首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 202 毫秒
1.
多尺度阵列嵌套组合反演宾川气枪源区横波速度结构   总被引:1,自引:0,他引:1  
孙楠  潘磊  王伟涛  叶泵  王彬  陈晓非 《地球物理学报》2021,64(11):4012-4021
本文基于多尺度阵列嵌套组合的方式,利用频率-贝塞尔变换法(Frequency-Bessel,F-J方法)提取背景噪声面波频散信息,通过多个阵列融合的频散曲线反演得到宾川气枪发射台周边不同深度的横波速度结构.结果显示:浅层一阶面波频散信息的加入,使得基阶反演结果更加收敛,反演深度加深到8 km;深度在8 km以下的结构的研究利用多尺度阵列(密集台阵—宾川气枪台网—云南区域地震台网)嵌套组合的方式,面波基阶低频信息从0.55 Hz拓宽到0.008 Hz,使横波速度结构的反演深度显著增加,同时对反演过程提供约束,使得70 km深度以上的横波速度更收敛.由此本文所得的横波速度结构为该区地下结构的探测提供基础,多尺度阵列嵌套组合频散谱的研究方式也为以后区域结构的研究提供一种新的方法和思路.  相似文献   

2.
在电缆测井中,可以利用偶极声场中的弯曲波反演软地层的横波速度.然而,在随钻声波测井(LWD)中,钢制钻铤的存在使得井孔结构变得复杂,同时改变了井孔声场,弯曲波也变得难以测定.此外,弯曲波与钻铤波耦合在一起,使得地层横波速度的反演变得困难.本文计算分析了随钻声场的频散曲线和激发曲线,注意到了偶极舒尔特波在较宽频带内速度频散很弱,特别是在本文研究的软地层情况下,偶极舒尔特波速度在3至25kHz的频率范围内几乎为一个常值,并且该值与地层横波速度存在一一对应关系.舒尔特波速度远小于其他模式波速度,与其他模式波在时域上易分离.相对于其他地层参数,舒尔特波对地层横波速度十分敏感.因此,它可以用来反演软地层的横波速度.  相似文献   

3.
利用Rayleigh波反演浅土层的剪切波速度结构   总被引:25,自引:7,他引:18  
根据均匀半空间Rayleigh波相速度与介质剪切波速度之间的关系,对某一频率面波的影响深度内各层介质进行"均匀"化,使其等效于均匀半空间.并利用模型进行正演,以确定在这种均匀化的前提下,面波勘探深度与波长的关系.应用相匹配滤波技术从实测面波信号中分离出基阶Rayleigh波信号,对它进行多重滤波和叠加处理,精确地计算出5.0-30.0Hz之间的基阶面波相、群速度频散.使用"均匀"化的方法,从相速度频散曲线中获得反演的初始模型,利用群速度频散反演得到35m以上各土层的剪切波速度结构.结果表明,反演结果与钻孔资料较为吻合  相似文献   

4.
用面波联合勘探技术探测浅部速度结构   总被引:3,自引:0,他引:3  
瑞雷面波勘探技术以其快速经济、受场地条件限制小等优点广泛应用于浅部横波速度结构探测.人工源面波勘探方法对浅部地层的探测精度高,但探测深度较浅;天然源面波勘探方法探测深度较深,但对浅部速度结构的探测精度不高.本文在夏垫和玉溪两地分别开展了人工源和天然源面波联合探测试验,尝试采用不同排列和相同排列两种方法,采集人工源和天然源面波信息,联合处理数据并提取频散曲线,反演得到浅部地层的横波速度结构.探测结果表明:人工源和天然源面波联合勘探,尤其是采用相同排列的方法,可以在几乎不增加常规面波勘探工作量的条件下,既能保证浅部地层的探测精度,又明显拓展探测深度,大大提升了面波勘探能力,有望在工程勘察领域中推广应用.  相似文献   

5.
由于瑞雷波存在多个导波模式,仅用基阶模式波频散数据反演而忽略高模式波,会影响反演精度.本文利用高阶模式瑞雷波频散数据与基阶模式频散数据互相独立的特性,构建瑞雷波基阶波、一阶高模式波和二阶高模式波的联合反演目标函数.通过增加反演变量,利用权系数调节各变量对反演结果的影响,实现同步联合反演,从而保证反演稳定性.使用人工蜂群智能算法求解目标函数,有效解决了传统反演方法将非线性问题线性化处理产生的细节信息丢失问题,提高了反演精度.经过对较为复杂的四层含低速夹层和四层含高速夹层理论模型和实例数据的反演验证,表明基于人工蜂群算法的瑞雷波多阶模式波非线性联合反演能够提高反演的稳定性和精度.  相似文献   

6.
瑞利面波垂直-水平振幅比(或ZH振幅比)是一个随频率变化的函数,对于台站下方浅层地壳结构非常敏感,且具有和频散资料不同的深度敏感核,是传统频散反演方法的一个很好的补充,从而可以将基阶瑞利面波的ZH振幅比和面波频散数据联合起来更好地反演获得观测台站下方的速度结构.本文提出了基于邻域算法的面波频散曲线与ZH振幅比联合反演方法,我们进行了基于理论模型的模拟测试,证明了联合反演是一种更为可靠的反演方法,且能更好地约束浅层地壳结构.相比于频散曲线单独反演,联合反演不仅可以精确反演获得地壳的Vs结构,对分层地壳的Vp/Vs也能很好地约束.然后我们将联合反演算法应用于实际测量数据,获得了中国西南昆明台(KMI)下方更为准确的地壳横波速度结构及Vp/Vs模型.  相似文献   

7.
近年来,随着横波可控震源技术的发展,国内外已经实现了纯横波地震勘探.相较于地震纵波,地震横波对横波阻抗、横波速度尤其是各向异性参数变化更为敏感,因此地震横波能够用来更好地估算上述地层参数.VTI(具有垂直对称轴的横向各向同性)是地层介质中广泛存在的一种各向异性形式,对振幅随偏移距变化(AVO)影响显著.本文提出了一种改进的VTI介质SH-SH波反射系数近似公式,新公式具有较高的精度且仅包含两项待求参数:横波阻抗和水平横波(SH波)速度.基于新方程建立了VTI介质SH-SH波反演方法,该方法相比VTI介质的PP波反演不确定性明显下降,同时降低了常规PP波各向异性反演对大角度数据的要求.为了获得独立的横波各向异性参数,进一步地提出了一种基于岩石物理关系的横波各向异性参数估算方法.合成地震数据测试和柴达木盆地九分量地震勘探实际地震数据应用结果表明,新方法能够准确地预测地层的横波阻抗、水平横波(SH波)速度、各向异性参数,为各向异性地层的岩性解释和油气储层预测提供了可靠的解决方案,从而深化了横波地震勘探的应用潜力.  相似文献   

8.
青藏高原地区瑞利波群速度和地壳构造   总被引:6,自引:1,他引:6       下载免费PDF全文
本文用单台多重滤波方法测定了经过青藏高原地区瑞利波群速度频散曲线。所得基阶瑞利波的观测周期为5.0-56.0秒,速度标准偏差为0.08-0.15公里/秒,一阶瑞利波的观测周期范围为10-16秒,速度标准偏差为0.05-0.13公里/秒。利用广义线性反演方法对频散曲线进行反演,可得出一个由五层构成的地震横波速度地壳模型。在27-40公里之间存在低速层,其横波速度为3.29公里/秒,比上一层低0.21公里/秒。  相似文献   

9.
中国西部及其邻域地壳上地幔横波速度结构   总被引:20,自引:10,他引:10       下载免费PDF全文
本文首次采用Rayleigh面波双台法研究中国西部及其邻域的三维横波速度结构.共处理了超过3000条双台资料,经仔细挑选共获得110条高质量的双台Rayleigh波相速度频散资料.采用Tarantola的概率方法反演得到研究区域内15~120 s的Rayleigh相速度分布图像.采用Tarantola非线性问题的最小二乘反演方法反演得到研究区域内2°×2°的三维横波速度结构.利用不同周期的Rayleigh面波相速度大致对λ/3波长附近深度的横波速度最为敏感这一物理特性,在反演过程中引入一种层速度自适应调整的技巧,可以较好地加快收敛和提高反演的稳定性.反演得到的横波速度结构的主要结论为:(1)青藏高原的西部地区下地壳和上地幔顶部横波速度很高,软流层不发育;而青藏高原东缘地区的下地壳和上地幔顶部速度明显偏低,很可能是青藏高原地壳低速物质沿青藏高原东部边缘地区向南运动、形成经川滇地区连接缅甸北部低速区的低速物质运移通道;在青藏高原东北部边缘地区,下地壳的速度明显低于中地壳的速度;(2)青藏高原南部的拉萨地块具有较高速度的上地幔顶盖层,从南向北拉萨地块的软流层埋深约从130 km减至100 km,软流层厚度约从40 km增至80 km;北部羌塘地块的下地壳速度偏低,上地幔顶盖层缺失,速度很低,软流层的厚度较大;(3)塔里木盆地和准噶尔盆地都表现出较高的上地幔横波速度结构,软流层不明显,准噶尔盆地下地壳的厚度和速度都比塔里木盆地的高;(4)蒙古高原西部的下地壳上地幔顶部速度明显低于蒙古高原东部地区的,且在蒙古高原中西部地区存在巨厚的低速软流层.该软流层越往蒙古高原东部厚度越小,上覆顶盖层的速度和厚度越大.对上述反演结果作了地质解释.  相似文献   

10.
通常情况下对于瑞雷波频散特性的讨论和分析主要针对其基阶模式.实际上,对于某一给定频率,可能会有多个不同相速度满足频散方程,即存在高阶模式.为了获得更精确的横波速度信息,应适当地在反演过程中加入高阶模式的频散曲线.本文从简单的三层层状介质模型出发,利用频散函数的正演计算得到多模式的频散曲线,并采用改进的粒子群算法分别对基阶模式和多模式频散曲线进行反演.研究结果表明:多模式频散曲线的反演结果相对于基阶模式而言,可靠性和分辨率在一定程度上得到了很大的提高.  相似文献   

11.
Joint inversion of multimode surface waves for estimating the shear (S)-wave velocity has received much attention in recent years. In this paper, we first analyze sensitivity of phase velocities of multimodes of surface waves for a six-layer earth model, and then we invert surface-wave dispersion curves of the theoretical model and a real-world example. Sensitivity analysis shows that fundamental mode data are more sensitive to the S-wave velocities of shallow layers and are concentrated on a very narrow frequency band, while higher mode data are more sensitive to the parameters of relatively deeper layers and are distributed over a wider frequency band. These properties provide a foundation of using a multimode joint inversion to define S-wave velocities. Inversion results of both synthetic data and a real-world example demonstrate that joint inversion with the damped least-square method and the singular-value decomposition technique to invert high-frequency surface waves with fundamental and higher mode data simultaneously can effectively reduce the ambiguity and improve the accuracy of S-wave velocities.  相似文献   

12.
高频面波方法的若干新进展   总被引:12,自引:5,他引:7       下载免费PDF全文
面波多道分析方法(MASW)通过分析高频瑞雷波确定浅地表剪切波速度.在过去的20年中,由于该方法具有非侵入性、无损、高效及价格低的特点,越来越受到浅地表地球物理和地质工程学界的重视,视为未来最有希望的技术之一.这篇综述论文将介绍中国地质大学(武汉)浅地表地球物理团队近年来在研究高频面波的传播理论和应用中取得的部分成果.非几何波是一种仅存在于浅地表介质,尤其是未固结的沉积物中的独特的地震波.它的存在对快速而准确地获得表层S波速度有一定价值.我们的研究表明非几何波是一种具有频散特性的泄漏波.泄漏波的存在可能导致将其误认为瑞雷波的基阶或高阶能量,从而造成模式误判.这种模式误判会导致错误的反演结果.我们通过求取高基阶分离后的瑞雷波格林函数证明虚震源法瑞雷波勘探的可行性.这个结果将极大地降低野外瑞雷波勘探成本.勒夫波多道分析方法(MALW)中未知参数比瑞雷波的少,这使得勒夫波的频散曲线比瑞雷波的简单.因此,勒夫波反演更稳定,非唯一性更低.勒夫波数据生成的能量图像通常比瑞雷波的清晰,并具有更高的分辨率,从而可以更容易地拾取精确的勒夫波的相速度.利用雅克比矩阵分析波长与探测深度的关系表明对相同波长的基阶模式而言,瑞雷波的探测深度是勒夫波的1.3~1.4倍;而两种波的相同波长的高阶模式波的探测深度相同.我们也尝试了时间域勒夫波反演.按照勒夫波分辨率将地球模型剖分成了不同尺寸的块体,利用反卷积消除了地震子波对勒夫波波形的影响,通过更新每个块体的S波速度来拟合勒夫波波形,从而获得地下S波速度模型.该方法不基于水平层状模型假设,适用于任意二维介质模型.  相似文献   

13.
冀战波  王宝善 《地球物理学报》1954,63(11):4097-4113
2015年8月12日天津滨海新区发生的强烈化学品爆炸造成了巨大的经济损失和社会影响.天津爆炸产生了清晰的大振幅面波信号,分析结果表明这组信号由基阶和高阶面波组成,可以追踪到约135 km外的远处台站.利用这组面波信号分别开展了以下研究:(1)利用附近三个台站记录的四个单频基阶Rayleigh波信号对爆破事件的绝对位置进行了网格搜索,结果与利用GPS测量的位置相差仅0.498 km;(2)分别利用网格搜索和主事件定位法,对两次子事件的相对位置进行了确定,距离约75 m左右,与前人研究结果吻合;(3)从面波记录中测量到36条基阶Rayleigh波、49条第一高阶Rayleigh波、9条基阶Love波和29条第一高阶Love波的频散曲线,并进一步反演获得研究区域地下4 km内的S波速度结构.反演结果显示地表处S波速度低至0.375 km·s-1,在小于1 km的浅地表速度梯度较大,符合典型的盆地结构特征.本文的研究结果为类似爆炸等突发事件快速定位提供了新的思路,有助于灾后救援的迅速展开;同时得到天津滨海新区及周边浅层精细的速度结构,对于地震灾害评估有很大帮助.  相似文献   

14.
Conventional surface wave inversion for shallow shear (S)-wave velocity relies on the generation of dispersion curves of Rayleigh waves. This constrains the method to only laterally homogeneous (or very smooth laterally heterogeneous) earth models. Waveform inversion directly fits waveforms on seismograms, hence, does not have such a limitation. Waveforms of Rayleigh waves are highly related to S-wave velocities. By inverting the waveforms of Rayleigh waves on a near-surface seismogram, shallow S-wave velocities can be estimated for earth models with strong lateral heterogeneity. We employ genetic algorithm (GA) to perform waveform inversion of Rayleigh waves for S-wave velocities. The forward problem is solved by finite-difference modeling in the time domain. The model space is updated by generating offspring models using GA. Final solutions can be found through an iterative waveform-fitting scheme. Inversions based on synthetic records show that the S-wave velocities can be recovered successfully with errors no more than 10% for several typical near-surface earth models. For layered earth models, the proposed method can generate one-dimensional S-wave velocity profiles without the knowledge of initial models. For earth models containing lateral heterogeneity in which case conventional dispersion-curve-based inversion methods are challenging, it is feasible to produce high-resolution S-wave velocity sections by GA waveform inversion with appropriate priori information. The synthetic tests indicate that the GA waveform inversion of Rayleigh waves has the great potential for shallow S-wave velocity imaging with the existence of strong lateral heterogeneity.  相似文献   

15.
为充分利用微动信号中基阶和高阶模式瑞雷波,本文研究了基于多阶瑞雷波SPAC系数直接反演的方法.该方法首先基于地层介质响应计算多阶瑞雷波的能量占比,考虑实际观测台阵有限台站个数对SPAC系数影响,正演计算多阶瑞雷波SPAC系数,再采用快速模拟退火算法对其反演以获得地下介质横波速度结构.在此基础上,本文通过数值模拟验证该方法的可靠性,分别选取三种典型地质模型,基于模式叠加算法合成理论微动信号,采用本文方法计算其理论多阶瑞雷波SPAC系数并反演,给出反演结果与真实模型对比.我们将该方法应用于上海中心城区的地质调查中,通过与钻探结果对比,进一步验证该方法的有效性.本文理论与实际应用研究表明,基于多阶瑞雷波SPAC系数直接反演的微动探测方法有助于提高反演结果的可靠性,尤其对含软硬夹层的复杂地层介质,可提高探测精度.  相似文献   

16.
As theory dictates, for a series of horizontal layers, a pure, plane, horizontally polarized shear (SH) wave refracts and reflects only SH waves and does not undergo wave-type conversion as do incident P or Sv waves. This is one reason the shallow SH-wave refraction method is popular. SH-wave refraction method usually works well defining near-surface shear-wave velocities. Only first arrival information is used in the SH-wave refraction method. Most SH-wave data contain a strong component of Love-wave energy. Love waves are surface waves that are formed from the constructive interference of multiple reflections of SH waves in the shallow subsurface. Unlike Rayleigh waves, the dispersive nature of Love waves is independent of P-wave velocity. Love-wave phase velocities of a layered earth model are a function of frequency and three groups of earth properties: SH-wave velocity, density, and thickness of layers. In theory, a fewer parameters make the inversion of Love waves more stable and reduce the degree of nonuniqueness. Approximating SH-wave velocity using Love-wave inversion for near-surface applications may become more appealing than Rayleigh-wave inversion because it possesses the following three advantages. (1) Numerical modeling results suggest the independence of P-wave velocity makes Love-wave dispersion curves simpler than Rayleigh waves. A complication of “Mode kissing” is an undesired and frequently occurring phenomenon in Rayleigh-wave analysis that causes mode misidentification. This phenomenon is less common in dispersion images of Love-wave energy. (2) Real-world examples demonstrated that dispersion images of Love-wave energy have a higher signal-to-noise ratio and more focus than those generated from Rayleigh waves. This advantage is related to the long geophone spreads commonly used for SH-wave refraction surveys, images of Love-wave energy from longer offsets are much cleaner and sharper than for closer offsets, which makes picking phase velocities of Love waves easier and more accurate. (3) Real-world examples demonstrated that inversion of Love-wave dispersion curves is less dependent on initial models and more stable than Rayleigh waves. This is due to Love-wave’s independence of P-wave velocity, which results in fewer unknowns in the MALW method compared to inversion methods of Rayleigh waves. This characteristic not only makes Love-wave dispersion curves simpler but also reduces the degree of nonuniqueness leading to more stable inversion of Love-wave dispersion curves.  相似文献   

17.
Rayleigh wave dispersion can be induced in an anisotropic medium or a layered isotropic medium. For a layered azimuthally anisotropic structure, traditional wave equation of layered structure can be modified to describe the dispersion behavior of Rayleigh waves. Numerical stimulation results show that for layered azimuthal anisotropy both the dispersion velocities and anisotropic parameters depend principally on anisotropic S-wave velocities. The splitting S-wave velocities may produce dispersion splitting of Rayleigh waves. Such dispersion splitting appears noticeable at azimuthal angle 45°. This feature was confirmed by the measured results of a field test. The fundamental mode splits into two branches at azimuthal angle 45° to the symmetry axis for some frequencies, and along the same direction the difference of splitting-phase velocities of the fundamental model reaches the maximum. Dispersion splitting of Rayleigh waves was firstly displayed for anisotropy study in dispersion image by means of multichannel analysis of surface waves, the image of which provides a new window for studying the anisotropic property of media.  相似文献   

18.
The spectral analysis of surface wave (SASW) developed in the early eighties has opened the way to the use of surface waves for the definition of shear wave velocity profiles in soil deposits or pavement structures without the need of any borings or intrusion. The SASW testing procedure was designed to minimize the contribution of higher modes and thus assumes that the Rayleigh waves which propagate at the surface belong only to the fundamental mode. Several studies have however demonstrated that, in some conditions, higher Rayleigh modes can contribute significantly to the dispersion curve. Different tests configurations exist today to deal with Rayleigh mode problem by the use of an array of receivers. In spite of that, the SASW configuration remains attractive due to the limited number of receivers, as well as, the Rayleigh modes contributing in SASW records configuration can be identified by multiple-filter technique and isolated using time-variable filters. The proposed techniques are first validated by simulated records and then applied to SASW records obtained in the field. The study confirms that higher modes can participate and even dominate in SASW records. An important contribution of higher Rayleigh modes can also exist, even if the shear wave velocity increases regularly with depth. The higher Rayleigh modes can significantly affect the accuracy of the shear wave velocity profile if they are not properly identified and separated. A multi-mode inversion process is shown to be important to have an accurate soil characterization.  相似文献   

19.
The construction of S-wave velocity models of marine sediments down to hundreds of meters below the seafloor is important in a number of disciplines. One of the most significant trends in marine geophysics is to use interface waves to estimate shallow shear velocities which play an important role in determining the shallow crustal structure. In marine settings, the waves trapped near the fluid–solid interface are called Scholte waves, and this is the subject of the study. In 1998, there were experiments on the Ninetyeast Ridge (Central Indian Ocean) to study the shallow seismic structure at the drilled site. The data were acquired by both ocean bottom seismometer and ocean bottom hydrophone. A new type of seafloor implosion sources has been used in this experiment, which successfully excited fast and high frequency (>500 Hz) body waves and slow, intermediate frequency (<20 Hz) Scholte waves. The fundamental and first higher mode Scholte waves have both been excited by the implosion source. Here, the Scholte waves are investigated with a full waveform modeling and a group velocity inversion approach. Shear wave velocities for the uppermost layers of the region are inferred and results from the different methods are compared. We find that the full waveform modeling is important to understand the intrinsic attenuation of the Scholte waves between 1 and 20 Hz. The modeling shows that the S-wave velocity varies from 195 to 350 m/s in the first 16 m of the uppermost layer. Depths levels of high S-wave impedance contrasts compare well to the layer depth derived from a P-wave analysis as well as from drilling data. As expected, the P- to S-wave velocity ratio is very high in the uppermost 16 m of the seafloor and the Poisson ratio is nearly 0.5. Depth levels of high S-wave impedance contrasts are comparable to the layer depth derived from drilling data.  相似文献   

20.
High-frequency surface-wave analysis methods have been effectively and widely used to determine near-surface shear (S) wave velocity. To image the dispersion energy and identify different dispersive modes of surface waves accurately is one of key steps of using surface-wave methods. We analyzed the dispersion energy characteristics of Rayleigh and Love waves in near-surface layered models based on numerical simulations. It has been found that if there is a low-velocity layer (LVL) in the half-space, the dispersion energy of Rayleigh or Love waves is discontinuous and ‘‘jumping’’ appears from the fundamental mode to higher modes on dispersive images. We introduce the guided waves generated in an LVL (LVL-guided waves, a trapped wave mode) to clarify the complexity of the dispersion energy. We confirm the LVL-guided waves by analyzing the snapshots of SH and P–SV wavefield and comparing the dispersive energy with theoretical values of phase velocities. Results demonstrate that LVL-guided waves possess energy on dispersive images, which can interfere with the normal dispersion energy of Rayleigh or Love waves. Each mode of LVL-guided waves having lack of energy at the free surface in some high frequency range causes the discontinuity of dispersive energy on dispersive images, which is because shorter wavelengths (generally with lower phase velocities and higher frequencies) of LVL-guided waves cannot penetrate to the free surface. If the S wave velocity of the LVL is higher than that of the surface layer, the energy of LVL-guided waves only contaminates higher mode energy of surface waves and there is no interlacement with the fundamental mode of surface waves, while if the S wave velocity of the LVL is lower than that of the surface layer, the energy of LVL-guided waves may interlace with the fundamental mode of surface waves. Both of the interlacements with the fundamental mode or higher mode energy may cause misidentification for the dispersion curves of surface waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号