eastern Himalayas), while as the WDs led precipitation is dominantly contributing (>70% average annual river flow) to the surface waters in the Indus river basin (western Himalayas). The contribution of ISM and WD led precipitation in Bhagirathi river basin is 60% and 40%, respectively. The findings demonstrate that the unusual changes in the ISM and WD moisture dynamics have the potential to affect the economy and food security of the region, which is dependent on the availability of water resources. The obtained results are of assistance to policy makers/mangers to make use of the information for better understanding hydrologic response amid unusual behaviour of the dual monsoon system over the region.  相似文献   

19.
青藏高原大地形的热力强迫作用对亚洲夏季风的形成和发展具有重要的影响.本文利用较高分辨率的WRF区域模式,探讨了高原不同区域(斜坡和平台)的地形加热分别对南亚夏季风和东亚夏季风的影响.结果表明:高原南部喜马拉雅山脉的斜坡地形加热对其周围局地的环流形势和降水影响十分明显,是南亚夏季风北支分量形成和维持的主导因子,也是斜坡上气流爬坡和降水发生的必要条件.斜坡加热对东亚夏季风也有明显的增强作用,它不仅加强了中国东部低空西南季风环流,还会造成北部南下的异常干冷空气的响应.斜坡上的地形加热作用也是对流层高层暖中心位置维持在斜坡上空的一个重要原因.而高原平台加热对季风环流和降水的影响虽然没有喜马拉雅山脉斜坡加热那么显著,但是对南亚夏季风的影响范围更广,对经向哈得来环流影响更明显,能够调控高原以外更远处热带洋面上的西南季风环流.通过比较高原不同区域地形加热条件下的多种季风指数,进一步表明了高原地形加热对南亚和东亚夏季风均有增强作用,但是高原不同区域的地形加热对两类夏季风子系统又会产生不一样的影响.  相似文献   

20.
The Indian summer monsoon rainfall (ISMR) plays an important role in the climate system of South Asia. Recently, studies about ISMR variations have been going into more depth. In this present paper, we mainly use the Scargle periodogram and wavelet transform methods to study the periodicity of ISMR changes between 1871 and 2004 and review the possible influence of solar activity on the rainfall. Analysis results show complicated ISMR variations have periodicities with remarkable time-variable characteristics. Investigating a possible connection between the rainfall and solar variations, we believe that solar activity affects the ISMR variations to some extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号