首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
《水文科学杂志》2013,58(5):961-973
Abstract

A study was carried out to investigate the use of the chloride profile method in conjunction with the water balance method to estimate the annual groundwater recharge in both natural and irrigation sites in Luanjing Irrigation Area, Inner Mongolia. Groundwater recharge from precipitation, estimated by the chloride profile method, is less than 0.1 mm year?1 which accounts for just 0.06% of the long-term average annual rainfall, indicating that rainfall presently plays a minor role in the groundwater recharge. It appears that recharge events only occurred after heavy rain or sustained rainfall events. In the cropped area, the chloride profile method indicated that the average annual recharge is 268 mm year?1 with an infiltration rate of 32.5%, which is reasonably consistent with the 33.1% obtained by the water balance method in 2007. The study shows that about one third of that water is discharged back to the groundwater.  相似文献   

2.
Ali Subyani  Zekai en 《水文研究》2006,20(20):4373-4380
The rainfall and infiltration elements of the hydrological cycle in arid regions are characterized by temporal and spatial variations that are random and sporadic. Consequently, the chloride concentration in rainfall has a similar behaviour. Despite this, the classical chloride mass balance (CMB) approach only employs arithmetic and weighted averages for recharge estimation. In this paper, the classical CMB method is modified by taking into account some perceived deficiencies in the methodology. The modified CMB method takes into consideration additional statistical parameters, namely variances and the correlation coefficient between variables concerned based on the application of the perturbation method. Strategic aquifer planning in the Kingdom of Saudi Arabia requires a quick method for estimating groundwater recharge in order to determine the temporal management of available water resources. To demonstrate the difference between the classical and the refined CMB methods, both were applied to a representative basin, i.e. Wadi Yalamlam, in the western part of Saudi Arabia. Based on the refined calculations, recharge to groundwater is found to be 11% of the effective annual rainfall. This refined method provides higher recharge rates because it takes into account the actual variability in the variables concerned and can, thus, improve the accuracy of future groundwater recharge estimation studies. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
ABSTRACT

A study of the water balance of a basin in India, where the annual monsoon season of water surplus contrasts with a longer period of deficit, shows that estimates of soil moisture recharge and groundwater recharge may be obtained in these circumstances by comparing seasonal net rainfall with runoff on two assumptions: soil moisture recharge is constant from year to year, and groundwater recharge is proportional to runoff.  相似文献   

4.
《水文科学杂志》2013,58(4):727-738
Abstract

Projected warming in equatorial Africa, accompanied by greater evaporation and more frequent heavy precipitation events, may have substantial but uncertain impacts on terrestrial hydrology. Quantitative analyses of climate change impacts on catchment hydrology require high-resolution (<50 km) climate data provided by regional climate models (RCMs). We apply validated precipitation and temperature data from the RCM PRECIS (Providing Regional Climates for Impact Studies) to a semi-distributed soil moisture balance model (SMBM) in order to quantify the impacts of climate change on groundwater recharge and runoff in a medium-sized catchment (2098 km2) in the humid tropics of southwestern Uganda. The SMBM explicitly accounts for changes in soil moisture, and partitions effective precipitation into groundwater recharge and runoff. Under the A2 emissions scenario (2070–2100), climate projections from PRECIS feature not only rises in catchment precipitation and modelled potential evapotranspiration by 14% and 53%, respectively, but also increases in rainfall intensity. We show that the common application of the historical rainfall distribution using delta factors to the SMBM grossly underestimates groundwater recharge (i.e. 55% decrease relative to the baseline period of 1961–1990). By transforming the rainfall distribution to account for changes in rainfall intensity, we project increases in recharge and runoff of 53% and 137%, respectively, relative to the baseline period.  相似文献   

5.
A detailed investigation was carried out to evaluate long-term groundwater level fluctuation in regular monitoring wells constructed by the Ministry of Water Resources in Barka, Sultanate of Oman. For this study, groundwater level data for 71 wells and rainfall data from six stations were collected from 1984 to 2003 and analysed. Based on long-term water level fluctuation, groundwater wells are classified into three groups. In group 1, water level shows a long-term cyclic trend without yearly fluctuation whereas in group 2 the water level declined continuously until 1995 followed by a constant water level. In group 3, water level decreases continuously throughout the study periods with rapid annual cyclic variation. Group 1 wells show high water-level fluctuations (5 to 10 m) and seem to be regulated by discharge (lateral flow) from this aquifer and recharge from the adjacent Jabal Akhdar mountainous region. Constant trend in water level after 1995 in group 2 wells illustrates the advancement of saline–fresh water interface to the inland due to heavy pumping which is justified by higher electrical conductivity and Cl/HCO3 ratio. In group 3 wells, the water level dropped continuously due to overabstraction by agricultural farms and human settlements. In addition, wells existing near the recharge dams express the influences of recharge dams and rainfall, and exhibit high water-level fluctuations during heavy rainfall periods. The long-term regional variation indicates that water level drops continuously in the coastal and central parts of the study region. Linear regression analysis revealed that the decline in water level is 0·3–0·4 m year−1 near the coastal and central parts of the study area and is almost constant in the remaining area. We conclude that the contribution of man-made activities on groundwater level is well compared with natural factors. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Soil and vadose zone profiles are used as an archive of changes in groundwater recharge and water quality following changes in land use in an area of the Loess Plateau of China. A typical rain‐fed loess‐terrace agriculture region in Hequan, Guyuan, is taken as an example, and multiple tracers (chloride mass balance, stable isotopes, tritium and water chemistry) are used to examine groundwater recharge mechanisms and to evaluate soil water chloride as an archive for recharge rate and water quality. Results show that groundwater recharge beneath natural uncultivated grassland, used as a baseline, is about 94–100 mm year?1 and that the time it takes for annual precipitation to reach water table through the thick unsaturated zone is from decades to hundreds of years (tritium free). This recharge rate is 2–3 orders of magnitude more than in the other semiarid areas with similar annual rainfall but with deep‐rooted vegetation and relatively high temperature. Most of the water that eventually becomes recharge originally infiltrated in the summer months. The conversion from native grassland to winter wheat has reduced groundwater recharge by 42–50% (50–55 mm year?1 for recharge), and the conversion from winter wheat to alfalfa resulted in a significant chloride accumulation in the upper soil zone, which terminated deep drainage. The paper also evaluates the time lag between potential recharge and actual recharge to aquifer and between increase in solute concentration in soil moisture and that in the aquifer following land‐use change due to the deep unsaturated zone. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Mountain front catchment net groundwater recharge (NR) represents the upper end of mountain block recharge (MBR) groundwater flow paths. Using environmental chloride in precipitation, streamflow and groundwater, we apply chloride mass balance (CMB) to estimate NR at multiple catchment scales within the 27 km2 Dry Creek Experimental Watershed (DCEW) on the Boise Front, southwestern Idaho. The estimate for average annual precipitation partitioning to NR is approximately 14% for DCEW. In contrast, as much as 44% of annual precipitation routes to NR in ephemeral headwater catchments. NR in headwater catchments is likely routed to downgradient springs, baseflow, and MBR, while downgradient streamflow losses contribute further to MBR. A key assumption in the CMB approach is that the change in stored chloride during the study period is zero. We found that this assumption is violated in some individual years, but that a 5‐year integration period is sufficient. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
A recharge model for high altitude,arid, Andean aquifers   总被引:1,自引:0,他引:1  
John Houston 《水文研究》2009,23(16):2383-2393
Evidence for groundwater recharge in arid zones is mounting, despite early ideas that recharge was unlikely where evaporation greatly exceeded precipitation. The mechanisms and magnitude of groundwater recharge in the Andes and Atacama Desert are not well known but the subject of current research. Diffuse recharge is expected to be limited to high altitude areas with coarse‐grained soils devoid of vegetation. A recharge model for this environment is developed based on a simple soil moisture budgeting technique and the calculation of actual evaporation based on empirical studies. The model is run with data for the Linzor basins, over 4000 m elevation at 22·2°S on the west slope of the Andes. It is checked against independent estimates based on the chloride mass balance (CMB) method and flood events measured downstream in the Río Salado and found to provide robust and reliable results. The results indicate that irregular and volumetrically limited amounts of diffuse recharge occur at high elevations in half of all years, with a tendency to cluster during La Niña episodes. For the Linzor Basins, mean annual recharge is found to be equivalent to 28 mm a?1, although no recharge occurs in years with precipitation less than 120 mm, and increases proportionately with annual rainfall amounts above this limit. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Abstract

This paper describes a research project based in Cyprus to investigate a number of different methods for determining quantitative recharge to aquifers in semiarid areas. Large lysimeters and geochemical profile techniques have been used in the southeastern Mesaoria area of Cyprus where there has already been a quantitative water resources investigation and where a groundwater model is in preparation. Further joint geochemical and lysimeter studies are also being undertaken in the Akrotiri peninsula (average annual rainfall 430 mm). Excavation and piling techniques have been used to install the lysimeters which are up to 100 m2 in area by 4 m deep. The lysimeters have been made as large as possible to minimize edge effects whilst maintaining the soil and aquifer material within them in an ‘undisturbed’ state. A dry drilling method has been developed to obtain sand samples from the unsaturated zone together with a method for processing the core material to obtain data on moisture and solutes. Chloride profiles have been interpreted to provide estimates of the direct recharge component using a steady state, mass balance approach and initial results compare favourably with tritium estimates. The preliminary results for recharge obtained by the different techniques are compared with each other and with estimates obtained from conventional methods. Initial results from the lysimeters indicate a current annual recharge of 5 mm in southeastern Mesaoria (1978), whilst a mean annual recharge of 50 mm at Akrotiri has been obtained by the chloride profile method.  相似文献   

10.
Recharge patterns, possible flow paths and the relative age of groundwater in the Akaki catchment in central Ethiopia have been investigated using stable environmental isotopes δ18O and δ2H and radioactive tritium (3H) coupled with conservative chloride measurements. Stable isotopic signatures are encoded in the groundwater solely from summer rainfall. Thus, groundwater recharge occurs predominantly in the summer months from late June to early September during the major Ethiopian rainy season. Winter recharge is lost through high evaporation–evapotranspiration within the unsaturated zone after relatively long dry periods of high accumulated soil moisture deficits. Chloride mass balance coupled with the isotope results demonstrates the presence of both preferential and piston flow groundwater recharge mechanisms. The stable and radioactive isotope measurements further revealed that groundwater in the Akaki catchment is found to be compartmentalized into zones. Groundwater mixing following the flow paths and topography is complicated by the lithologic complexity. An uncommon, highly depleted stable isotope and zero‐3H groundwater, observed in a nearly east–west stretch through the central sector of the catchment, is coincident with the Filwoha Fault zone. Here, deep circulating meteoric water has lost its isotopic content through exchange reactions with CO2 originating at deeper sources or it has been recharged with precipitation from a different rainfall regime with a depleted isotopic content. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
We assess the relative merits of application of the most commonly used field methods (soil‐water balance (SWB), chloride mass balance (CMB) and soil moisture monitoring (NP)) to determine recharge rates in micro‐irrigated and non‐irrigated areas of a semi‐arid coastal orchard located in a relatively complex geological environment. Application of the CMB method to estimate recharge rates was difficult owing to the unusually high, variable soil‐water chloride concentrations. In addition, contrary to that expected, the chloride concentration distribution at depths below the root zone in the non‐irrigated soil profiles was greater than that in the irrigated profiles. The CMB method severely underestimated recharge rates in the non‐irrigated areas when compared with the other methods, although the CMB method estimated recharge rates for the irrigated areas, that were similar to those from the other methods, ranging from 42 to 141 mm/year. The SWB method, constructed for a 15‐year period, provided insight into the recharge process being driven by winter rains rather than summer irrigation and indicated an average rate of 75 mm/year and 164 mm/year for the 1984 – 98 and 1996 – 98 periods, respectively. Assuming similar soil‐water holding capacity, these recharge rates applied to both irrigated and non‐irrigated areas. Use of the long period of record was important because it encompassed both drought and heavy rainfall years. Successful application of the SWB method, however, required considerable additional field measurements of orchard ETc, soil‐water holding capacity and estimation of rainfall interception – runoff losses. Continuous soil moisture monitoring (NP) was necessary to identify both daily and seasonal seepage processes to corroborate the other recharge estimates. Measured recharge rates during the 1996 – 1998 period in both the orchards and non‐irrigated site averaged 180 mm/year. The pattern of soil profile drying during the summer irrigation season, followed by progressive wetting during the winter rainy season was observed in both irrigated and non‐irrigated soil profiles, confirming that groundwater recharge was rainfall driven and that micro‐irrigation did not ‘predispose’ the soil profile to excess rainfall recharge. The ability to make this recharge assessment, however, depended on making multiple field measurements associated with all three methods, suggesting that any one should not be used alone. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
The chloride mass balance (CMB) method is widely used to estimate long-term rates of groundwater recharge. In regions where surface water runoff is negligible, recharge can be estimated using measurements of chloride concentrations of groundwater and precipitation, and an estimate of long-term average rainfall. This paper presents the Chloride Mass Balance Estimator of Australian Recharge (CMBEAR), a Jupyter (Python) Notebook that is set up to rapidly apply the CMB method using gridded maps of chloride deposition rates across the Australian continent. For an Australian context, the chloride deposition rate and rainfall maps have been provided. Thus, CMBEAR requires only a spreadsheet with the groundwater chloride concentration, the latitude and longitude of the sample location, and some simple user inputs. CMBEAR may be easily applied in other regions, providing that a gridded chloride deposition map is available. Recharge estimates from CMBEAR are compared against published applications of the CMB method. CMBEAR is also applied to a large dataset from the Northern Territory and is used to produce a gridded map of recharge for western Victoria. CMBEAR provides a reproducible and straightforward approach to apply the CMB method to estimate groundwater recharge.  相似文献   

13.
Across equatorial Africa, increasing demand for groundwater has raised concerns about resource sustainability and has highlighted the need for reliable estimates of groundwater recharge. Recharge investigations in this environment are typically inhibited by a shortage of good quality meteorological and hydrogeological records. Moreover, when recharge studies are attempted they tend to rely on a single technique and frequently lack corroborating evidence to substantiate recharge predictions. In recent studies undertaken in the Aroca catchment of the Victoria Nile basin in central Uganda, the timing and magnitude of recharge determined by a soil moisture balance approach are supported by stable isotope data and groundwater flow modelling. The soil moisture balance study reveals that recharge averages in the order of 200 mm year−1 and is more dependent on the number of heavy (more than 10 turn day−1) rainfall events than the total annual volume of rainfall. Stable isotope data suggest independently that recharge occurs during the heaviest rains of the monsoons, and further establish that recharge stems entirely from the direct infiltration of rainfall, an assumption implicit in the soil moisture balance approach. Deforestation over the last 30 years is shown to have more than doubled the recharge estimate. Aquifer flow modelling supports the recharge estimates but demonstrates that the vast majority (over 99%) of recharging waters must be transmitted by the aquifer in the regolith rather the underlying bedrock fractures which have traditionally been developed for rural water supplies.  相似文献   

14.
Isotope data of precipitation and groundwater in parts of the Voltaian Basin in Northern Ghana were used to explain the groundwater recharge regime in the area. Groundwater recharge is an important parameter in the development of a decision support system for the management and efficient utilization of groundwater resources in the area. It is therefore important to establish the processes and sources of groundwater recharge. δ18O and δ2H data for local precipitation suggest enrichment relative to the Global Meteoric Water Line (GMWL) and indicate that precipitation takes place at a relative humidity less than 100%. The groundwater data plot on an evaporation line with a slope of 5, suggesting a high degree of evaporative enrichment of the precipitation in the process of vertical infiltration and percolation through the unsaturated zone into the saturated zone. This finding is consistent with the observation of high evapotranspiration rates in the area and ties in with the fact that significant clay fraction in the unsaturated zone limits vertical percolation and thus exposes the percolating rainwater to the effects of high temperatures and low humidities resulting in high evapotranspiration rates. Groundwater recharge estimates from the chloride mass balance, CMB, method suggest recharge in the range of 1.8–32% of the annual average precipitation in the form of rainfall. The highest rates are associated with areas where open wells encourage significant amount of groundwater recharge from precipitation in the area. In the northern parts of the study area, groundwater recharge is lower than 12%. The recharge so computed through the application of the CMB methodology takes on a spatial distribution akin to the converse of the spatial pattern of both δ18O and δ2H in the area. As such, the locations of the highest recharge are associated with the most depleted values of the two isotopes. This observation is consistent with the assertion that low vertical hydraulic conductivities slow down vertical percolation of precipitation down to the groundwater water. The percolating precipitation water thus gets enriched in the heavier isotopes through high evapotranspiration rates. At the same time, the amount of water that finally reaches the water table is considerably reduced. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Groundwater is the principal water resource in semi‐arid and arid environments. Therefore, quantitative estimates of its replenishment rate are important for managing groundwater systems. In dry regions, karst outcrops often show enhanced recharge rates compared with other surface and sub‐surface conditions. Areas with exposed karst features like sinkholes or open shafts allow point recharge, even from single rainfall events. Using the example of the As Sulb plateau in Saudi Arabia, this study introduces a cost‐effective and robust method for recharge monitoring and modelling in karst outcrops. The measurement of discharge of a representative small catchment (4.0 · 104 m2) into a sinkhole, and hence the direct recharge into the aquifer, was carried out with a time‐lapse camera. During the monitoring period of two rainy seasons (autumn 2012 to spring 2014), four recharge events were recorded. Afterwards, recharge data as well as proxy data about the drying of the sediment cover are used to set up a conceptual water balance model. The model was run for 17 years (1971 to 1986 and 2012 to 2014). Simulation results show highly variable seasonal recharge–precipitation ratios between 0 and 0.27. In addition to the amount of seasonal precipitation, this ratio is influenced by the interannual distribution of rainfall events. Overall, an average annual groundwater recharge for the doline (sinkhole) catchment on As Sulb plateau of 5.1 mm has estimated for the simulation period. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Intermontane basin aquifers worldwide, particularly in the Himalayan region, are recharged largely by the adjoining mountains. Recharge in these basins can occur either by water infiltrating from streams near mountain fronts (MFs) as mountain front recharge (MFR) or by sub-surface mountain block infiltration as mountain block recharge (MBR). MFR and MBR recharge are challenging to distinguish and are least quantified, considering the lack of extensive understanding of the hydrological processes in the mountains. This study used oxygen and hydrogen isotopes (δ18O and δ2H), electrical conductivity (EC) data, hydraulic head, and groundwater level data to differentiate MFR and MBR. Groundwater level data provide information about the groundwater-surface water interactions and groundwater flow directions, whereas isotopes and EC data are used to distinguish and quantify different recharge sources. The present methodology is tested in an intermontane basin of the Himalayan region. The results suggest that karst springs (KS) and deep groundwater (DGW) recharge are dominated by snowmelt (47% ± 10% and 46% ± 9%) as MBR from adjacent mountains, insignificantly affected by evaporation. The hydraulic head data and isotopes indicate Quaternary shallow groundwater (SGW) aquifer system recharge as MFR of local meteoric water with significant evaporation. The results indicate several flow paths in the aquifer system, a local flow for KS, intermediate flow for SGW, and regional flow for DGW. The findings will significantly impact water resource management in the area and provide vital baseline knowledge for sustainable groundwater management in other Himalayan intermontane basins.  相似文献   

17.
Given the importance of groundwater temperature to the biogeochemical health of aquatic ecosystems, a floodplain study was implemented to improve understanding of rural land use impacts on shallow groundwater (SGW) temperature. Study sites included a historic agricultural field (Ag) and bottomland hardwood forest (BHF), each with nine piezometers in an 80 × 80 m grid. Piezometers were equipped with pressure transducers to monitor SGW temperature and level at 30 min intervals during the 2011, 2012, 2013, and 2014 water years. The study is one of the first to utilize long‐term, continuous, automated, in situ monitoring to investigate rural land use impacts on shallow groundwater temperatures. Average SGW temperature during the study period was 11.1 and 11.2 °C at the Ag and BHF sites, respectively. However, temperature range at the Ag site was 72% greater than at the BHF site. Results indicate a greater responsiveness to seasonal climate fluctuations in Ag site SGW temperature related to absence of forest canopy. Patterns of intra‐site groundwater temperature differences at both study sites illustrate the influence of stream–aquifer thermal conduction and occasional baseflow reversals. Considering similar surface soil temperature amplitudes and low average groundwater flow values at both sites, results suggest that contrasting rates of plant water use, groundwater recharge, and subsurface hydraulic conductivity are likely mechanistic causes for the observed SGW temperature differences. Results highlight the long‐term impact of forest removal on subsurface hydrology and groundwater temperature regime. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Future extreme precipitation (EP, daily rainfall amount over certain thresholds) is projected to increase with global climate change; however, its effect on groundwater recharge has not been fully explored. This study specifically investigates the spatiotemporal dynamics of groundwater recharge and the effects of extreme precipitation (daily rainfall amount over the 95th percentile, which is tagged by ranking the percentiles in each season for a base period) on groundwater recharge from 1950 to 2010 over the Northern High Plains (NHP) Aquifer using the Soil Water Balance Model. The results show that groundwater recharge significantly (p < 0.05) increased in the eastern NHP from 1950 to 2010, where the highest annual average groundwater recharge occurs compared to the central and the western NHP. In the eastern NHP, 45.1% of the annual precipitation fell as EP, which contributed 56.8% of the annual total groundwater recharge. In the western NHP, 30.9% of the annual precipitation fell as extreme precipitation, which contributed 62.5% of the annual total groundwater recharge. In addition, recharge by extreme precipitation mainly occurred in late spring and early summer, before the maximum evapotranspiration rate, which usually occurs in mid‐summer until late fall. A dry site in the western NHP and a wet site in the eastern NHP were analysed to indicate how recharge responds to EP with different precipitation regimes. The maximum daily recharge at the dry site exceeded the wet site when there was EP. When precipitation fell as non‐extreme rainfall, most recharge was less than 5 mm at both the dry and wet sites, and the maximum recharge at the dry site became lower than the wet site. This study shows that extreme precipitation plays a significant role in determining groundwater recharge. © 2016 The Authors Hydrological Processes Published by John Wiley & Sons Ltd.  相似文献   

19.
To increase the resilience of regional water supply systems in South Africa in the face of anticipated climatic changes and a constant increase in water demand, water supply sources require diversification. Many water-stressed metropolitan regions in South Africa depend largely on surface water to cover their water demand. While climatic and river discharge data is widely available in these regions, information on groundwater resources – which could support supply source diversification – is scarce. Groundwater recharge is a key parameter that is used to estimate groundwater amounts that can be sustainably exploited at a sub-watershed level. Therefore, the objective of this study was to develop a reliable hydrological modelling routine that enables the assessment of regional spatio-temporal variations of groundwater recharge to discern the most promising areas for groundwater development. Accordingly, we present a semi-distributed hydrological modelling approach that incorporates water balance routines coupled with baseflow modelling techniques to yield spatio-temporal variations of groundwater recharge on a regional level. The approach is demonstrated for the actively managed catchment areas of the Amathole Water Supply System situated in a semi-arid part of the Eastern Cape of South Africa. In the investigated study area, annual groundwater recharge exhibits a high spatio-temporal heterogeneity and is estimated to vary between ~0.5% and 8% of annual rainfall. Despite some uncertainties induced by limited data availability, calibration and validation of the model were found to be satisfactory and yielded model results similar to (point) data of annual groundwater recharge reported in earlier studies. Our approach is therefore found to derive crucial information for efficiently targeting more detailed groundwater exploration studies and could work as a blueprint for orientating groundwater potential exploration in similar environments.  相似文献   

20.
Abstract

Abstract Water balances for a re-vegetated xerophyte shrub (Caragana korshinskii) area were compared to that of a bare surface area by using auto-weighing type lysimeters during the 1990–1995 growing seasons at the southeast Tengger Desert, Shapotou, China. The six-year experiment displayed how major daily water balance components might vary for a bare and a re-vegetated sand dune area. Evapotranspiration from the C. korshinskii lysimeter represented a major part of the water balance. The average annual ET/P ratios varied between 69 and 142%. No seepage was observed for the vegetated lysimeter. For the bare lysimeter, on the other hand, 48 mm or 27% of observed rainfall per year occurred as seepage. These results suggest that re-vegetating large sandy areas with xerophytic shrubs could reduce soil water storage by transpiration. Also, the experimental results indicate that re-vegetating large sandy areas could significantly change groundwater recharge conditions. However, from a viewpoint of desert ecosystem reconstruction, it appears that natural rainfall can sustain xerophytic shrubs such as C. korshinskii which would reduce erosion loss of sand. However, re-vegetation has to be balanced with recharge/groundwater needs of local populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号