首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《水文科学杂志》2013,58(3):629-639
Abstract

The lower Araguás catchment, central Pyrenees, is characterized by extensive badlands (25% of the total catchment), whereas the upper catchment is covered by dense plantation forest. The catchment (45 ha) has been monitored since October 2005 with the aim of studying its hydrological response. The 44 floods recorded over this period were analysed to identify the factors that control the rainfall—runoff relationship. The first relevant feature of the catchment was its responsiveness. The catchment reacted to all rainfall events, but the irregular nature of the hydrological response was the most characteristic feature of the response. No single variable could explain the response of the Araguás catchment. It was found that stormflow coefficients mainly depend on the combination of rainfall volume and antecedent baseflow. A significant correlation was observed between maximum rainfall intensity and peak flow values. The shapes of the different hydrographs are very similar, regardless of the peak flow magnitude; they show a short time lag, relatively narrow peak flow, and steep recession limb. This indicates a large contribution by overland flow, resulting mainly from the generation of infiltration excess runoff in badland areas.  相似文献   

2.
Abstract

A digital computer model of basin regime was developed for the Negev Desert Highlands, a region which experiences a mean annual rainfall of about 100 mm. The model was based on 13 years of rainfall and runoff records. Relationships obtained from experiments were used to determine areal distribution of rainfall, infiltration rates of soils, effects of slope angle on runoff, stone cover, rainfall intensity, antecedent rainfall, basin size, soil crust, overland flow and channel losses. These relationships also explain how ancient civilizations were able to collect ample water from small basins in order to establish stable agricultural settlements.  相似文献   

3.
Abstract

The hydrological response of a small agroforestry catchment in northwest Spain (Corbeira catchment, 16 km2) is analysed, with particular focus on rainfall events. Fifty-four rainfall–runoff events, from December 2004 to September 2007, were used to analyse the principal hydrological patterns and show which factors best explain the hydrological response. The nonlinearity between rainfall and runoff showed that the variability in the hydrological response of the catchment was linked to the seasonal dynamics of the rainfall and, to a lesser extent, to evapotranspiration. The runoff coefficient, estimated as the ratio between direct runoff and rainfall volume, on an event basis, was analysed as a function of rainfall characteristics (amount and intensity) and the initial catchment state conditions prior to an event, such as pre-event baseflow and antecedent rainfall index. The results revealed that the hydrological response depends both on the soil humidity conditions at the start of the event and on rainfall amount, whereas rainfall intensity presented only a significant correlation with discharge increment. The antecedent conditions seem to be a key point in runoff production, and they explain much of the response. The hydrographs are characterized by a steep rising limb, a relatively narrow peak discharge and slow recession limb. These data and the observations suggest that the subsurface flow is the dominant runoff process.

Editor Z.W. Kundzewicz; Associate editor T. Wagener

Citation Rodríguez-Blanco, M.L., Taboada-Castro, M.M. and Taboada-Castro, M.T., 2012. Rainfall–runoff response and event-based runoff coefficients in a humid area (northwest Spain). Hydrological Sciences Journal, 57 (3), 445–459.  相似文献   

4.
The effect of wildfire on peak streamflow and annual water yield has been investigated empirically in numerous studies. The effect of wildfire on baseflow recession rates, in contrast, is not well documented. The objective of this paper was to quantify the effect of wildfire on baseflow recession rates in California for both individual watersheds and for all the study watersheds collectively. Two additional variables, antecedent groundwater storage and potential evapotranspiration, were also investigated for their effect on baseflow recession rates and postfire baseflow recession rate response. Differences between prefire and postfire baseflow recession rates were modeled statistically in 8 watersheds using a mixed statistical model that accounted for fixed and random effects. For the all‐watershed model, antecedent groundwater storage, potential evapotranspiration, and wildfire were each found to be significant controls on baseflow recession rates. Wildfire decreased baseflow recession rates 52.5% (37.6% to 66.0%), implying that postfire reductions in above‐ground vegetation (e.g., decreased interception, decreased evapotranspiration) were a stronger control on baseflow recession rate change than hydrophobicity. At an individual watershed scale, baseflow recession rate response to wildfire was found to be sensitive to intraannual differences in antecedent groundwater storage in 2 watersheds, with the effect of wildfire on baseflow recession rates being greater with lower levels of antecedent groundwater storage. Examination of burn severity for a subset of the study watersheds pointed to riparian zone burn severity as a potential primary control on postfire recession rate change. This study demonstrates that wildfire may have a substantial impact on fluxes to and from groundwater storages, altering the rate at which baseflow recedes.  相似文献   

5.
Abstract

Using the Monte Carlo (MC) method, this paper derives arithmetic and geometric means and associated variances of the net capillary drive parameter, G, that appears in the Parlange infiltration model, as a function of soil texture and antecedent soil moisture content. Approximate expressions for the arithmetic and geometric statistics of G are also obtained, which compare favourably with MC generated ones. This paper also applies the MC method to evaluate parameter sensitivity and predictive uncertainty of the distributed runoff and erosion model KINEROS2 in a small experimental watershed. The MC simulations of flow and sediment related variables show that those parameters which impart the greatest uncertainty to KINEROS2 model outputs are not necessarily the most sensitive ones. Soil hydraulic conductivity and wetting front net capillary drive, followed by initial effective relative saturation, dominated uncertainties of flow and sediment discharge model outputs at the watershed outlet. Model predictive uncertainty measured by the coefficient of variation decreased with rainfall intensity, thus implying improved model reliability for larger rainfall events. The antecedent relative saturation was the most sensitive parameter in all but the peak arrival times, followed by the overland plane roughness coefficient. Among the sediment related parameters, the median particle size and hydraulic erosion parameters dominated sediment model output uncertainty and sensitivity. Effect of rain splash erosion coefficient was negligible. Comparison of medians from MC simulations and simulations by direct substitution of average parameters with observed flow rates and sediment discharges indicates that KINEROS2 can be applied to ungauged watersheds and still produce runoff and sediment yield predictions within order of magnitude of accuracy.  相似文献   

6.
《水文科学杂志》2013,58(4):567-584
Abstract

Reliable, real-time river flow forecasting in Africa on a time scale of days can provide enormous humanitarian and economic benefits. This study investigates the feasibility of using daily rainfall estimates based on cold cloud duration (CCD) derived from Meteosat thermal infrared imagery as input to a simple rainfall—runoff model and also whether such estimates can be improved by the inclusion of information from numerical weather prediction (NWP) analysis models. The Bakoye catchment in Mali, West Africa has been used as a test area. The data available for the study covered the main months of the rainy season for three years. The rainfall estimates were initially validated against gauge data. Improvements in quality were observed when information relating to African Easterly Wave phase and storm type was included in a multiple linear regression (MR) algorithm. The estimates were also tested by using them as input to a rainfall—runoff model. When contemporaneous calibrations from raingauges were available for calibration, both CCD-only and MR rainfall estimates gave more accurate river flow forecasts than when using raingauge data alone. In the absence of contemporaneous calibrations, the performance was reduced but the MR did better than the CCDonly input in all years. The use of satellite-derived vegetation index did not improve the quality of the river flow forecasts.  相似文献   

7.
《水文科学杂志》2013,58(5):886-898
Abstract

Temporal resolution of rainfall plays an important role in determining the hydrological response of river basins. Rainfall temporal variability can be considered as one of the most critical elements when dealing with input data of rainfall—runoff models. In this paper, a typical lumped rainfall—runoff model is applied to long- and short-term runoff prediction using rainfall data sets with different temporal resolution, including daily, hourly and 10-min interval data, and the dependency of model performance on the time interval of the rainfall data is discussed. Furthermore, the effect of temporal resolution on model parameter values is analysed. As results, rainfall data with shorter temporal resolution provide better performance in short-term river discharge estimation, especially for storm discharge estimation. The most accurate results are obtained on the peak discharge and recession part of the hydrograph by using 10-min interval rainfall data. It is concluded that model parameter values are influenced not only by the temporal resolution of calculation but also by the rainfall intensity—duration relationship. This study provides useful information about determination of hydrological model parameters using data of different temporal resolutions.  相似文献   

8.
The quantification of percolation processes and deep drainage rates in cracking clays is challenging due to the existence of multiple flow pathways, including desiccation crack networks, and the effect of variability in antecedent soil moisture and rain event properties. While most previous research on this topic focuses on long-term average rates, this study focusses on inter-event dynamics. The study uses data from soil moisture sensors distributed vertically down 4 m profiles of Vertosol and Chromosol soils across 13 sites over an area of approximately 20 km2. The objectives were to estimate the temporal and spatial variability of deep drainage rates and to investigate the effect of antecedent soil moisture conditions and rain event properties on deep drainage rates and percolation dynamics. 35 deep drainage events over a 40-month period contributed 78 % of the total deep drainage of 254 mm at 4 m depth. Average deep drainage estimates were about 15 % (ranging from 0 – 80 % between sites) of total rainfall and irrigation in the Vertosol and 8% (0 – 24 %) in the Chromosol. The event water travel times at 4 m depth were 0.25 – 38 hr and 14 – 39 hr in the Vertosol and Chromosol respectively. The event deep drainage rates averaged across sites were associated with event rainfall volumes (linear regression R2 = 0.40), with the effect of antecedent conditions evident only when looking at inter-site differences. The percolation response time was strongly associated with higher rainfall intensities (R2 = 0.33) with no evidence from the linear regression of an antecedent moisture effect.  相似文献   

9.
Shallow aquifers typically have greater hydrologic connectivity and response to recharge and changes in surface water management practices than deeper aquifers and are therefore often managed to reduce the risk of flooding. Quantification of the water table elevation response under different management scenarios provides valuable information in shallow aquifer systems to assess indirect influences of such modifications. The episodic master recession method was applied to the 15‐min water table elevation and NEXRAD rainfall data for 6 wells to identify water table response and individual rainfall events. The objectives of this study were to evaluate the effects of rainfall, water table elevation, canal stage, site‐specific characteristics, and canal structure modification/water management practice on the fluctuations in water table elevations using multiple/stepwise multiple linear regression techniques. With the modification of canal structure and operation adjustment, significant difference existed in water table response in the southern wells due to its relative downstream position regarding the general groundwater flow direction and the structural modification locations. On average, water table response height and flood risk were lower after than before the structure modification to canals. The effect of rainfall event size on the height of water table response was greater than the effect of antecedent water table elevation and canal stage on the height of water table response. Other factors including leakance of the canal bed sediment, specific yield, and rainfall on i  ? 1 day had significant effects on the height of water table response as well. Antecedent water table elevation and canal stage had greater and more linear effects on the height of water table response after the management changes to canals. Variation in water table response height/rainfall event size ratio was attributed to difference in S y , antecedent soil water content, hydraulic gradient, rainfall size, and run‐off ratio. After the structure modification, water table response height/rainfall event size ratio demonstrated more linear and proportional relationship with antecedent water table elevation and canal stage.  相似文献   

10.
In central Chile, many communities rely on water obtained from small catchments in the coastal mountains. Water security for these communities is most vulnerable during the summer dry season and, from 2010 to 2017, rainfall during the dry season was between 20% and 40% below the long-term average. The rate of decrease in stream flow after a rainfall event is a good measure of the risk of flow decreasing below a critical threshold. This risk of low flow can be quantified using a recession coefficient (α) that is the slope of an exponential decay function relating flow to time since rainfall. A mathematical model was used to estimate the recession coefficient (α) for 142 rainstorm events (64 in summer; 78 in winter) in eight monitored catchments between 2008 and 2017. These catchments all have a similar geology and extend from 35 to 39 degrees of latitude south in the coastal range of south-central Chile. A hierarchical cluster analysis was used to test for differences between the mean value of α for different regions and forest types in winter and summer. The value of α did not differ (p < 0.05) between catchments in winter. Some differences were observed during summer and these were attributed to morphological differences between catchments and, in the northernmost catchments, the effect of land cover (native forest and plantation). Moreover, α for catchments with native forest was similar to those with pine plantations, although there was no difference (p < 0.05) between these and Eucalyptus plantations. The recession constant is a well-established method for understanding the effect of climate and disturbance on low flows and baseflows and can enhance local and regional analyses of hydrological processes. Understanding the recession of flow after rainfall in small headwater catchments, especially during summer, is vital for water resources management in areas where the establishment of plantations has occurred in a drying climate.  相似文献   

11.
ABSTRACT

Recession curves are widely used in hydrological studies and projects, such as in rivers, streams or springs. However, no cave drip water has been analysed with recession curves. In this paper, four cave drips were monitored in the Velika Pasica Cave, in order to discover the water flow and storage properties of the epikarst. Various methods were applied in the recession analysis, combining the hydrological characteristics of the four drips: for the slow water in the epikarst, the matching strip method was the identified as the appropriate model for the drip water recession analysis. According to the recession coefficient k, the water flow in the epikarst was divided into fast flow, intermediate flow and slow flow. The volume of water retained in the reservoir (the epikarst storage) could be presented as a function of its specific recession coefficient.
EDITOR D.Koutsoyiannis; ASSOCIATE EDITOR X. Chen  相似文献   

12.
Abstract

The normalized antecedent precipitation index (NAPI) model by Heggen for the prediction of runoff yield is analytically derived from the water balance equation. Heggen's model has been simplified further to a rational form and its performance verified with the Soil Conservation Service Curve Number (SCS-CN) model. The simplified model has three coefficients specific to a watershed, and requires two inputs: rainfall and the derived parameter, NAPI. The characteristic behaviour of the NAPI has resonance with the curve number (CN) of the SCS model. The proposed NAPI model was applied to three watersheds in the semi-arid region of India to simulate runoff yield. The model showed improved correlation between the observed and predicted runoff data compared to the SCS-CN model. The F test and paired t test also confirmed the reliability of the model with significance levels of 0.01 and 0.001%, respectively. The proposed model could be used successfully for rainfall–runoff modelling in a watershed.

Citation Ali, S., Ghosh, N. C. & Singh, R. (2010) Rainfall–runoff simulation using a normalized antecedent precipitation index. Hydrol. Sci. J. 55(2), 266–274.  相似文献   

13.
ABSTRACT

High-frequency monitoring was conducted to quantify the frequency and controlling factors of preferential flow (PF) in a monsoon-influenced sub-humid mountainous catchment (6.48 km2) of Northern China. Rainfall was measured using nine bucket raingauges. Soil moisture probes were set up at 12 sites to observe the PF. Overall, 129 rainfall events were identified during the years 2014–2016. The average PF occurrence was 41%, which increased to 71% during heavy rainfall events (>20 mm) revealing a strong influence of the amount and intensity of rainfall. The study also revealed that the PF increased with antecedent soil moisture. Soil moisture was much higher on flat sites compared to sloping sites, providing evidence that the topography has a strong influence on rainfall infiltration and runoff which, subsequently, influence soil moisture variation and the occurrence of PF. Our findings provide valuable insights into the hydrological processes for studies in regions with similar environmental conditions.  相似文献   

14.
ABSTRACT

Estimating river flows at ungauged sites is generally recognised as an important area of research. In countries or regions with rapid land development and sparse hydrological gauging networks, three particular challenges may arise—data scarcity, data quality, and hydrological non-stationarity. Using data from 44 gauged sub-catchments of the upper Ping catchment in northern Thailand from the period 1995–2006, three relevant flow response indices (runoff coefficient, base flow index and seasonal elasticity of flow) were regionalised by regression against available catchment properties. The runoff coefficient was the most successfully regionalised, followed by base flow index and lastly the seasonal elasticity. The non-stationarity (represented by the differences between two 6-year sub-periods) was significant both in the flow response indices and in land use indices; however relationships between the two sets of indices were weak. The regression equations derived from regionalisation were not helpful in predicting the non-stationarity in the flow indices except somewhat for the runoff coefficient. A partly subjective data quality scoring system was devised, and showed the clear influence of rainfall and flow data quality on regionalisation uncertainty. Recommendations towards improving data support for hydrological regionalisation in Thailand include more relevant soils databases, improved records of abstractions and investment in the gauge network. Widening of the regionalisation beyond the upper Ping and renewed efforts at using remotely sensed rainfall data are other possible ways forward.

EDITOR Z.W. Kundzewicz ASSOCIATE EDITOR T. Wagener  相似文献   

15.
Since Brutsaert and Neiber (1977), recession curves are widely used to analyse subsurface systems of river basins by expressing ? dQ/dt as a function of Q, which typically take a power law form: ? dQ/dt = kQα, where Q is the discharge at a basin outlet at time t. Traditionally recession flows are modelled by single reservoir models that assume a unique relationship between ? dQ/dt and Q for a basin. However, recent observations indicate that ? dQ/dtQ relationship of a basin varies greatly across recession events, indicating the limitation of such models. In this study, the dynamic relationship between ? dQ/dt and Q of a basin is investigated through the geomorphological recession flow model which models recession flows by considering the temporal evolution of its active drainage network (the part of the stream network of the basin draining water at time t). Two primary factors responsible for the dynamic relationship are identified: (i) degree of aquifer recharge (ii) spatial variation of rainfall. Degree of aquifer recharge, which is likely to be controlled by (effective) rainfall patterns, influences the power law coefficient, k. It is found that k has correlation with past average streamflow, which confirms the notion that dynamic ? dQ/dtQ relationship is caused by the degree of aquifer recharge. Spatial variation of rainfall is found to have control on both the exponent, α, and the power law coefficient, k. It is noticed that that even with same α and k, recession curves can be different, possibly due to their different (recession) peak values. This may also happen due to spatial variation of rainfall. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Abstract

A physically-based hillslope hydrological model with shallow overland flow and rapid subsurface stormflow components was developed and calibrated using field experiments conducted on a preferential path nested hillslope in northeast India. Virtual experiments were carried out to perform sensitivity analysis of the model using the automated parameter estimation (PEST) algorithm. Different physical parameters of the model were varied to study the resulting effects on overland flow and subsurface stormflow responses from the theoretical hillslopes. It was observed that topographical shapes had significant effects on overland flow hydrographs. The slope profiles, surface storage, relief, rainfall intensity and infiltration rates primarily controlled the overland flow response of the hillslopes. Prompt subsurface stormflow responses were mainly dominated by lateral preferential flow, as soil matrix flow rates were very slow. Rainfall intensity and soil macropore structures were the most influential parameters on subsurface stormflow. The number of connected soil macropores was a more sensitive parameter than the size of macropores. In hillslopes with highly active vertical and lateral preferential pathways, saturation excess overland flow was not evident. However, saturation excess overland flow was generated if the lateral macropores were disconnected. Under such conditions, rainfall intensity, duration and preferential flow rate governed the process of saturation excess overland flow generation from hillslopes.
Editor D. Koutsoyiannis; Associate editor C. Perrin  相似文献   

17.
ABSTRACT

This study assesses the sensitivity to model fitting methods and segment selection of the estimated parameters A and B of the model dQ/dt = ?AQB for individual events. We investigated about 750 recession events observed at 25 US Geological Survey gauges in the Iowa and Cedar river basins in the United States, with drainage areas ranging from 7 to 17 000 km2. The parameters of these recession events were estimated using three commonly adopted methods and recession segments with different extraction criteria. The results showed that the variations of the parameter estimates for the same recession event were comparable to the variations of parameters between different events due to using different model fitting methods and recession segments. This raises cautions for comparative analysis of individual recessions. The result also implies that the nonlinear direct fitting method is the most robust among the three model fitting methods compared.
EDITOR Z.W. Kundzewicz ASSOCIATE EDITOR T. Okruszko  相似文献   

18.
《水文科学杂志》2013,58(6):1006-1020
Abstract

This paper aims to compare the shift in frequency distribution and skill of seasonal climate forecasting of both streamflow and rainfall in eastern Australia based on the Southern Oscillation Index (SOI) Phase system. Recent advances in seasonal forecasting of climate variables have highlighted opportunities for improving decision making in natural resources management. Forecasting of rainfall probabilities for different regions in Australia is available, but the use of similar forecasts for water resource supply has not been developed. The use of streamflow forecasts may provide better information for decision-making in irrigation supply and flow management for improved ecological outcomes. To examine the relative efficacy of seasonal forecasting of streamflow and rainfall, the shift in probability distributions and the forecast skill were evaluated using the Wilcoxon rank-sum test and the linear error in probability space (LEPS) skill score, respectively, at three river gauging stations in the Border Rivers Catchment of the Murray-Darling Basin in eastern Australia. A comparison of rainfall and streamflow distributions confirms higher statistical significance in the shift of streamflow distribution than that in rainfall distribution. Moreover, streamflow distribution showed greater skill of forecasting with 0–3 month lead time, compared to rainfall distribution.  相似文献   

19.
《水文科学杂志》2012,57(2):311-324
ABSTRACT

In semi-arid regions, reduced river flows present is a major challenge in water resources management. We present a new standardized contribution of rainfall to runoff index (SCRI) for evaluating changes in rainfall contribution to river flow. We employ the standardized precipitation index (SPI), standardized discharge index (SDI) and SCRI to characterize meteorological drought, hydrological drought and land-use change impacts on river flow, respectively. These indices are applied to the Mond River Basin (Iran), which is regulated by the Salman Farsi and Tangab dams since 2006. A new concept called “mirage water” is proposed that represents the reduced water delivery to downstream areas due to new developments and water withdrawals in headwater tributaries. In particular, mirage water accounts for changes in upstream water consumption between the planning phase and construction/operation life of dams. We recommend that this concept be used for communication with decision-makers and managers to clarify the need for revising dimensions of planned dams.  相似文献   

20.
Abstract

The design and construction of a special-purpose laboratory catchment and rainfall simulator is described. The equipment consists of a soil catchment area that can be inclined at various angles. Additional instrumentation then measures the flow of water across the surface of, and through, the soil bed. Precipitation is provided by a unit that simulates rainfall at particular rates with uniform distribution.

The equipment was used to examine infiltration, runoff and other hydrological properties of a number of soils under different rainfall intensities and with different catchment slopes. Correlations were obtained for these variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号