首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Integrated studies of vertical sedimentary sequences, grain sizes, and benthic foraminifera and ostracoda, in combination with AMS 14C dating, and 210Pb and 137Cs analysis were carried out in three vibracores taken from the area of relict deposits on the western South Yellow Sea. The relict sands, which are about 0.4 m thick, overlie on the Early Holocene coastal marsh or tidal flat deposits with an evident erosional interface in between. The middle and upper parts or sometimes the whole of the relict sands have been reworked under the modern dynamic environment. The sedimentation rate varies between 0.20–0.30 cm year-1. The relict sands show a bimodal grain-size distribution pattern in frequency curves, with a sharp peak in the coarse fraction between 3Φ and 4Φ and a secondary peak in the fine fraction of about 7Φ. Of the benthic foraminiferal and ostracod assemblages, the reworked relict sands are characterized by the mixing of the nearshore euryhaline shallow-water species and deeper water species. The erosional interface at the bottom of the relict sands is considered as a regional ravinement surface formed during the transgression in the Early Holocene due to shoreface retreating landwards. The relict sands were accumulated on the ravinement surface during the transgression in the deglaciation period as lag deposits after winnowing and reworking by marine dynamic processes. And the secondary peak of fine fraction in the frequency curve for the relict sands suggests the input of fine-grained sediments during the reworking process. As the conclusion, the relict sands in the study area are interpreted as a type of reworked relict sediments.  相似文献   

2.
An N-shape thermal front in the western South Yellow Sea (YS) in winter was detected using Advanced Very High Resolution Radiation (AVHRR) Sea Surface Temperature data and in-situ observations with a merged front-detecting method. The front, which exists from late October through early March, consists of western and eastern wings extending roughly along the northeast-southwest isobaths with a southeastward middle segment across the 20–50 m isobaths. There are north and south inflexions connecting the middle segment with the western and eastern wings, respectively. The middle segment gradually moves southwestward from November through February with its length increasing from 62 km to 107 km and the southern inflexion moving from 36.2°N to 35.3°N. A cold tongue is found to coexist with the N-shape front, and is carried by the coastal jet penetrating southward from the tip of the Shandong Peninsula into the western South YS as revealed by a numerical simulation. After departing from the coast, the jet flows as an anti-cyclonic recirculation below 10 m depth, trapping warmer water originally carried by the compensating Yellow Sea Warm Current (YSWC). A northwestward flowing branch of the YSWC is also found on the lowest level south of the front. The N-shape front initially forms between the cold tongue and warm water involved in the subsurface anti-cyclonical recirculation and extends upwards to the surface through vertical advection and mixing. Correlation analyses reveal that northerly and easterly winds tend to be favorable to the formation and extension of the N-shape front probably through strengthening of the coastal jet and shifting the YSWC pathway eastward, respectively.  相似文献   

3.
Wave-induced mixing in the Yellow Sea   总被引:3,自引:0,他引:3  
Vertical wave-induced mixing parameter Bv expressed in wave number spectrum was estimated in the Yellow Sea. The spatial distributions of By averaged over upper 20 m in 4 seasons were analyzed. It is the strongest in winter because of winter monsoon, and the weakest in spring. Since in summer it plays an important role for circulation of upper layers, its vertical structure was also discussed. Two simulations with and without wave-induced mixing in this season were performed to evaluate its effect on temperature distribution. Numerical results indicate that wave-induced mixing could increase the mixed layer thickness greatly.  相似文献   

4.
INTRODUCTIONStudyofagreatquantityofsedimentsandhigh resolutionseismicprofiles (3 .5kHz)datacon firmedtheexistenceofalargeareaofmuddysedimentswhosedistribution ,formationenvironmentandoriginhadbeenstudiedbyvariousresearchers (Liuetal.,1 987;ParkandKhim ,1 990 ;Alexa…  相似文献   

5.
Investigations of natural and artificial radioisotopes including 90Sr,137Cs, gross B and U carried out in the Yellow Sea and adjacent southeast area in 1963. 1964, 1975 and 1978 showed that radioactive pollution by 90Sr and 137Cs from atmospheric fallout had gradually decreased with time due to the cessation of atmospheric nuclear weapons tests in the 70s. The distributions of natural and artificial radioactive isotopes (U, Ra, Th. 40K and 137Cs) in sediments southwest of Jizhou Island were uniform. The more uniform may be related to the soluble species of U[Uo2(CO3)4] in the seawater.The high value of Th at stations 3 and 6 was related to the sandy clay sediment; the low value at station 8 was related to sandy sediment. The content of 137Cs in the eddy area being less than about half of that in the China inshore area showed that the source of Cs may be insufficient orthat the conditions for enriching " Cs in the circulation eddy area were not favorable.  相似文献   

6.
The 226 Ra and 228 Ra activities of Qinghai Lake surface water,groundwater,river water,suspended particles,and bottom sediments were measured in a gamma-ray spectrometer.The sources of 226 Ra and 228 Ra were discussed according to their distribution characteristics.226 Ra and 228 Ra activities(dpm/(100 L)) ranged from 14.13±0.22 to 19.22±0.42 and 17.72±0.66 to 30.96±1.47 in the surface water of the North Bay,respectively,and from 7.88±0.24 to 33.80±0.47 and 15.73±0.74 to 57.31±1.44,respectively,in the South Bay.The surface water near the estuary had a lower salinity and had a higher concentration of radium isotopes than the samples collected further away.The farther offshore the sample,the higher the salinity was,and the lower the radium isotope activity.The distribution of radium activities in the western part of Qinghai Lake is controlled by several factors,including Buha River runoff,desorption from suspended particles derived from the river,groundwater discharge,and a small amount of diffusion from the sediment.  相似文献   

7.
Petroleum geological framework and hydrocarbon potential in the Yellow Sea   总被引:2,自引:0,他引:2  
Sedimentary basins in the Yellow Sea can be grouped tectonically into the North Yellow Sea Basin (NYSB), the northern basin of the South Yellow Sea (SYSNB) and the southern basin of the South Yellow Sea (SYSSB). The NYSB is connected to Anju Basin to the east. The SYSSB extends to Subei Basin to the west. The acoustic basement of basins in the North Yellow Sea and South Yellow Sea is disparate, having different stratigraphic evolution and oil accumulation features, even though they have been under the same stress regime since the Late Triassic. The acoustic basement of the NYSB features China-Korea Platform crystalline rocks, whereas those in the SYSNB and SYSSB are of the Paleozoic Yangtze Platform sedimentary layers or metamorphic rocks. Since the Late Mesozoic terrestrial strata in the eastern of the NYSB (West Korea Bay Basin) were discovered having industrial hydrocarbon accumulation, the oil potential in the Mesozoic strata in the west depression of the basin could be promising, although the petroleum exploration in the South Yellow Sea has made no break-through yet. New deep reflection data and several drilling wells have indicated the source rock of the Mesozoic in the basins of South Yellow Sea, and the Paleozoic platform marine facies in the SYSSB and Central Rise could be the other hosts of oil or natural gas. The Mesozoic hydrocarbon could be found in the Mesozoic of the foredeep basin in the SYSNB that bears potential hydrocarbon in thick Cretaceous strata, and so does the SYSSB where the same petroleum system exists to that of oil-bearing Subei Basin.  相似文献   

8.
To decipher the sedimentary evolution and environmental changes since the late Last Deglaciation, two gravity cores were analyzed from the western North Yellow Sea (NYS). The two cores (B-L44 and B-U35) were sampled for grain size, clay minerals, detrital minerals, and 14C dating. They are comparable in lithofaies, and the observed succession was divided into four depositional units based on lithology and mineral assemblages, which recorded the postglacial transgression. Depositional unit 4 (DU 4) (before 11.5 ka) was characterized with enrichment in sand, and was interpreted as nearshore deposits in shallow water during the Younger Dryas Event. DU 3 (11.5-9.6 ka) displayed a fining-upward succession composed of sediments from local rivers, such as the Huanghe (Yellow) River, and from coastal erosion, which clearly were related to the Early Holocene transgression. Stable muddy deposition (DU 2) in NYS began to form at about 9.6 ka, which received direct supply of fine materials from the Shandong subaqueous clinoform. It is believed that the Yellow Sea circulation system played a major role in controlling the formation of fine sediment deposition in DU 1 (after 6.4 ka) after the sea level maximum.  相似文献   

9.
Seasonal variability of thermocline in the Yellow Sea   总被引:5,自引:0,他引:5  
Based on the MASNUM wave-tide-circulation coupled numerical model, seasonal variability of thermocline in the Yellow Sea was simulated and compared with in-situ observations. Both simulated mixed layer depth (MLD) and thermocline intensity have similar spatial patterns to the observations. The simulated maximum MLD are 8 m and 22 m, while the corresponding observed values are 13 m and 27 m in July and October, respectively. The simulated thermocline intensity are 1.2℃/m and 0.5℃/m in July and October, respectively, which are 0.6℃/m less than those of the observations. It may be the main reason why the simulated thermocline is weaker than the observations that the model vertical resolution is less precise than that of the CTD data which is 1 m. Contours of both simulated and observed thermocline intensity present a circle in general. The wave-induced mixing plays a key role in the formation of the upper mixed layer in spring and summer. Tidal mixing enhances the thermocline intensity. Buoyancy-driven m  相似文献   

10.
Community structure changes of macrobenthos in the South Yellow Sea   总被引:3,自引:0,他引:3  
The ecological environment in the Yellow Sea has changed greatly from the 1950s to 1990s and this has had significant impact on marine organisms. In this study, data on soft-sediment macrobenthos occurring in depths from 25 m to 81 m in the South Yellow Sea were used to compare changes in community structure. The agglomerative classification (CLUSTER) and multidimensional scaling (MDS) methods were applied. Five communities were recognized by cluster analysis: 1. The Yellow Sea Cold Water Mass community dominated by cold water species, which changed slightly in species composition since the 1950s; 2. The mixed community with the coexistence of cold water species and warm water species, as had been reported previously; 3. The polychaete-dominated eurythermal community in which the composition changed considerably as some dominant species disappeared or decreased; 4. The Changjiang (Yangtze) River Estuarine community, with some typical estuarine species; 5. The community affected by the Yellow Sea Warm Current. The greatest change occurred in the coastal area, which indicated that the change may be caused by human activities. Macrobenthos in the central region remained almost unchanged, particularly the cold water species shielded by the Yellow Sea Cold Water Mass. The depth, temperature and median grain size of sediments were important factors affecting the distributions of macrobenthos in the South Yellow Sea.  相似文献   

11.
A complete set of one-month Acoustic Doppler Profiler (ADP) current data at a station in the southern Yellow Sea (SYS) is analyzed using the rotary spectrum method. The results revealed different rotary properties between barotropic and baroclinic tidal currents. The barotropic and baroclinic tidal currents rotate elliptically counter-clockwise and clockwise, respectively. Meanwhile, baroclinic bottom tidal currents are almost along-isobath. The baroclinic cross-isobath velocities attenuate quickly at the bottom, implying important effects of bottom topography on the cross-isobath motions.  相似文献   

12.
We tested and modified the quasi-analytical algorithm (QAA) using 57 groups of field data collected in the spring of 2003 in the Yellow Sea and East China Sea. The QAA performs well in deriving total absorption coefficients of typical coastal waters. The average percentage difference (APD) is in a range of 13.9%–38.5% for the total absorption coefficient (13.9% at 440 nm), and differences in particle backscattering coefficient bbp(λ) are less than 50% (in the case of the updated QAA). To obtain improved res...  相似文献   

13.
To reconstruct the formation and evolution process of the warm current system within the East China Sea (ECS) and the Yellow Sea (YS) since the last deglaciation, the paleoceangraphic records in core DGKS9603, core CSH1 and core YSDPI02, which were retrieved from the mainstream of the Kuroshio Current (KC), the edge of the modem Tsushima Warm Current (TWC) and muddy region under cold waters accreted with the Yellow Sea Warm Current (YSWC) respectively, were synthetically analyzed. The results indicate that the formation and evolution of the modem warm current system in the ECS and the YS has been accompanied by the development of the KC and impulse rising of the sea level since the last deglaciation. The influence of the KC on the Okinawa Trough had enhanced since 16 cal kyr BE and synchronously the modem TWC began to develop with the rising of sea level and finally formed at about 8.5 cal kyr BP. The KC had experienced two weakening process during the Heinrich event 1 and the Younger Drays event from 16 to 8.5 cal kyr BP. The period of 7-6 cal kyr BP was the strongest stage of the KC and the TWC since the last deglaciation. The YSWC has appeared at about 6.4 cal kyr BP. Thus,the warm current system of the ECS and the YS has ultimately formed. The weakness of the KC,indicated by the occurrence of Pulleniatina minimum event (PME) during the period from 5.3 to 2.8 cal kyr BE caused the main stream of the TWC to shift eastward to the Pacific Ocean around about 3 cal kyr BP. The process resulted in the intruding of continent shelf cold water mass with rich nutrients. Synchronously, the strength of the YSWC was relatively weak and the related cold water body was active at the early-mid stage of its appearance against the PME background, which resulted in the quick formation of muddy deposit system in the southeastern YS. The strength of the warm current system in the ECS and the YS has enhanced evidently, and approached to the modern condition gradually since 3 cal kyr BP.  相似文献   

14.
In this paper, the authors used the Princeton Ocean Model (POM) to simulate the seasonal evolutions of circulation and thermal structure in the Yellow Sea. The simulated circulation showed that the Yellow Sea Warm Current (YSWC) was a compensation current of monsoon-driven current, and that in winter, the YSWC became stronger with depth, and could flow across the Bohai Strait in the north. Sensitivity and controlling tests led to the following conclusions, In winter, the direction of the Yellow Sea Coastal Current in the surface layer was controlled partly by tide instead of wind, In summer, a cyclonic horizontal gyre existed in the middle and eastern parts of the Yellow Sea below 10 m. The downwelling in upper layer and upwelling in lower layer were somehow similar to Hu et al. (1991) conceptual model. The calculated thermal structure showed an obvious northward extending YSWC tongue in winter, its position and coverage of the Yellow Sea Cold Water Mass in summer.  相似文献   

15.
The distribution and chemical properties of colored dissolved organic matter(CDOM) in the Yellow Sea and the East China Sea during December 2011-January 2012 were investigated. The input of freshwater and biological activities had an evident influence on the CDOM levels(characterized by the light absorption coefficient at the wavelength of 355 nm a355) in the study area. The spatial distribution of CDOM levels displayed a gradually decreasing trend from the coastal waters(0.37 m-1) to the open sea(0.18 m-1). The spectral slope ratio(the slope ratio S_R defined as S275-295:S350-400) during the cruise was correlated with salinity, and exhibited a large variation from inshore(average of 2.515) to offshore sites(average of 5.327) compared with the distribution of a355. The values of S_R were related to CDOM molecular weight(MW). The a355, S_R, and chlorophyll a in 37 samples collected from the surface microlayer were significantly correlated with those in the corresponding subsurface water samples, implying a strong exchange action between the microlayer and bulk water. The a355 and S_R of CDOM exhibited significant microlayer enrichment, with mean enrichment factors(EFs) of 1.72 and 1.62, respectively.  相似文献   

16.
A stratification parameter ,defined as theamount of mechanical energy required to bring about vertical mixing, has been calculated for theYellow Sea using available data over the past ten years.T he monthly distributions of Log are obtained to explain the features of the Yellow Sea stratification.Fronts of the shallow shelf sea are often inseparably related with its stratifications. The front of the Yellow Sea in the warm half-year is generated in May and disappears in November. The shelf front moves shoreward and becomes strong in the heating season, but becomes weak in the cooling season upon return.  相似文献   

17.
Study of the distribution and migration of the common squid,Todarodes pacificus Steenstrup,basedon the index of important fishing ground(P) and fisheries statistics on the Yellow Sea and northern EastChina Sea during 1980—1991 showed that:1.Its catch in the fishing period(June to November) is 91.77% of the annual yield.The fishingground distributes over the northem and middle Yel1ow Sea and adjacent area of the Changjiang Estuary.2. It over-winters in the northem East China Sea and waters adjacent to Goto Island from De-cember to February and spawns in waters near Haijiao Is1and and west of Kyushu. The main stock mi-grates along 123°30′E to the ChangJiang Estuary, Haizhou Bay. offsea from Shidao to Qingdao,mideastern Yellow Sea, and offsea Weihai and Haiyang Island succesively for feeding after April. The sur-plus stock migrates again to the wintering ground in December.3.The favorable feeding temperature is 6-23℃(optimum of l3-20℃ in the Changjiang Estua-ry and 7-13℃ in the northern and middle Yel  相似文献   

18.
The southern Yellow Sea is an important fishing ground, providing abundant fishery resources. However, overfishing and climate change have caused a decline in the resource and damaged the ecosystem. We developed an ecosystem model to analyze the trophic interactions and ecosystem structure and function to guide sustainable development of the ecosystem. A trophic mass-balance model of the southern Yellow Sea during 2000–2001 was constructed using Ecopath with Ecosim software. We defined 22 important functional groups and studied their diet composition. The trophic levels of fish, shrimp, crabs, and cephalopods were between 2.78 and 4.39, and the mean trophic level of the fisheries was 3.24. The trophic flows within the food web occurred primarily in the lower trophic levels. The mean trophic transfer efficiency was 8.1%, of which 7.1% was from primary producers and 9.3% was from detritus within the ecosystem. The transfer efficiency between trophic levels II to III to IV to V to >V was 5.0%, 5.7%, 18.5%, and 19.7%–20.4%, respectively. Of the total flow, phytoplankton contributed 61% and detritus contributed 39%. Fishing is defined as a top predator within the ecosystem, and has a negative impact on most commercial species. Moreover, the ecosystem had a high gross efficiency of the fishery and a high value of primary production required to sustain the fishery. Together, our data suggest there is high fishing pressure in the southern Yellow Sea. Based on analysis of Odum’s ecological parameters, this ecosystem was at an immature stage. Our results provide some insights into the structure and development of this ecosystem.  相似文献   

19.
The concentration of suspended load can be determined by its linear relationship to turbidity. Our results present the basic distribution of suspended load in North Yellow Sea. In summer, the suspended load concentration is high along the coast and low in the center of the sea. There are four regions of high concentration in the surface layer: Penglai and Chengshantou along the north of the Shandong Peninsula, and the coastal areas of Lüshun and Changshan Islands. There is a 2 mg/L contour at 124°E that separates the North Yellow Sea from regions of lower concentrations in the open sea to the west. And there is a 2 mg/L contour at 124°E that separates the North Yellow Sea from regions of lower concentrations in the open sea to the west. The distribution features in the 10 m and bottom layer are similar to the surface layer, however, the suspended load concentration declines in the 10 m layer while it increases in the bottom layer. And in the bottom layer there is a low suspended load concentration water mass at the region south of 38°N and east of 123°E extending to the southeast. In general, the lowest suspended load concentration in a vertical profile is at a depth of 10 to 20 m, the highest suspended load concentration is in the bottom near Chengshantou area. In winter, the distribution of suspended load is similar to summer, but the average concentrations are three times higher. There are two tongue-shaped high suspended load concentration belt, one occurring from surface to seafloor, extends to the north near Chengshantou and the other invades north to south along the east margin of Dalian Bay. They separate the low suspended load concentration water masses in the center of North Yellow Sea into east and west parts. Vertical distribution is quite uniform in the whole North Yellow Sea because of the cooling effect and strong northeast winds. The distribution of suspended load has a very close relationship to the current circulation and wind-induced waves in the North Yellow Sea. Because of this, we have been able to show for the first time that the distribution of suspended load can be used to identify water masses.  相似文献   

20.
Seasonal cycle is the most significant signals of topography and circulation in the Bohai Sea (BS)and Yellow Sea (YS) forced by prevailing monsoon and is still poorly understood due to lack of data in their interiors. In the present study, seasonal cycles of topography in the BS and YS and its relationship with atmospheric forcing and oceanic adjustment were examined and discussed using TOPEX/Poseidon and ERS-I/2 Sea Level Anomalies (SLA) data. Analyses revealed complicated seasonal cycles of topography composed mainly of 2 REOF modes, the winter-summer mode (WlM) and spring-autumn mode (SAM). The WlM with action center in the BS displayed peak and southward pressure gradient in July, and valley and northward pressure gradient in January, which is obviously the direct response to monsoon with about l-month response time. The SAM with action center in the western south YS displayed peak and northward pressure gradient in October and valley and southward pressure gradient in April. After the mature period of monsoon, the action center in the BS becam eweakened while that in the western south YS became strengthened because of regional convergence or divergence induced by seasonal variations of the Taiwan Warm Current and Yellow Sea Coastal Current. The direct response of topography to monsoon resulted in the WIM, while oceanic adjustment of topography played an important role in the forming of the SAM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号