首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Magnetic field structures at great distances from the Sun have been analyzed qualitatively for a simple vacuum reconnection model of the interplanetary and interstellar magnetic field. In dependence on the mutual orientation of the main solar dipole s and the local interstellar fieldB 0 , either an open or closed configuration of the large-scale field is formed. For(s B 0 )>0, the field lines are represented by a system of magnetic lines open towards interstellar space. In the case of(s B 0 )<0 there exist two zero-points and a separating surface below the heliopause separating the open lines of the interstellar field from the closed lines of the interplanetary field. The magnetic field configuration is characterized by a certain asymmetry, which is considered for(s B 0 )=0.  相似文献   

2.
We present data from conjugate SuperDARN radars describing the high-latitude ionospheres response to changes in the direction of IMF By during a period of steady IMF Bz southward and Bx positive. During this interval, the radars were operating in a special mode which gave high-time resolution data (30 s sampling period) on three adjacent beams with a full scan every 3 min. The location of the radars around magnetic local noon at the time of the event allowed detailed observations of the variations in the ionospheric convection patterns close to the cusp region as IMF By varied. A significant time delay was observed in the ionospheric response to the IMF By changes between the two hemispheres. This is explained as being partially a consequence of the location of the dominant merging region on the magnetopause, which is 8/12RE closer to the northern ionosphere than to the southern ionosphere (along the magnetic field line) due to the dipole tilt of the magnetosphere and the orientation of the IMF. This interpretation supports the anti-parallel merging hypothesis and highlights the importance of the IMF Bx component in solar wind-magnetosphere coupling.  相似文献   

3.
Fine resolution series from three equatorial ionosondes of the IEEY network in West Africa have revealed small-scale daytime peak F2 structures, superposed on the slowly varying minimum or –trough distribution in the ±5° magnetic latitude zone. We report this new morphology, concentrating on foF2 enhancements of two types: near-equatorial crests (which travel either northwards or southwards) and magnetic field-aligned domes, whose onsets last only tens of minutes. Both types are observed to start at mid-morning or early afternoon hours. We relate their occurrence with the available variations of Vz = E × B upward drift which feeds the equatorial plasma fountain. We suggest the foF2 enhancements to be triggered by brief slow-downs of the Vz velocity near F2 peak altitude in our West African sector. Their short latitude extent differentiates them from the larger-scale tropical crest system. Further analysis of these features should lead to weather-like models of the low latitude ionosphere variations, where unstable local coupling between processes seems to be the trigger.  相似文献   

4.
The vertical geoelectric field measured at Vostok, Antarctica (78.5°S, 107°E, L=75.0) over the 13 month interval May 1979–May 1980 is correlated with the interplanetary magnetic field (IMF) components By and Bz at times when Vostok is connected to the dayside magnetosphere. No significant association with IMF Bx is found. The interaction of the solar wind and the Earth’s magnetic field generally results in anti-sunward plasma flow in the high-latitude, polar ionosphere driven by a dawn-to-dusk, cross polar cap potential difference pattern. Using the IZMEM model to infer the contribution of the cross polar cap potential difference to the potential difference between the ionosphere and the ground at Vostok for the measured IMF conditions, we show that this provides a viable mechanism for the IMF associations found. We demonstrate that the direct association of the geoelectric field with the cross polar cap potential difference is independent of a result (Park, 1976. Solar magnetic sector effects on the vertical atmospheric electric field at Vostok, Antartica. Geophysical Research Letters 3(8), 475–478) showing an 15% decrease in the vertical geoelectric field measured at Vostok, 1–3 days after the passage of IMF sector boundaries. Evidence is also presented supporting the Park result, for which a mechanism is yet to be confirmed.  相似文献   

5.
The response of the dayside ionospheric flow to a sharp change in the direction of the interplanetary magnetic field (IMF) measured by the WIND spacecraft from negative Bz and positive By, to positive Bz and small By, has been studied using SuperDARN radar, DMSP satellite, and ground magnetometer data. In response to the IMF change, the flow underwent a transition from a distorted twin-cell flow involving antisunward flow over the polar cap, to a multi-cell flow involving a region of sunward flow at high latitudes near noon. The radar data have been studied at the highest time resolution available (2 min) to determine how this transition took place. It is found that the dayside flow responded promptly to the change in the IMF, with changes in radar and magnetic data starting within a few minutes of the estimated time at which the effects could first have reached the dayside ionosphere. The data also indicate that sunward flows appeared promptly at the start of the flow change (within 2 min), localised initially in a small region near noon at the equatorward edge of the radar backscatter band. Subsequently the region occupied by these flows expanded rapidly east-west and poleward, over intervals of 7 and 14 min respectively, to cover a region at least 2 h wide in local time and 5° in latitude, before rapid evolution ceased in the noon sector. In the lower latitude dusk sector the evolution extended for a further 6 min before quasi-steady conditions again prevailed within the field-of-view. Overall, these observations are shown to be in close conformity with expectations based on prior theoretical discussion, except for the very prompt appearance of sunward flows after the onset of the flow change.  相似文献   

6.
We have analysed a database of 300 h of tristatic ionospheric velocity measurements obtained overhead at Tromsø (66.3° magnetic latitude) by the EISCAT UHF radar system, for the presence of flow effects associated with the y-component of the IMF. Since it is already known that the flow depends upon IMF Bz, a least-squares multivariate analysis has been used to determine the flow dependence on both IMF By and Bz simultaneously. It is found that significant flow variations with IMF By occur, predominantly in the midnight sector (2100/0300 MLT), but also pre-dusk (1600/1700 MLT), which are directed eastward for IMF By positive and westward for IMF By negative. The flows are of magnitude 20/30 m s–1 nT–1 in the midnight sector, and smaller, 10/20 m s–1 nT–1, pre-dusk, and are thus associated with significant changes of flow of order a few hundred m s–1 over the usual range of IMF By of about ±5 nT. At other local times the IMF By-related perturbation flows are much smaller, less than 5 m s–1 nT–1, and consistent with zero within the uncertainty estimates. We have investigated whether these IMF By-dependent flows can be accounted for quantitatively by a theoretical model in which the equatorial flow in the inner magnetosphere is independent of IMF By, but where distortions of the magnetospheric magnetic field associated with a penetrating component of the IMF By field changes the mapping of the field to the ionosphere, and hence the ionospheric flow. We find that the principal flow perturbation produced by this effect is an east-west flow whose sense is determined by the north-south component of the unperturbed flow. Perturbations in the north-south flow are typically smaller by more than an order of magnitude, and generally negligible in terms of observations. Using equatorial flows which are determined from EISCAT data for zero IMF By, to which the corotation flow has been added, the theory predicts the presence of zonal perturbation flows which are generally directed eastward in the Northern Hemisphere for IMF By positive and westward for IMF By negative at all local times. However, although the day and night effects are therefore similar in principle, the model perturbation flows are much larger on the nightside than on the dayside, as observed, due to the day-night asymmetry in the unperturbed magnetospheric magnetic field. Overall, the model results are found to account well for the observed IMF By-related flow perturbations in the midnight sector, in terms of the sense and direction of the flow, the local time of their occurrence, as well as the magnitude of the flows (provided the magnetic model employed is not too distorted from dipolar form). At other local times the model predicts much smaller IMF By-related flow perturbations, and thus does not account for the effects observed in the pre-dusk sector.  相似文献   

7.
Three series of simultaneous pulsation measurements (f<0.06 Hz) on the Freja satellite and at the Budkov Observatory have been spectrally processed (FFT) in 6-min intervals of Freja’s transits near the local Budkov field line. Doppler-shifted, weighted spectral-peak frequencies, determined in both transverse magnetic components in the mean field-aligned coordinate system on Freja, allowed the estimation, by comparison with the stable frequency at Budkov, of fundamental frequencies of the local magnetic-field-line resonance ranged from 13 to 17 mHz in two pulsation events analyzed, with Kp=2+ to 0+. The ratio of total amplitudes of the spectral-pulsation components on the ground and on Freja at an altitude of \sim1700 km (values <0.7) characterizes the transmissivity of the ionosphere. In the Pc3 frequency range this correlates well with simulation computations using models of the ionosphere under low solar activity.  相似文献   

8.
It is becoming increasingly clear that electron thermal effects have to be taken into account when dealing with the theory of ionospheric instabilities in the high-latitude ionosphere. Unfortunately, the mathematical complexity often hides the physical processes at work. We follow the limiting cases of a complex but systematic generalized fluid approach to get to the heart of the thermal processes that affect the stability of E region waves during electron heating events. We try to show as simply as possible under what conditions thermal effects contribute to the destabilization of strongly field-aligned (zero aspect angle) Farley-Buneman modes. We show that destabilization can arise from a combination of (1) a reduction in pressure gradients associated with temperature fluctuations that are out of phase with density fluctuations, and (2) thermal diffusion, which takes the electrons from regions of enhanced temperatures to regions of negative temperature fluctuations, and therefore enhanced densities. However, we also show that, contrary to what has been suggested in the past, for modes excited along the E0 × B direction thermal feedback decreases the growth rate and raises the threshold speed of the Farley-Buneman instability. The increase in threshold speed appears to be important enough to explain the generation of Type IV waves in the high-latitude ionosphere.  相似文献   

9.
The Narmada-Son lineament (NSL) forms a major tectonic feature on the Indian subcontinent. The importance of this lineament lies in its evolution as well as its tectonic history. The lineament seems to have been active since Precambrian times. In order to understand the history of its evolution, it is necessary to know what igenous activity has been taking place along this lineament, and how the Deccan trap volcanics, which cover large areas along this lineament, have erupted.For the study of this problem an analysis of the aeromagnetic anomaly map lying between 76°15 to 77°30E and 21°45 to 22°50N has been carried out. Four different profiles (B 1 B 1,B 2 B 2,B 3 B 3 andB 4 B 4) have been drawn in N-S direction over this area and interpreted in terms of the intrusive bodies present within or below the surface of Deccan trap exposures. Inversion and forward modelling techniques have been adopted for interpretation purposes. An analysis of frequency spectra along the profiles has also been carried out to estimate the average depth of the different magnetic bodies. These results have been correlated with the available geological information. It has been found that most of the small wavelength anomalies are caused by dyke-like bodies within or below the Deccan trap at a depth of less than 0.5 km.  相似文献   

10.
We investigate the dayside auroral dynamics and ionospheric convection during an interval when the interplanetary magnetic field (IMF) had predominantly a positive Bz component (northward IMF) but varying By. Polar UVI observations of the Northern Hemisphere auroral emission indicate the existence of a region of luminosity near local noon at latitudes poleward of the dayside auroral oval, which we interpret as the ionospheric footprint of a high-latitude reconnection site. The large field-of-view afforded by the satellite-borne imager allows an unprecedented determination of the dynamics of this region, which has not previously been possible with ground-based observations. The location of the emission in latitude and magnetic local time varies in response to changes in the orientation of the IMF; the cusp MLT and the IMF By component are especially well correlated, the emission being located in the pre- or post-noon sectors for By < 0 nT or By > 0 nT, respectively. Simultaneous ground-based observations of the ionospheric plasma drift are provided by the CUTLASS Finland HF coherent radar. For an interval of IMF By 0 nT, these convection flow measurements suggest the presence of a clockwise-rotating lobe cell contained within the pre-noon dayside polar cap, with a flow reversal closely co-located with the high-latitude luminosity region. This pattern is largely consistent with recent theoretical predictions of the convection flow during northward IMF. We believe that this represents the first direct measurement of the convection flow at the imaged location of the footprint of the high-latitude reconnection site.  相似文献   

11.
12.
The mathematical formulation of an iterative procedure for the numerical implementation of an ionosphere-magnetosphere (IM) anisotropic Ohm’s law boundary condition is presented. The procedure may be used in global magnetohydrodynamic (MHD) simulations of the magnetosphere. The basic form of the boundary condition is well known, but a well-defined, simple, explicit method for implementing it in an MHD code has not been presented previously. The boundary condition relates the ionospheric electric field to the magnetic field-aligned current density driven through the ionosphere by the magnetospheric convection electric field, which is orthogonal to the magnetic field B, and maps down into the ionosphere along equipotential magnetic field lines. The source of this electric field is the flow of the solar wind orthogonal to B. The electric field and current density in the ionosphere are connected through an anisotropic conductivity tensor which involves the Hall, Pedersen, and parallel conductivities. Only the height-integrated Hall and Pedersen conductivities (conductances) appear in the final form of the boundary condition, and are assumed to be known functions of position on the spherical surface R=R1 representing the boundary between the ionosphere and magnetosphere. The implementation presented consists of an iterative mapping of the electrostatic potential , the gradient of which gives the electric field, and the field-aligned current density between the IM boundary at R=R1 and the inner boundary of an MHD code which is taken to be at R2>R1. Given the field-aligned current density on R=R2, as computed by the MHD simulation, it is mapped down to R=R1 where it is used to compute by solving the equation that is the IM Ohm’s law boundary condition. Then is mapped out to R=R2, where it is used to update the electric field and the component of velocity perpendicular to B. The updated electric field and perpendicular velocity serve as new boundary conditions for the MHD simulation which is then used to compute a new field-aligned current density. This process is iterated at each time step. The required Hall and Pedersen conductances may be determined by any method of choice, and may be specified anew at each time step. In this sense the coupling between the ionosphere and magnetosphere may be taken into account in a self-consistent manner.  相似文献   

13.
Abstract

We consider the stability of a toroidal magnetic field B = B(s*) (where (s*,φ,z*) are cylindrical polar coordinates) in a cylindrical annulus of conducting fluid with inner and outer radii si and s o rotating rapidly about its axis. The outer boundary is taken to be either insulating or perfectly conducting, and the effect of a finite magnetic diffusivity in the inner core is investigated. The ratio of magnetic diffusivity in the inner core to that of the outer core is denoted by ηη→0 corresponding to a perfectly conducting inner core and η→∞ to an insulating one. Comparisons with the results of Fearn (1983b, 1988) were made and a good match found in the limits η→0 and η→∞ with his perfectly conducting and insulating results, respectively. In addition a new mode of instability was found in the eta;→0 regime. Features of this new mode are low frequency (both the frequency and growth rate →0 as η→0) and penetration deep into the inner core. Typically it is unstable at lower magnetic field strengths than the previously known instabilities.  相似文献   

14.
15.
We present a comparison of the electron density and temperature behaviour in the ionosphere and plasmasphere measured by the Millstone Hill incoherent-scatter radar and the instruments on board of the EXOS-D satellite with numerical model calculations from a time-dependent mathematical model of the Earths ionosphere and plasmasphere during the geomagnetically quiet and storm period on 20/30 January, 1993. We have evaluated the value of the additional heating rate that should be added to the normal photoelectron heating in the electron energy equation in the daytime plasmasphere region above 5000 km along the magnetic field line to explain the high electron temperature measured by the instruments on board of the EXOS-D satellite within the Millstone Hill magnetic field flux tube in the Northern Hemisphere. The additional heating brings the measured and modelled electron temperatures into agreement in the plasmasphere and into very large disagreement in the ionosphere if the classical electron heat flux along magnetic field line is used in the model. A new approach, based on a new effective electron thermal conductivity coefficient along the magnetic field line, is presented to model the electron temperature in the ionosphere and plasmasphere. This new approach leads to a heat flux which is less than that given by the classical Spitzer-Harm theory. The evaluated additional heating of electrons in the plasmasphere and the decrease of the thermal conductivity in the topside ionosphere and the greater part of the plasmasphere found for the first time here allow the model to accurately reproduce the electron temperatures observed by the instruments on board the EXOS-D satellite in the plasmasphere and the Millstone Hill incoherent-scatter radar in the ionosphere. The effects of the daytime additional plasmaspheric heating of electrons on the electron temperature and density are small at the F-region altitudes if the modified electron heat flux is used. The deviations from the Boltzmann distribution for the first five vibrational levels of N2(v) and O2(v) were calculated. The present study suggests that these deviations are not significant at the first vibrational levels of N2 and O2 and the second level of O2, and the calculated distributions of N2(v) and O2(v) are highly non-Boltzmann at vibrational levels v > 2. The resulting effect of N2(v > 0) and O2(v > 0) on NmF2 is the decrease of the calculated daytime NmF2 up to a factor of 1.5. The modelled electron temperature is very sensitive to the electron density, and this decrease in electron density results in the increase of the calculated daytime electron temperature up to about 580 K at the F2 peak altitude giving closer agreement between the measured and modelled electron temperatures. Both the daytime and night-time densities are not reproduced by the model without N2(v > 0) and O2(v > 0), and inclusion of vibrationally excited N2 and O2 brings the model and data into better agreement.  相似文献   

16.
17.
Numerous studies of magnetic fluctuations with a zero mean-field for small magnetic Prandtl numbers (Pr m 1) show that magnetic fluctuations cannot be generated by turbulent fluid flow with the Kolmogorov energy spectrum. In addition, the generation of magnetic fluctuations with a zero mean-field for Pr m 1 were not observed in numerical simulations. However, in astrophysical plasmas the magnetic Prandtl numbers are small and magnetic fluctuations are observed. Thus a mechanism of generation of magnetic fluctuations for Pr m 1 still remains poorly understood. On the other hand, in astrophysical applications (e.g., solar and stellar convection zones, galaxies, accretion disks) the turbulent velocity field cannot be considered as a divergence-free. The generation of magnetic fluctuations by turbulent flow of conducting fluid with a zero mean magnetic field for Pr m 1 is studied by means of linear and nonlinear analysis. The turbulent fluid velocity field is assumed to be homogeneous and isotropic with a power law energy spectrum ( k –p ) and with a very short scale-dependent correlation time. It is found that magnetic fluctuations can be generated when the exponent p > 3/2. It is shown also that the growth rates of the higher moments of the magnetic field are larger than those of the lower moments, i.e., the spatial distribution of the magnetic field is intermittent. In addition, the effect of compressibility (i.e., u 0) of the low-Mach-number turbulent fluid flow u is studied. It is demonstrated that the threshold for the generation of magnetic fluctuations by turbulent fluid flow with u 0 is higher than that for incompressible fluid. This implies that the compressibility impairs the generation of magnetic fluctuations. Nonlinear effects result in saturation of growth of the magnetic fluctuations. Asymptotic properties of the steady state solution for the second moment of the magnetic field in the case of the Hall nonlinearity for the low-Mach-number compressible flow are studied.  相似文献   

18.
The ionospheric Alfvén resonator (IAR) control mechanism over the EMIC wave transmission to the ground is demonstrated on a selected long-term frequency-variable subauroral Pcl event. The proper ionospheric plasma data obtained from EISCAT were accessible in a wide altitude range. Applying the numerical method of simulation of a realistic inhomogeneous IAR, the problem of appearance and disappearance of the ground Pc1 signal record was clarified on the basis of coincidence between the EMIC wave frequency spectrum and the IAR fundamental frequency peak (the frequency window). A shift of the signal source field line to lower latitudes during the development of the disturbance was noticed, and the signal frequency variation on the ground was modelled in the nonstationary IAR. Variation of the IAR altitude structure in the fundamental frequency was illustrated on altitude profiles of the normalized wave magnetic field amplitude in the horizontal and vertical components. Particular conditions of L - and R -wave mode incidence were assumed. The electron density vertical profile of IAR determines the effective resonator dimensions. In this way the IAR fundamental frequency window controls the signal within the ionosphere and on the ground.  相似文献   

19.
The STARE system (Scandinavian Twin Auroral Radar Experiment) provides estimates of electron drift velocities, and hence also of the electric field in the high-latitude E-region ionosphere between 65 and 70 degrees latitude. The occurrence of drift velocities larger than about 400 m/s (equivalent to an electric field of 20 mV/m) have been correlated with the magnitude of the Interplanetary Magnetic Field (IMF) components Bz and By at all local times. Observation days have been considered during which both southward (Bz<0) and northward (Bz>0) IMF occurred. The occurrence of electric fields larger than 20 mV/m increases with increases in Bz magnitudes when Bz<0. It is found that the effects of southward IMF continue for some time following the northward turnings of the IMF. In order to eliminate such residual effects for Bz<0, we have, in the second part of the study, considered those days which were characterized by a pure northward IMF. The occurrence is considerably lower during times when Bz>0, than during those when Bz is negative. These results are related to the expansion and contraction of the auroral oval. The different percentage occurrences of large electric field for By>0 and By<0 components of the IMF during times when Bz>0, clearly display a dawn-dusk asymmetry of plasma flow in the ionosphere. The effects of the time-varying solar-wind speed, density, IMF fluctuations, and magnetospheric substorms on the occurrence of auroral-backscatter observations are also discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号