首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Water tanks as traditional rainwater harvesting systems for agriculture are widely distributed in South India. They have a strong impact on hydrological processes, affecting streamflow in rivers as well as evapotranspiration. This study aims at an accurate representation of water harvesting systems in a hydrologic model to improve model performance and assessment of the catchment water balance. To this end, spatio-temporal variations of water bodies between the years 2016 and 2018 and the months of January and May 2017 were derived from Sentinel-2 satellite data to parameterize the water tanks (reservoir) parameters in the Soil and Water Assessment Tool (SWAT+) model of the Adyar basin, Chennai, India. Approximately 16% of the basin is covered by water tanks. The initial model performance was evaluated for two model setups, with and without water tanks. The best model run was selected with a multi-metric approach comparing observed and modelled monthly streamflow for 5000 model runs. The final model evaluation was carried out by comparing estimated water body areas by the model and remote sensing observations for January to May 2017. The results showed that representing water tanks in the hydrologic model led to an improvement in the representation of the seasonal variations of streamflow for the whole simulation period (2004–2018). The model performance was classified as good and very good for the calibration (2004–2011) and validation (2012–2018) periods as NSE varies between 0.67 and 0.85, KGE varies between 0.65 and 0.72, PBIAS varies between −24.1 and −23.6, and RSR varies between 0.57 and 0.39. The best fit was shown for the high and middle flow segments of the hydrograph where the coefficient of determination (R2) ranges from 0.81 to 0.97 and 0.75 to 0.81, respectively. The monthly variation of water body areas in 2017 estimated by the hydrologic model was consistent with changes observed in remote sensing surveys. In summary, the water tank parametrization using remote sensing techniques enhanced the hydrologic model's efficiency and applicability for future studies.  相似文献   

2.
A methodology is developed for optimal operation of reservoirs to control water quality requirements at downstream locations. The physicochemical processes involved are incorporated using a numerical simulation model. This simulation model is then linked externally with an optimization algorithm. This linked simulation–optimization‐based methodology is used to obtain optimal reservoir operation policy. An elitist genetic algorithm is used as the optimization algorithm. This elitist‐genetic‐algorithm‐based linked simulation–optimization model is capable of evolving short‐term optimal operation strategies for controlling water quality downstream of a reservoir. The performance of the methodology developed is evaluated for an illustrative example problem. Different plausible scenarios of management are considered. The operation policies obtained are tested by simulating the resulting pollutant concentrations downstream of the reservoir. These performance evaluations consider various scenarios of inflow, permissible concentration limits, and a number of management periods. These evaluations establish the potential applicability of the developed methodology for optimal control of water quality downstream of a reservoir. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
针对当前的水库提前蓄水调度研究尚未考虑碳减排问题,本文基于水库碳排放和有机碳埋藏因子法,构建了考虑碳减排的水库提前蓄水调度模型,采用基于熵权重的逼近理想解排序法(TOPSIS)对提前蓄水调度方案进行了多目标评价,以优选调度方案,在三峡水库开展了实例研究。研究结果表明:三峡水库从9月1日起蓄,于9月30日逐步蓄至167 m的调度方案最优,相较于原设计方案,在不增加防洪风险的前提下,多年平均发电量增加29.91亿kW·h(8.80%),弃水量减少26.03亿m3(27.51%),碳排放量减少69.26亿g(3.94%),有机碳埋藏量增加1.93亿g(1.28%),温室气体的CO2碳当量减少235.48亿g(3.85%),提前蓄水方案可显著提升三峡水库发电量、供水保障能力和减少碳排放量。本研究为水库提前蓄水的水碳协同调度提供了技术支撑。  相似文献   

4.
ABSTRACT

In order to provide more accurate reservoir-operating policies, this study attempts to implement effective monthly forecasting models. Seven inflow forecasting schemes, applying discrete wavelet transformation and artificial neural networks are proposed and provided to forecast the monthly inflow of Dez Reservoir. Based on some different performance indicators the best scheme is achieved comparing to the observed data. The best forecasting model is coupled with a simulation-optimization framework, in which the performance of five different reservoir rule curves can be compared. Three applied rules are based on conventional Standard operation policy, Regression rules, and Hedging rule, and two others are forecasting-based regression and hedging rules. The results indicate that forecasting-based operating rule curves are superior to the conventional rules if the forecasting scheme provides results accurately. Moreover, it can be concluded that the time series decomposition of the observed data enhances the accuracy of the forecasting results efficiently.  相似文献   

5.
The Three Gorges Project is the world's largest water conservancy project. According to the design standards for the 1,000‐year flood, flood diversion areas in the Jingjiang reach of the Yangtze River must be utilized to ensure the safety of the Jingjiang area and the city of Wuhan. However, once these areas are used, the economic and life loss in these areas may be very great. Therefore, it is vital to reduce this loss by developing a scheme that reduces the use of the flood diversion areas through flood regulation by the Three Gorges Reservoir (TGR), under the premise of ensuring the safety of the Three Gorges Dam. For a 1,000‐year flood on the basis of a highly destructive flood in 1954, this paper evaluates scheduling schemes in which flood diversion areas are or are not used. The schemes are simulated based on 2.5‐m resolution reservoir topography and an optimized model of dynamic capacity flood regulation. The simulation results show the following. (a) In accord with the normal flood‐control regulation discharge, the maximum water level above the dam should be not more than 175 m, which ensures the safety of the dam and reservoir area. However, it is necessary to utilize the flood diversion areas within the Jingjiang area, and flood discharge can reach 2.81 billion m3. (b) In the case of relying on the TGR to impound floodwaters independently rather than using the flood diversion areas, the maximum water level above the dam reaches 177.35 m, which is less than the flood check level of 180.4 m to ensure the safety of the Three Gorges Dam. The average increase of the TGR water level in the Chongqing area is not more than 0.11 m, which indicates no significant effect on the upstream reservoir area. Comparing the various scheduling schemes, when the flood diversion areas are not used, it is believed that the TGR can execute safe flood control for a 1,000‐year flood, thereby greatly reducing flood damage.  相似文献   

6.
Two alternative schemes are presented that are appropriate for the representation of runoff routing in large-scale grid-based hydrological models and atmospheric general circulation models (AGCMs). The first scheme characterizes routing processes as a single conceptual store. The second scheme, developed by Naden (1992), uses the normalized network width function to characterize the channel network form and a linear solution to the convective diffusion equation of one-dimensional flow to characterize the routing effect of a single channel. Both schemes are applied to the Severn catchment at the daily time-scale for the period 1981 to 1990 using a grid resolution of 40 km. Comparable results were obtained using both schemes (efficiencies were of the order of 80% in both cases). A combined model using a conceptual reservoir to represent hillslope routing and the network-based scheme to represent channel routing was developed to investigate the relative roles of hillslope and channel routing at the catchment scale. The application of this model demonstrated the important role of hillslope routing in reproducing the low frequency component of the catchment response. However, in terms of goodness-of-fit there was little to choose between the three schemes. Consequently, it is recommended that additional a priori knowledge of the routing processes should be used to condition the choice of model structure. © 1997 John Wiley & Sons, Ltd.  相似文献   

7.
J.J. Yu 《水文科学杂志》2013,58(12):2117-2131
Abstract

A generalized likelihood uncertainty estimation (GLUE) framework coupling with artificial neural network (ANN) models in two surrogate schemes (i.e. GAE-S1 and GAE-S2) was proposed to improve the efficiency of uncertainty assessment in flood inundation modelling. The GAE-S1 scheme was to construct an ANN to approximate the relationship between model likelihoods and uncertain parameters for facilitating sample acceptance/rejection instead of running the numerical model directly; thus, it could speed up the Monte Carlo simulation in stochastic sampling. The GAE-S2 scheme was to establish independent ANN models for water depth predictions to emulate the numerical models; it could facilitate efficient uncertainty analysis without additional model runs for locations concerned under various scenarios. The results from a study case showed that both GAE-S1 and GAE-S2 had comparable performances to GLUE in terms of estimation of posterior parameters, prediction intervals of water depth, and probabilistic inundation maps, but with reduced computational requirements. The results also revealed that GAE-S1 possessed a slightly better performance in accuracy (referencing to GLUE) than GAE-S2, but a lower flexibility in application. This study shed some light on how to apply different surrogate schemes in using numerical models for uncertainty assessment, and could help decision makers in choosing cost-effective ways of conducting flood risk analysis.  相似文献   

8.
In our study, we analysed a period from 2003 to 2012 with micrometeorological data measured at a boundary-layer field site operated by the Lindenberg Meteorological Observatory – Richard-Aßmann-Observatory of the German Meteorological Service (DWD). Amongst others, these data consist of real evapotranspiration (ETr) rates measured by eddy covariance and soil water contents determined by time domain reflectometry. Measured ETr and soil water contents were compared with those simulated by a simple soil–vegetation–atmosphere transfer (SVAT) scheme consisting of the FAO56 Penman-Monteith equation and the soil water flux model Hydrus-1D. We applied this SVAT scheme using uncompensatory and compensatory root water uptake (RWU). Soil water contents and ETr rates calculated using uncompensatory RWU showed an acceptable fit to the measured ones. In comparison, the use of compensatory RWU resulted in lower model performance due to higher deviations between measured and simulated soil moisture values and ETr rates during dry summer periods.  相似文献   

9.
Guoqiang Wang  Zongxue Xu 《水文研究》2011,25(16):2506-2517
A grid‐based distributed hydrological model, PDTank model, is used to simulate hydrological processes in the upper Tone River catchment. The Tone River catchment often suffers from heavy rainfall events during the typhoon seasons. The reservoirs located in the catchment play an important role in flood regulation. Through the coupling of the PDTank model and a reservoir module that combines the storage function and operation function, the PDTank model is used for flood forecasting in this study. By comparing the hydrographs simulated using gauging and radar rainfall data, it is found that the spatial variability of rainfall is an important factor for flood simulation and the accuracy of the hydrographs simulated using radar rainfall data is slightly improved. The simulation of the typhoon flood event numbered No. 9 shows that the reservoirs in the catchment attenuate the peak flood discharge by 423·3 m3/s and validates the potential applicability of the distributed hydrological model on the assessment of function of reservoirs for flood control during typhoon seasons. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Abstract

The French national project IMAGINE2030 aims to assess future water availability in the Garonne River basin (southwest France) by taking account of changes in both climate and water management in the 2030s. Within this project, two mountainous drainage basins located in the Pyrenees were examined to assess the specific impact of climate change on reservoir management. The Salat River basin at Roquefort, is considered as a proxy (representative of a natural basin), whereas the Ariège River at Foix is influenced by hydropower production in winter and by water releases to sustain low flows in summer. The Cequeau rainfall–runoff model, combined with a simplified model of reservoir management operations, was calibrated on present-day conditions and forced with climate projections derived from the IPCC AR4 report. The results show that a warming climate over the basins induces a decrease in mean annual runoff, a shift to earlier snow melting in mountainous areas and more severe low-flow conditions. The simulations show a decrease in electricity generation. Under two water management scenarios (one “business-as-usual” and the other incorporating an increased downstream water demand in compliance with requirements for increased minimum flow), simulations for the Ariège River basin suggest an earlier filling of the reservoir is necessary in winter to anticipate the increased release from reservoirs in summer to support minimum flow farther downstream.

Editor Z.W. Kundzewicz; Associate editor D. Hughes

Citation Hendrickx, F. and Sauquet, E., 2013. Impact of warming climate on water management for the Ariège River basin (France). Hydrological Sciences Journal, 58 (5), 976–993.  相似文献   

11.

The assessment of flood risk under climate change impacts is necessary for sustainable flood management strategies at national level. Referring to the aforesaid statement, this research aims to evaluate the potential impacts of climate change on reservoir operations in the Huong River Basin, Vietnam. To enable further representation of climate change impacts, the HadGEM3-RA Regional Climate Model (RCM) under Representative Concentration Pathways (RCPs) 8.5 climate change scenario was used in this study. For assessing the level of flood risk posed to the study area, a coupled HEC-HMS hydrologic model and HEC-RAS hydrodynamic model was used to represent the behaviour of flow regimes under climate change impacts in the Huong River Basin. The key results demonstrated that the mean temperature and mean annual rainfall would be increased in the future from 0.2–0.8°C, and 4.8–6.0%, respectively. Consequently, the mean annual runoff and mean water level would also be increased from 10–30%, and 0.1–0.3 m above mean sea level, respectively. Moreover, the proposed reservoir operation rules corresponding to flood control warning stages was also derived to reduce peak flows downstream during the rainy season. Finally, the main findings of this study can be a good example for future planning of flood control reservoir systems in Vietnam.

  相似文献   

12.
Abstract

Abstract Water resources in dryland areas are often provided by numerous surface reservoirs. As a basis for securing future water supply, the dynamics of reservoir systems need to be simulated for large river basins, accounting for environmental change and an increasing water demand. For the State of Ceará in semiarid Northeast Brazil, with several thousands of reservoirs, a simple deterministic water balance model is presented. Within a cascade-type approach, the reservoirs are grouped into six classes according to storage capacity, rules for flow routing between reservoirs of different size are defined, and water withdrawal and return flow due to human water use is accounted for. While large uncertainties in model applications exist, particularly in terms of reservoir operation rules, model validation against observed reservoir storage volumes shows that the approach is a reasonable simplification to assess surface water availability in large river basins. The results demonstrate the large impact of reservoir storage on downstream flow and stress the need for a coupled simulation of runoff generation, network redistribution and water use.  相似文献   

13.
Abstract

In a typical reservoir routing problem, the givens are the inflow hydrograph and reservoir characteristic functions. Flood attenuation investigations can be easily accomplished using a hydrological or hydraulic routing of the inflow hydrograph to obtain the reservoir outflow hydrograph, unless the inflow hydrograph is unavailable. Although attempts for runoff simulation have been made in ungauged basins, there is only a limited degree of success in special cases. Those approaches are, in general, not suitable for basins with a reservoir. The objective of this study is to propose a procedure for flood attenuation estimation in ungauged reservoir basins. In this study, a kinematic-wave based geomorphic IUH model was adopted. The reservoir inflow hydrograph was generated through convolution integration using the rainfall excess and basin geomorphic information. Consequently, a fourth-order Runge-Kutta method was used to route the inflow hydrograph to obtain the reservoir outflow hydrograph without the aid of recorded flow data. Flood attenuation was estimated through the analysis of the inflow and outflow hydrographs of the reservoir. An ungauged reservoir basin in southern Taiwan is presented as an example to show the applicability of the proposed analytical procedure. The analytical results provide valuable information for downstream flood control work for different return periods.  相似文献   

14.
ABSTRACT

Water temperature dynamics in a reservoir are affected by its bathymetry, climatic conditions and hydrological processes. Miyun Reservoir in China is a large and deep reservoir that experienced a large water level decline in 1999–2004 due to low rainfall and relatively high water supply to Beijing. To study changes of stratification characteristics in Miyun Reservoir from 1998 to 2011, the one-dimensional year-round lake model MINLAKE2010 was modified by adding a new selective withdraw module and a reservoir hydrological model. Simulation results under three scenarios demonstrated that the new MINLAKE2012 model accurately predicted daily water levels and temperature dynamics during the water level fluctuation period. The water level decline led to 7.6 and 3.8°C increases in the maximum and mean bottom temperatures and about 29 days reduction in the stratification days. These simulation results provide an insight into the thermal evolution of Miyun Reservoir during the planned future water filling process.
Editor D. Koutsoyiannis Associate editor M. Acreman  相似文献   

15.
The study simulated the effect of using reservoir storage for reducing flood peaks and volumes in urban areas with the Dzorwulu basin in Accra, Ghana as case study. A triangulated irregular network surface of the floodplain was created using ArcGIS from ESRI by integrating digital elevation model and the map of the study area. The weighted curve number for the basin was obtained from the land use and soil type shape files using ArcGIS. The Soil Conservation Service curve number unit hydrograph procedure was used to obtain an inflow hydrograph based on the highest rainfall recorded in recent history (3–4 June 1995) in the study area and then routed through an existing reservoir to assess the impact of the reservoir on potential flood peak attenuation. The results from the analysis indicate that a total of 13.09 × 106 m3 of flood water was generated during this 10‐h rainstorm, inundating a total area of 6.89 km2 with a depth of 4.95 m at the deepest section of the basin stream. The routing results showed that the reservoir has capacity to store 34.52% of the flood hydrograph leading to 45% reduction in flood peak and subsequently 38.5% reduction in flood inundation depth downstream of the reservoir. From results of the study, the reservoir storage concept looks promising for urban flood management in Ghana, especially in communities that are over‐urbanized downstream but have some space upstream for creating the storage. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
《水文科学杂志》2013,58(3):582-595
Abstract

This paper explores the potential for seasonal prediction of hydrological variables that are potentially useful for reservoir operation of the Three Gorges Dam, China. The seasonal flow of the primary inflow season and the peak annual flow are investigated at Yichang hydrological station, a proxy for inflows to the Three Gorges Dam. Building on literature and diagnostic results, a prediction model is constructed using sea-surface temperatures and upland snow cover available one season ahead of the prediction period. A hierarchical Bayesian approach is used to estimate uncertainty in the parameters of the prediction model and to propagate these uncertainties to the predictand. The results show skill for both the seasonal flow and the peak annual flow. The peak annual flow model is then used to estimate a design flood (50-year flood or 2% exceedence probability) on a year-to-year basis. The results demonstrate the inter-annual variability in flood risk. The predictability of both the seasonal total inflow and the peak annual flow (or a design flood volume) offers potential for adaptive management of the Three Gorges Dam reservoir through modification of the operating policy in accordance with the year-to-year changes in these variables.  相似文献   

17.
Abstract

The seasonal flood-limited water level (FLWL), which reflects the seasonal flood information, plays an important role in governing the trade-off between reservoir flood control and conservation. A risk analysis model for flood control operation of seasonal FLWL incorporating the inflow forecasting error was proposed and developed. The variable kernel estimation is implemented for deriving the inflow forecasting error density. The synthetic inflow incorporating forecasting error is simulated by Monte Carlo simulation (MCS) according to the inflow forecasting error density. The risk analysis for seasonal FLWL control was estimated by MCS based on a combination of the forecasting inflow lead-time, seasonal design flood hydrographs and seasonal operation rules. The Three Gorges reservoir is selected as a case study. The application results indicate that the seasonal FLWL control can effectively enhance flood water utilization rate without lowering the annual flood control standard.
Editor D. Koutsoyiannis; Associate editor A. Viglione

Citation Zhou, Y.-L. and Guo, S.-L., 2014. Risk analysis for flood control operation of seasonal flood-limited water level incorporating inflow forecasting error. Hydrological Sciences Journal, 59 (5), 1006–1019.  相似文献   

18.
Abstract

The Kamp River is a particularly interesting case study for testing flood frequency estimation methods, since it experienced a major flood in August 2002. Here, the Kamp catchment is studied in order to quantify the influence of such a remarkable flood event on the calibration of a rainfall–runoff model, in particular when it is used in a stochastic simulation method for flood estimation, by performing numerous rainfall–runoff model calibrations (based on split-sample and bootstrap tests). The results confirmed the usefulness of the multi-period and bootstrap testing schemes for identifying the dependence of model performance and flood estimates on the information contained in the calibration period. The August 2002 event appears to play a dominating role for the Kamp River, since the presence or absence of the event within the calibration sub-periods strongly influences the rainfall–runoff model calibration and the extreme flood estimations that are based on the calibrated model.  相似文献   

19.
Casey Lee  Guy Foster 《水文研究》2013,27(10):1426-1439
In‐stream sensors are increasingly deployed as part of ambient water quality‐monitoring networks. Temporally dense data from these networks can be used to better understand the transport of constituents through streams, lakes or reservoirs. Data from existing, continuously recording in‐stream flow and water quality monitoring stations were coupled with the two‐dimensional hydrodynamic CE‐QUAL‐W2 model to assess the potential of altered reservoir outflow management to reduce sediment trapping in John Redmond Reservoir, located in east‐central Kansas. Monitoring stations upstream and downstream from the reservoir were used to estimate 5.6 million metric tons of sediment transported to John Redmond Reservoir from 2007 through 2010, 88% of which was trapped within the reservoir. The two‐dimensional model was used to estimate the residence time of 55 equal‐volume releases from the reservoir; sediment trapping for these releases varied from 48% to 97%. Smaller trapping efficiencies were observed when the reservoir was maintained near the normal operating capacity (relative to higher flood pool levels) and when average residence times were relatively short. An idealized, alternative outflow management scenario was constructed, which minimized reservoir elevations and the length of time water was in the reservoir, while continuing to meet downstream flood control end points identified in the reservoir water control manual. The alternative scenario is projected to reduce sediment trapping in the reservoir by approximately 3%, preventing approximately 45 000 metric tons of sediment from being deposited within the reservoir annually. This article presents an approach to quantify the potential of reservoir management using existing in‐stream data; actual management decisions need to consider the effects on other reservoir benefits, such as downstream flood control and aquatic life. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Abstract

Abstract A hydrological simulation model was developed for conjunctive representation of surface and groundwater processes. It comprises a conceptual soil moisture accounting module, based on an enhanced version of the Thornthwaite model for the soil moisture reservoir, a Darcian multi-cell groundwater flow module and a module for partitioning water abstractions among water resources. The resulting integrated scheme is highly flexible in the choice of time (i.e. monthly to daily) and space scales (catchment scale, aquifer scale). Model calibration involved successive phases of manual and automatic sessions. For the latter, an innovative optimization method called evolutionary annealing-simplex algorithm is devised. The objective function involves weighted goodness-of-fit criteria for multiple variables with different observation periods, as well as penalty terms for restricting unrealistic water storage trends and deviations from observed intermittency of spring flows. Checks of the unmeasured catchment responses through manually changing parameter bounds guided choosing final parameter sets. The model is applied to the particularly complex Boeoticos Kephisos basin, Greece, where it accurately reproduced the main basin response, i.e. the runoff at its outlet, and also other important components. Emphasis is put on the principle of parsimony which resulted in a computationally effective modelling. This is crucial since the model is to be integrated within a stochastic simulation framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号