首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
滑坡灾害空间预测支持向量机模型及其应用   总被引:5,自引:1,他引:4  
戴福初  姚鑫  谭国焕 《地学前缘》2007,14(6):153-159
随着GIS技术在滑坡灾害空间预测研究中的广泛应用,滑坡灾害空间预测模型成为研究的热点问题。在总结滑坡灾害空间预测研究现状的基础上,简要介绍了两类和单类支持向量机的基本原理。以香港自然滑坡空间预测为例,采用两类和单类支持向量机进行滑坡灾害空间预测,并与Logistic回归模型进行了比较。结果表明,两类支持向量机模型优于Logistic回归模型,而Logistic回归模型优于单类支持向量机模型。  相似文献   

2.
This paper describes the application of a well-known multi-criteria decision-making technique, called preference ranking organization method for enrichment evaluation (PROMETHEE II), in combination with fuzzy analytical hierarchy process (FAHP), as a weighting technique to explore landslide susceptibility mapping (LSM). To this end, eight landslide-related geodata layers of the Minoo Dasht located in the Gorgan province of Iran, involving slope, aspect, distance to river, drainage density, distance to fault, mean annual rainfall, distance to road and lithology have been integrated using the PROMETHEE II enhanced by FAHP technique. Afterward, the receiver operating characteristics (ROC) curves for the proposed LSM were drawn using an inventory of landslides containing 83 recent and historic landslide points, and the area under curve = 0.752 value was calculated accordingly. Additionally, to further verify the practicality of such susceptibility map, it was also evaluated against the landslide inventory using simple overlay. The outcome was that about 11 % of the occurred landslide points fall into the very high susceptibility class of the LSM, but approximately 52 % of them indeed fall into the high and very high susceptibility zones together. Also, it resulted that no recorded landslide occurred in the zone of very low susceptibility. According to the results of the ROC curves analysis and simple overlay evaluation, the produced map has exhibited good performance.  相似文献   

3.
《地学前缘(英文版)》2020,11(3):871-883
Landslides are abundant in mountainous regions.They are responsible for substantial damages and losses in those areas.The A1 Highway,which is an important road in Algeria,was sometimes constructed in mountainous and/or semi-mountainous areas.Previous studies of landslide susceptibility mapping conducted near this road using statistical and expert methods have yielded ordinary results.In this research,we are interested in how do machine learning techniques help in increasing accuracy of landslide susceptibility maps in the vicinity of the A1 Highway corridor.To do this,an important section at Ain Bouziane(NE,Algeria) is chosen as a case study to evaluate the landslide susceptibility using three different machine learning methods,namely,random forest(RF),support vector machine(SVM),and boosted regression tree(BRT).First,an inventory map and nine input factors were prepared for landslide susceptibility mapping(LSM) analyses.The three models were constructed to find the most susceptible areas to this phenomenon.The results were assessed by calculating the receiver operating characteristic(ROC) curve,the standard error(Std.error),and the confidence interval(CI) at 95%.The RF model reached the highest predictive accuracy(AUC=97.2%) comparatively to the other models.The outcomes of this research proved that the obtained machine learning models had the ability to predict future landslide locations in this important road section.In addition,their application gives an improvement of the accuracy of LSMs near the road corridor.The machine learning models may become an important prediction tool that will identify landslide alleviation actions.  相似文献   

4.
Landslide susceptibility maps are vital for disaster management and for planning development activities in the mountainous country like Nepal. In the present study, landslide susceptibility assessment of Mugling?CNarayanghat road and its surrounding area is made using bivariate (certainty factor and index of entropy) and multivariate (logistic regression) models. At first, a landslide inventory map was prepared using earlier reports and aerial photographs as well as by carrying out field survey. As a result, 321 landslides were mapped and out of which 241 (75?%) were randomly selected for building landslide susceptibility models, while the remaining 80 (25?%) were used for validating the models. The effectiveness of landslide susceptibility assessment using GIS and statistics is based on appropriate selection of the factors which play a dominant role in slope stability. In this case study, the following landslide conditioning factors were evaluated: slope gradient; slope aspect; altitude; plan curvature; lithology; land use; distance from faults, rivers and roads; topographic wetness index; stream power index; and sediment transport index. These factors were prepared from topographic map, drainage map, road map, and the geological map. Finally, the validation of landslide susceptibility map was carried out using receiver operating characteristic (ROC) curves. The ROC plot estimation results showed that the susceptibility map using index of entropy model with AUC value of 0.9016 has highest prediction accuracy of 90.16?%. Similarly, the susceptibility maps produced using logistic regression model and certainty factor model showed 86.29 and 83.57?% of prediction accuracy, respectively. Furthermore, the ROC plot showed that the success rate of all the three models performed more than 80?% accuracy (i.e. 89.15?% for IOE model, 89.10?% for LR model and 87.21?% for CF model). Hence, it is concluded that all the models employed in this study showed reasonably good accuracy in predicting the landslide susceptibility of Mugling?CNarayanghat road section. These landslide susceptibility maps can be used for preliminary land use planning and hazard mitigation purpose.  相似文献   

5.
Preparation of landslide susceptibility maps is considered as the first important step in landslide risk assessments, but these maps are accepted as an end product that can be used for land use planning. The main objective of this study is to explore some new state-of-the-art sophisticated machine learning techniques and introduce a framework for training and validation of shallow landslide susceptibility models by using the latest statistical methods. The Son La hydropower basin (Vietnam) was selected as a case study. First, a landslide inventory map was constructed using the historical landslide locations from two national projects in Vietnam. A total of 12 landslide conditioning factors were then constructed from various data sources. Landslide locations were randomly split into a ratio of 70:30 for training and validating the models. To choose the best subset of conditioning factors, predictive ability of the factors were assessed using the Information Gain Ratio with 10-fold cross-validation technique. Factors with null predictive ability were removed to optimize the models. Subsequently, five landslide models were built using support vector machines (SVM), multi-layer perceptron neural networks (MLP Neural Nets), radial basis function neural networks (RBF Neural Nets), kernel logistic regression (KLR), and logistic model trees (LMT). The resulting models were validated and compared using the receive operating characteristic (ROC), Kappa index, and several statistical evaluation measures. Additionally, Friedman and Wilcoxon signed-rank tests were applied to confirm significant statistical differences among the five machine learning models employed in this study. Overall, the MLP Neural Nets model has the highest prediction capability (90.2 %), followed by the SVM model (88.7 %) and the KLR model (87.9 %), the RBF Neural Nets model (87.1 %), and the LMT model (86.1 %). Results revealed that both the KLR and the LMT models showed promising methods for shallow landslide susceptibility mapping. The result from this study demonstrates the benefit of selecting the optimal machine learning techniques with proper conditioning selection method in shallow landslide susceptibility mapping.  相似文献   

6.
Xiao  Ting  Yin  Kunlong  Yao  Tianlu  Liu  Shuhao 《中国地球化学学报》2019,38(5):654-669

Landslide susceptibility mapping is vital for landslide risk management and urban planning. In this study, we used three statistical models [frequency ratio, certainty factor and index of entropy (IOE)] and a machine learning model [random forest (RF)] for landslide susceptibility mapping in Wanzhou County, China. First, a landslide inventory map was prepared using earlier geotechnical investigation reports, aerial images, and field surveys. Then, the redundant factors were excluded from the initial fourteen landslide causal factors via factor correlation analysis. To determine the most effective causal factors, landslide susceptibility evaluations were performed based on four cases with different combinations of factors (“cases”). In the analysis, 465 (70%) landslide locations were randomly selected for model training, and 200 (30%) landslide locations were selected for verification. The results showed that case 3 produced the best performance for the statistical models and that case 2 produced the best performance for the RF model. Finally, the receiver operating characteristic (ROC) curve was used to verify the accuracy of each model’s results for its respective optimal case. The ROC curve analysis showed that the machine learning model performed better than the other three models, and among the three statistical models, the IOE model with weight coefficients was superior.

  相似文献   

7.
A Luoi is a Vietnamese–Laotian border district situated in the western part of Thua Thien Hue province, central Vietnam, where landslides occur frequently and seriously affect local living conditions. This study focuses on the spatial analysis of landslide susceptibility in this 263-km2 area. To analyze landslide manifestation in the study area, causative factor maps are derived of slope angle, weathering, land use, geomorphology, fault density, geology, drainage distance, elevation, and precipitation. The analytical hierarchical process approach is used to combine these maps for landslide susceptibility mapping. A landslide susceptibility zonation map with four landslide susceptibility classes, i.e. low, moderate, high, and very high susceptibility for landsliding, is derived based on the correspondence with an inventory of observed landslides. The final map indicates that about 37% of the area is very highly susceptible for landsliding and about 22% is highly susceptible, which means that more than half of the area should be considered prone to landsliding.  相似文献   

8.
This study proposed a hybrid modeling approach using two methods, support vector machines and random subspace, to create a novel model named random subspace-based support vector machines (RSSVM) for assessing landslide susceptibility. The newly developed model was then tested in the Wuning area, China, to produce a landslide susceptibility map. With the purpose of achieving the objective of the study, a spatial dataset was initially constructed that includes a landslide inventory map consisting of 445 landslide regions. Then, various landslide-influencing factors were defined, including slope angle, aspect, altitude, topographic wetness index, stream power index, sediment transport index, soil, lithology, normalized difference vegetation index, land use, rainfall, distance to roads, distance to rivers, and distance to faults. Next, the result of the RSSVM model was validated using statistical index-based evaluations and the receiver operating characteristic curve approach. Then, to evaluate the performance of the suggested RSSVM model, a comparison analysis was performed to other existing approaches such as artificial neural network, Naïve Bayes (NB) and support vector machine (SVM). In general, the performance of the RSSVM model was better than the other models for spatial prediction of landslide susceptibility. The AUC results of the applied models are as follows: RSSVM (AUC = 0.857), followed by MLP (AUC = 0.823), SVM (AUC = 0.814) and NB (AUC = 0.783). The present study indicates that RSSVM can be used for landslide susceptibility evaluation, and the results are very useful for local governments and people living in the Wuning area.  相似文献   

9.
Desalegn  Hunegnaw  Mulu  Arega  Damtew  Banchiamlak 《Natural Hazards》2022,113(2):1391-1417

Landslide susceptibility consists of an essential component in the day-to-day activity of human beings. Landslide incidents are typically happening at a low rate of recurrence when compared and in contrast to other events. This might be generated into main natural catastrophes relating to widespread and undesirable sound effects. Landslide hotspot area identification and mapping are used for the regional community to secure from this disaster. Therefore, this research aims to identify the hotspot areas of landslide and to generate maps using GIS, AHP, and multi-criteria decision analysis (MCDA). MCDA techniques are applied under such circumstances to categorize and class decisions for successive comprehensive estimation or else to state possible from impossible potentiality with various landslides. Analytical hierarchy process (AHP) constructively applies for conveying influence to different criteria within multi-criteria decision analysis. The causative landslide identifying factors utilized in this research were elevation, slope, aspect, soil type, lithology, distance to stream, land use/land cover, rainfall, and drainage density achieved from various sources. Subsequently, to explain the significance of each constraint into landslide susceptibility, all factors were found using the AHP technique. Generally, landslide susceptibility map factors were multiplied by their weights to acquire with the AHP technique. The result showed that the AHP methods are comparatively good quality estimators of landslide susceptibility identification in the Chemoga watershed. As the result, the Chemoga watershed landslide susceptibility map classes were classified as 46.52%, 13.83%.18.71%, 15.39%, and 5.55% of the occurred landslide fall to very low, low, moderate, high, and very high susceptibility zones, respectively. Performance and accuracy of modeled maps have been established using GPS field data and Google earth data landslide map and area under curve (AUC) of the receiver operating characteristic curve (ROC). As the result, validation depends on the ROC specifies the accuracy of the map formed with the AHP merged through weighted overly method illustrated very good accuracy of AUC value 81.45%. In general, the research outcomes inveterate the very good test consistency of the generated maps.

  相似文献   

10.
Landslide susceptibility assessment using SVM machine learning algorithm   总被引:10,自引:0,他引:10  
This paper introduces the current machine learning approach to solving spatial modeling problems in the domain of landslide susceptibility assessment. The latter is introduced as a classification problem, having multiple (geological, morphological, environmental etc.) attributes and one referent landslide inventory map from which to devise the classification rules. Three different machine learning algorithms were compared: Support Vector Machines, Decision Trees and Logistic Regression. A specific area of the Fruška Gora Mountain (Serbia) was selected to perform the entire modeling procedure, from attribute and referent data preparation/processing, through the classifiers' implementation to the evaluation, carried out in terms of the model's performance and agreement with the referent data. The experiments showed that Support Vector Machines outperformed the other proposed methods, and hence this algorithm was selected as the model of choice to be compared with a common knowledge-driven method – the Analytical Hierarchy Process – to create a landslide susceptibility map of the relevant area. The SVM classifier outperformed the AHP approach in all evaluation metrics (κ index, area under ROC curve and false positive rate in stable ground class).  相似文献   

11.
This study presents a landslide susceptibility assessment for the Caspian forest using frequency ratio and index of entropy models within geographical information system. First, the landslide locations were identified in the study area from interpretation of aerial photographs and multiple field surveys. 72 cases (70 %) out of 103 detected landslides were randomly selected for modeling, and the remaining 31 (30 %) cases were used for the model validation. The landslide-conditioning factors, including slope degree, slope aspect, altitude, lithology, rainfall, distance to faults, distance to streams, plan curvature, topographic wetness index, stream power index, sediment transport index, normalized difference vegetation index (NDVI), forest plant community, crown density, and timber volume, were extracted from the spatial database. Using these factors, landslide susceptibility and weights of each factor were analyzed by frequency ratio and index of entropy models. Results showed that the high and very high susceptibility classes cover nearly 50 % of the study area. For verification, the receiver operating characteristic (ROC) curves were drawn and the areas under the curve (AUC) calculated. The verification results revealed that the index of entropy model (AUC = 75.59 %) is slightly better in prediction than frequency ratio model (AUC = 72.68 %). The interpretation of the susceptibility map indicated that NDVI, altitude, and rainfall play major roles in landslide occurrence and distribution in the study area. The landslide susceptibility maps produced from this study could assist planners and engineers for reorganizing and planning of future road construction and timber harvesting operations.  相似文献   

12.
Landslides are natural geological disasters causing massive destructions and loss of lives, as well as severe damage to natural resources, so it is essential to delineate the area that probably will be affected by landslides. Landslide susceptibility mapping (LSM) is making increasing implications for GIS-based spatial analysis in combination with multi-criteria evaluation (MCE) methods. It is considered to be an effective tool to understand natural disasters related to mass movements and carry out an appropriate risk assessment. This study is based on an integrated approach of GIS and statistical modelling including fuzzy analytical hierarchy process (FAHP), weighted linear combination and MCE models. In the modelling process, eleven causative factors include slope aspect, slope, rainfall, geology, geomorphology, distance from lineament, distance from drainage networks, distance from the road, land use/land cover, soil erodibility and vegetation proportion were identified for landslide susceptibility mapping. These factors were identified based on the (1) literature review, (2) the expert knowledge, (3) field observation, (4) geophysical investigation, and (5) multivariate techniques. Initially, analytical hierarchy process linked with the fuzzy set theory is used in pairwise comparisons of LSM criteria for ranking purposes. Thereafter, fuzzy membership functions were carried out to determine the criteria weights used in the development of a landslide susceptibility map. These selected thematic maps were integrated using a weighted linear combination method to create the final landslide susceptibility map. Finally, a validation of the results was carried out using a sensitivity analysis based on receiver operator curves and an overlay method using the landslide inventory map. The study results show that the weighted overlay analysis method using the FAHP and eigenvector method is a reliable technique to map landslide susceptibility areas. The landslide susceptibility areas were classified into five categories, viz. very low susceptibility, low susceptibility, moderate susceptibility, high susceptibility, and very high susceptibility. The very high and high susceptibility zones account for 15.11% area coverage. The results are useful to get an impression of the sustainability of the watershed in terms of landsliding and therefore may help decision makers in future planning and mitigation of landslide impacts.  相似文献   

13.
Landslides are one of the most frequent and common natural hazards in Malaysia. Preparation of landslide susceptibility maps is one of the first and most important steps in the landslide hazard mitigation. However, due to complex nature of landslides, producing a reliable susceptibility map is not easy. For this reason, a number of different approaches have been used, including direct and indirect heuristic approaches, deterministic, probabilistic, statistical, and data mining approaches. Moreover, these landslides can be systematically assessed and mapped through a traditional mapping framework using geoinformation technologies. Since the early 1990s, several mathematical models have been developed and applied to landslide hazard mapping using geographic information system (GIS). Among various approaches, fuzzy logic relation for mapping landslide susceptibility is one of the techniques that allows to describe the role of each predisposing factor (landslide-conditioning parameters) and their optimal combination. This paper presents a new attempt at landslide susceptibility mapping using fuzzy logic relations and their cross application of membership values to three study areas in Malaysia using a GIS. The possibility of capturing the judgment and the modeling of conditioning factors are the main advantages of using fuzzy logic. These models are capable to capture the conditioning factors directly affecting the landslides and also the inter-relationship among them. In the first stage of the study, a landslide inventory was complied for each of the three study areas using both field surveys and airphoto studies. Using total 12 topographic and lithological variables, landslide susceptibility models were developed using the fuzzy logic approach. Then the landslide inventory and the parameter maps were analyzed together using the fuzzy relations and the landslide susceptibility maps produced. Finally, the prediction performance of the susceptibility maps was checked by considering field-verified landslide locations in the studied areas. Further, the susceptibility maps were validated using the receiver-operating characteristics (ROC) success rate curves. The ROC curve technique is based on plotting model sensitivity—true positive fraction values calculated for different threshold values versus model specificity—true negative fraction values on a graph. The ROC curves were calculated for the landslide susceptibility maps obtained from the application and cross application of fuzzy logic relations. Qualitatively, the produced landslide susceptibility maps showed greater than 82% landslide susceptibility in all nine cases. The results indicated that, when compared with the landslide susceptibility maps, the landslides identified in the study areas were found to be located in the very high and high susceptibility zones. This shows that as far as the performance of the fuzzy logic relation approach is concerned, the results appeared to be quite satisfactory, the zones determined on the map being zones of relative susceptibility.  相似文献   

14.
Machine learning algorithms are an important measure with which to perform landslide susceptibility assessments,but most studies use GIS-based classification methods to conduct susceptibility zonation.This study presents a machine learning approach based on the C5.0 decision tree(DT)model and the K-means cluster algorithm to produce a regional landslide susceptibility map.Yanchang County,a typical landslide-prone area located in northwestern China,was taken as the area of interest to introduce the proposed application procedure.A landslide inventory containing 82 landslides was prepared and subse-quently randomly partitioned into two subsets:training data(70%landslide pixels)and validation data(30%landslide pixels).Fourteen landslide influencing factors were considered in the input dataset and were used to calculate the landslide occurrence probability based on the C5.0 decision tree model.Susceptibility zonation was implemented according to the cut-off values calculated by the K-means clus-ter algorithm.The validation results of the model performance analysis showed that the AUC(area under the receiver operating characteristic(ROC)curve)of the proposed model was the highest,reaching 0.88,compared with traditional models(support vector machine(SVM)=0.85,Bayesian network(BN)=0.81,frequency ratio(FR)=0.75,weight of evidence(WOE)=0.76).The landslide frequency ratio and fre-quency density of the high susceptibility zones were 6.76/km2 and 0.88/km2,respectively,which were much higher than those of the low susceptibility zones.The top 20%interval of landslide occurrence probability contained 89%of the historical landslides but only accounted for 10.3%of the total area.Our results indicate that the distribution of high susceptibility zones was more focused without contain-ing more"stable"pixels.Therefore,the obtained susceptibility map is suitable for application to landslide risk management practices.  相似文献   

15.
The purpose of the current study is to produce landslide susceptibility maps using different data mining models. Four modeling techniques, namely random forest (RF), boosted regression tree (BRT), classification and regression tree (CART), and general linear (GLM) are used, and their results are compared for landslides susceptibility mapping at the Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslide locations were identified and mapped from the interpretation of different data types, including high-resolution satellite images, topographic maps, historical records, and extensive field surveys. In total, 125 landslide locations were mapped using ArcGIS 10.2, and the locations were divided into two groups; training (70 %) and validating (25 %), respectively. Eleven layers of landslide-conditioning factors were prepared, including slope aspect, altitude, distance from faults, lithology, plan curvature, profile curvature, rainfall, distance from streams, distance from roads, slope angle, and land use. The relationships between the landslide-conditioning factors and the landslide inventory map were calculated using the mentioned 32 models (RF, BRT, CART, and generalized additive (GAM)). The models’ results were compared with landslide locations, which were not used during the models’ training. The receiver operating characteristics (ROC), including the area under the curve (AUC), was used to assess the accuracy of the models. The success (training data) and prediction (validation data) rate curves were calculated. The results showed that the AUC for success rates are 0.783 (78.3 %), 0.958 (95.8 %), 0.816 (81.6 %), and 0.821 (82.1 %) for RF, BRT, CART, and GLM models, respectively. The prediction rates are 0.812 (81.2 %), 0.856 (85.6 %), 0.862 (86.2 %), and 0.769 (76.9 %) for RF, BRT, CART, and GLM models, respectively. Subsequently, landslide susceptibility maps were divided into four classes, including low, moderate, high, and very high susceptibility. The results revealed that the RF, BRT, CART, and GLM models produced reasonable accuracy in landslide susceptibility mapping. The outcome maps would be useful for general planned development activities in the future, such as choosing new urban areas and infrastructural activities, as well as for environmental protection.  相似文献   

16.
The identification of landslide-prone areas is an essential step in landslide hazard assessment and mitigation of landslide-related losses.In this study,we applied two novel deep learning algorithms,the recurrent neural network(RNN)and convolutional neural network(CNN),for national-scale landslide susceptibility mapping of Iran.We prepared a dataset comprising 4069 historical landslide locations and 11 conditioning factors(altitude,slope degree,profile curvature,distance to river,aspect,plan curvature,distance to road,distance to fault,rainfall,geology and land-sue)to construct a geospatial database and divided the data into the training and the testing dataset.We then developed RNN and CNN algorithms to generate landslide susceptibility maps of Iran using the training dataset.We calculated the receiver operating characteristic(ROC)curve and used the area under the curve(AUC)for the quantitative evaluation of the landslide susceptibility maps using the testing dataset.Better performance in both the training and testing phases was provided by the RNN algorithm(AUC=0.88)than by the CNN algorithm(AUC=0.85).Finally,we calculated areas of susceptibility for each province and found that 6%and 14%of the land area of Iran is very highly and highly susceptible to future landslide events,respectively,with the highest susceptibility in Chaharmahal and Bakhtiari Province(33.8%).About 31%of cities of Iran are located in areas with high and very high landslide susceptibility.The results of the present study will be useful for the development of landslide hazard mitigation strategies.  相似文献   

17.
This case study presented herein compares the GIS-based landslide susceptibility mapping methods such as conditional probability (CP), logistic regression (LR), artificial neural networks (ANNs) and support vector machine (SVM) applied in Koyulhisar (Sivas, Turkey). Digital elevation model was first constructed using GIS software. Landslide-related factors such as geology, faults, drainage system, topographical elevation, slope angle, slope aspect, topographic wetness index, stream power index, normalized difference vegetation index, distance from settlements and roads were used in the landslide susceptibility analyses. In the last stage of the analyses, landslide susceptibility maps were produced from ANN, CP, LR, SVM models, and they were then compared by means of their validations. However, area under curve values obtained from all four methodologies showed that the map obtained from ANN model looks like more accurate than the other models, accuracies of all models can be evaluated relatively similar. The results also showed that the CP is a simple method in landslide susceptibility mapping and highly compatible with GIS operating features. Susceptibility maps can be easily produced using CP, because input process, calculation and output processes are very simple in CP model when compared with the other methods considered in this study.  相似文献   

18.
Landslide susceptibility assessment is a major research topic in geo-disaster management. In recent days, various landslide susceptibility and landslide hazard assessment methodologies have been introduced with diverse thoughts of assessment and validation method. Fundamentally, in landslide susceptibility zonation mapping, the susceptibility predictions are generally made in terms of likelihoods and probabilities. An overview of landslide susceptibility zoning practices in the last few years reveals that susceptibility maps have been prepared to have different accuracies and reliabilities. To address this issue, the work in this paper focuses on extreme event-based landslide susceptibility zonation mapping and its evaluation. An ideal terrain of northern Shikoku, Japan, was selected in this study for modeling and event-based landslide susceptibility mapping. Both bivariate and multivariate approaches were considered for the zonation mapping. Two event-based landslide databases were used for the susceptibility analysis, while a relatively new third event landslide database was used in validation. Different event-based susceptibility zonation maps were merged and rectified to prepare a final susceptibility zonation map, which was found to have an accuracy of more than 77 %. The multivariate approach was ascertained to yield a better prediction rate. From this study, it is understood that rectification of susceptibility zonation map is appropriate and reliable when multiple event-based landslide database is available for the same area. The analytical results lead to a significant understanding of improvement in bivariate and multivariate approaches as well as the success rate and prediction rate of the susceptibility maps.  相似文献   

19.
The main objective of this study is to investigate potential application of frequency ratio (FR), weights of evidence (WoE), and statistical index (SI) models for landslide susceptibility mapping in a part of Mazandaran Province, Iran. First, a landslide inventory map was constructed from various sources. The landslide inventory map was then randomly divided in a ratio of 70/30 for training and validation of the models, respectively. Second, 13 landslide conditioning factors including slope degree, slope aspect, altitude, plan curvature, stream power index, topographic wetness index, sediment transport index, topographic roughness index, lithology, distance from streams, faults, roads, and land use type were prepared, and the relationships between these factors and the landslide inventory map were extracted by using the mentioned models. Subsequently, the multi-class weighted factors were used to generate landslide susceptibility maps. Finally, the susceptibility maps were verified and compared using several methods including receiver operating characteristic curve with the areas under the curve (AUC), landslide density, and spatially agreed area analyses. The success rate curve showed that the AUC for FR, WoE, and SI models was 81.51, 79.43, and 81.27, respectively. The prediction rate curve demonstrated that the AUC achieved by the three models was 80.44, 77.94, and 79.55, respectively. Although the sensitivity analysis using the FR model revealed that the modeling process was sensitive to input factors, the accuracy results suggest that the three models used in this study can be effective approaches for landslide susceptibility mapping in Mazandaran Province, and the resultant susceptibility maps are trustworthy for hazard mitigation strategies.  相似文献   

20.
The aim of this study is to produce landslide susceptibility mapping by probabilistic likelihood ratio (PLR) and spatial multi-criteria evaluation (SMCE) models based on geographic information system (GIS) in the north of Tehran metropolitan, Iran. The landslide locations in the study area were identified by interpretation of aerial photographs, satellite images, and field surveys. In order to generate the necessary factors for the SMCE approach, remote sensing and GIS integrated techniques were applied in the study area. Conditioning factors such as slope degree, slope aspect, altitude, plan curvature, profile curvature, surface area ratio, topographic position index, topographic wetness index, stream power index, slope length, lithology, land use, normalized difference vegetation index, distance from faults, distance from rivers, distance from roads, and drainage density are used for landslide susceptibility mapping. Of 528 landslide locations, 70 % were used in landslide susceptibility mapping, and the remaining 30 % were used for validation of the maps. Using the above conditioning factors, landslide susceptibility was calculated using SMCE and PLR models, and the results were plotted in ILWIS-GIS. Finally, the two landslide susceptibility maps were validated using receiver operating characteristic curves and seed cell area index methods. The validation results showed that area under the curve for SMCE and PLR models is 76.16 and 80.98 %, respectively. The results obtained in this study also showed that the probabilistic likelihood ratio model performed slightly better than the spatial multi-criteria evaluation. These landslide susceptibility maps can be used for preliminary land use planning and hazard mitigation purpose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号