首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
喀斯特地区不同石漠化等级的结构和格局是实现区域石漠化治理的重要基础信息,受技术手段的限制,目前这方面的研究进展仍非常缓慢。随着无人机技术的快速发展,高精度的地表信息获取越来越方便、且成本较低。本研究利用无人机影像,对比了基于像元的非监督和监督分类方法以及面向对象的分类方法在裸岩信息提取中的表现,发现面向对象分类结果具有更高精度。基于获得的裸岩分布信息的研究结果表明:① 岩石平均斑块面积与裸岩率呈负相关的关系,岩石斑块个数与裸岩率呈正相关关系;② 通过对比不同裸岩率(11%、20%、29%和48%)基质的景观斑块指数、景观形状指数和景观破碎度指数对不同裸岩率的景观分布的影响,从而表明了在不同的石漠化地区随着裸岩率的增加,岩石形状指数与岩石破碎度指数均逐渐增加,进而表明石漠化程度越严重;③ 裸岩率不同的地区表现不同的分布形态和斑块特征,裸岩率越高,岩石越破碎,斑块分布较为分散。小尺度斑块景观格局与区域的生态过程有着重要关系,开展小尺度景观格局的研究会深化区域尺度石漠化发展过程的理解。石漠化地区的小尺度斑块景观格局变化影响区域的生态过程,对以后的石漠化过程以及未来石漠化演变的发展有重要的启示作用。  相似文献   

2.
Evapotranspiration(ET) is a crucial part of the global hydrological cycle, and quantifying ET components is significant for understanding the global water cycle and energy balance. However, there is no consensus on the value of ET components, especially in topographic abrupt change zone, such as eastern margin of the Qinghai-Tibet Platea, where values of ET changes along the altitudinal gradients. Our aim is to explore the influencing factors in partitioning evapotranspiration and how ET components change with increasing elevations. A novel approach was proposed to estimate ET components by adding net solar radiation(Rn) instead of the vapor pressure deficit(VPD) into the underlying water use efficiency(u WUE) model based on one-year continuous measurements of flux data along the elevation gradient on Mount Gongga. Correlation analysis shows that the u WUE model's performance can be improved significantly by considering Rn instead of VPD, with correlation coefficients increasing by 35%-64%. The ratios of transpiration(T) to ET(T/ET) were 0.47, 0.48, 0.50 and 0.35 for the deciduous broadleaf forest(BF), mixed coniferous and deciduous broadleaf forest(MF), evergreen needle forest(ENF) and shrub land(SL), respectively. Leaf area index(LAI) and air temperature(Ta) were the two main controlling factors in determining T/ET during the growing season and at an annual scale, while Rn and Ta played more important roles during the dormant season. This study highlights the importance of incorporating Rn in partitioning evapotranspiration by using the water use efficiency(WUE) method in a humid mountainous region, which can improve the estimation of T/ET on a global scale.  相似文献   

3.
Karst rocky desertification is one of the major ecological and environmental problems that threaten the sustainable development of southwestern China. It is caused by irrational and intensive land-use patterns in karst geo-ecological environment. Therefore, it is vital to identify how human forces work on this degraded environment. Based on the soil erosion information in 2000 and remote sensing images of Guanling County collected in 2000 and 2007, four grades of karst rocky desertification data in 14 villages of Guanling County were extracted. Impacts of population, affluence, and other human forces on karst rocky desertification were analyzed using STIRPAT model. The results show that: 1) Factors of population and affluence had strong influence on karst rocky desertification. In the STIRPAT model analysis, the population and affluence coefficients were positive, indicating that the increase in population and affluence would lead to more serious desertification. 2) Factors of farmer correlated with karst rocky desertification negatively, especially the way of viewing the relationship between people and nature, and the level of knowledge about rocky desertification. Government behavior was not a significant factor in this analysis. 3) The findings provide evidence that STIRPAT model can be used to analyze the relationship between human driving forces and rocky desertification.  相似文献   

4.
我国南方喀斯特地区岩石裸露率高、土层浅薄且分布不均,这种特殊的岩土组构如何影响水文过程对于准确估算岩溶碳通量具有重要意义。水化学径流法是计算流域尺度岩溶碳通量的常用方法,其中流域面积和流量作为2个重要参数在喀斯特地区往往难以准确获取。在普定喀斯特生态系统观测研究站设计了一组岩土比(1:1和4:1)和一组土层厚度(5,20,100 cm)共计5种岩土组构的模拟试验场。通过一个完整水文年的流量和水化学监测,定量研究了岩石裸露率和土层厚度对水文过程以及岩溶碳通量的影响。研究结果表明,5个模拟试验场岩溶碳通量平均值为(17±3) gC/m2/a,受渗漏量控制,雨季(5-10月)约占95%;岩石裸露率(2组岩土组构之间)对渗漏量的影响可达14%,且随着岩石裸露率增加,入渗系数也相应增加;土层厚度对渗漏量的影响仅在1%~2%之间。此外,对8个野外流域观测数据的分析发现,入渗系数与岩溶碳通量的相关性最为显著,说明入渗系数是喀斯特地区不同岩土组构地质背景影响和控制岩溶碳通量的主要因素,同时这种影响可能随降雨量变化而变化,即入渗系数并非常数。   相似文献   

5.
It is difficult to scale up measurements of the sap flux density (Js) for the characterization of tree or stand transpiration (E) due to spatial variations in JS and their temporal changes. To assess spatial variations in the sap flux density of Korean pine (Pinus koraiensis) and their effects on E estimates, we measured the Js using Granier-type sensors. Within trees, the Js decreased exponentially with the radial depth, and the Js of the east aspects were higher than those of the west aspects. Among trees, there was a positive relationship between Js and the tree diameter at breast height, and this positive relationship became stronger as the transpiration demand increased. The spatial variations that caused large errors in E estimates (i.e., up to 110.8 % when radial variation was ignored) had varied systematically with environmental factors systematic characteristics in relation to environmental factors. However, changes in these variations did not generate substantial errors in the E estimates. For our study periods, the differences in the daily E (E D) calculated by ignoring radial, azimuthal and tree-to-tree variations and the measured E D were fairly constant, especially when the daily vapor pressure deficit (D_D) was higher than 0.6 kPa. These results imply that the effect of spatial variations changes on sap flow can be a minor source of error compared with spatial variations (radial, azimuthal and tree-to-tree variations) when considering E estimates.  相似文献   

6.
In order to study the spatial-temporal change and environmental management of regional karst LUCC (land use and land cover change) and its causative environmental effect-rocky dcsertification by integrating qualitative analysis and quantitative analysis, and relying on RS, GIS and GPS (3S) techniques, karst land rocky derification dynamic monitoring and visualization management information system (KLRD.DMVM.IS) is framed, which includes design aim and structure model, function design, database design and model system design. The model system design gives priority to dynamic monitoring, drive force diagnosis, comprehensive evaluation and decision support of karst rocky desertification. From the viewpoint of model type, mathematic expression and its meaning, the dynamic monitoring models are concretely devised to reflect the spatial and temporal changing features and the trend of karst LUCC and rocky desertification. Taking Du‘an Yao Autonomic County of Guangxi as an example, the KLRD.DMVM.1S is systematically analyzed in the application of the process and trend of karst LUCC and rocky desertiflcation in Du‘an County, and it provides the technical support for the study on karst land rocky desertification.  相似文献   

7.
Relationships between topography,soil properties and the distribution of plant communities on two different rocky hillsides are examined in two subtropical karst forests in the Maolan National Natural Reserve,southwestern China.Surveys of two 1-ha permanent plots at each forest,and measurements of four topographic and thirteen edaphic factors on the slopes were performed.Twoway Indicator Species Analysis(TWINSPAN) and Detrended Canonical Correspondence Analysis(DCCA) were used for the classification of plant communities and for vegetation ordination with environmental variables.One hundred 10m×10m quadrats in each plot were classified into four plant community types.A clear altitudinal gradient suggested that elevation was important in community differentiation.The topography and soil explained 51.06% and 54.69% of the variability of the distribution of plant species in the two forest plots,respectively,indicating both topographic factors(eg.elevation,slope and rock-bareness rate) and edaphic factors(e.g.total P,K and exchangeable Ca) were the important drivers of the distribution of woody plant species in subtropical karst forest.However,our results suggested that topographical factors were more important than edaphic ones in affecting local plant distribution on steep slopes with extensive rock outcrops,while edaphic factors were more influential on gentle slope and relatively thick soil over rock in subtropical karst forest.Understanding relationships between vegetation and environmental factors in karst forest ecosystems would enable us to apply these findings in vegetation management strategies and restoration of forest communities.  相似文献   

8.
本文主要介绍了喀斯特石漠化动态监测与驱动诊断信息系统(KRD.DMDM.IS)的研制。文章论述了该系统应用的ArcObjects技术及其二次开发层次、一般开发步骤和应用的部分接口,采用了Geodatabase数据模型建立数据库,并将支持C/S体系结构的空间数据库管理器(ArcSDE)集成于系统中来,较好地解决了对空间和非空间数据进行高效率操作的数据库接口;构建了马尔柯夫模型和驱动诊断模型,对广西都安瑶族自治县的石漠化动态变化、演变趋势和形成机制进行了深入分析,从而为该地区的喀斯特石漠化综合治理工作提供有益的帮助。  相似文献   

9.
The effect of vegetation on the water-heat exchange in the freezing-thawing processes of active layer is one of the key issues in the study of land surface processes and in predicting the response of alpine ecosystems to climate change in permafrost regions. In this study, we used the simultaneous heat and water model to investigate the effects of plant canopy on surface and subsurface hydrothermal dynamics in the Fenghuoshan area of the QinghaiTibet Plateau by changing the leaf area index(LAI) and keeping other variables constant. Results showed that the sensible heat, latent heat and net radiation are increased with an increase in the LAI. However, the ground heat flux decreased with an increasing LAI. The annual total evapotranspiration and vegetation transpiration ranged from-16% to 9% and-100% to 15%, respectively, in response to extremes of doubled and zero LAI, respectively. There was a negative feedback between vegetation and the volumetric unfrozen water content at 0.2 m through changing evapotranspiration. The simulation results of soil temperature and moisture suggest that better vegetation conditions are conducive to maintaining the thermal stability of the underlying permafrost, and the advanced initial thawing time and increasing thawing rate of soil ice with the increase in the LAI may have a great influence on the timing and magnitude of supra-permafrost groundwater. This study quantifies the impact of vegetation change on surface and subsurface hydrothermal processes and provides a basic understanding for evaluating the impact of vegetation degradation on the water-heat exchange in permafrost regions under climate change.  相似文献   

10.
Abies georgei var. smithii is a dominant species playing an important role in protecting biodiversity and sustaining the forestry ecosystems in Southeastern Tibetan Plateau. Stem sap flows of five different diameters at the breast height(DBH) A. georgei var. smithii samples were monitored continuously with the thermal dissipation probe for the entire growing period in order to understand the water transportation mechanism and the effects of environmental factors on its transpiration and growth. Relative environment factors, temperature and humidity of air, photosynthetically active radiation, rainfall, and wind speed, soil moisture, etc. were measured by the automatic weather stations. Diurnal and seasonal variations in sap flow rate with the different stem diameters and their correlations with meteorological factors were analyzed. The diurnal change in sap flow velocity showed a single-peak curve at the daily time scale, whereas a lower sap flow velocity can be observed in the largest DBH sample tree at night. The maximum average velocity was observed in August, whereas the minimum velocity was observed in January, and a large amount of water evaporated in summer owing to the higher sap flow velocity. In addition, sap flow velocity was closely related to changes in the micrometeorological factors, with average sap flow velocity showing significant linear correlations with air temperature, photosynthetically active radiation, rainfall, and vapor pressure deficit of air and soil moisture. Therefore, some measures, improving the light and temperature conditions, should be taken for protecting A. georgei var. smithii population in the Tibetan Plateau.  相似文献   

11.
The rocky desert in a karst area directly causes the lack of soil, water and forest, hence leading to the poverty there. In 1990, the villagers from the Muzhe Village in Benggu Township, Xichou County, Yunnan declared a war against rocky desert in an attempt to ask the fields for more yields. They invented a distinctive land rehabilitation and sustainable use pattern called "transforming heaven and earth" that had been practiced in Southwest China's karst areas. The key mechanism of the pattern was to develop terraced fields with well conserved soil, water and fertility by exploding rocks in the fields, building stone walls, gathering more soil, and improving soil quality and productivity for the fields in combination with building of irrigation facilities and roads, as well as with forestation and agriculture structure adjustment. The purpose of the pattern was to alleviate poverty in the karst areas by improving soil productivity and promoting agricultural development. A typical area was studied with the help of Participatory Rural Appraisal (PRA) and the pattern was carried out there for fifteen years, have produced excellent ecological benefits and good economic benefits. Its application in the area approved that it was a sustainable land use pattern for rocky desert areas.  相似文献   

12.
Karst rocky desertification is a geo-ecological problem in Southwest China. The rocky desertification risk zone delineation could be used as a guide for the regional and hierarchical rocky desertification management and prevention. We chose the middle and lower reaches of the Houzhai underground basin on the karst plateau in Puding County, Guizhou Province, China as the study area and selected land use type, elevation, slope, aspect, lithology and settlement buffer as the main driving factors of the rocky desertification. The potential risk of rocky desertification was quantified with the factor-weights union method and statistical analysis method. Five grades of rocky desertification risk were delineated based on Geographic Information System. The extremely low, low, moderate, high and extremely high rocky desertification risk zones accounted for 5.01%, 44.17%, 33.92%, 15.59% and 1.30%, respectively. As a whole, the rocky desertification risk level was moderate because the area of low and moderate rocky desertification risk zones occupied 78.09% of the study area. However, more than half of the area (about 50.81%) was predicted to have moderate rocky desertification risk and above, indicating that the study area was subject to rocky desertification. Rocky desertification risk was higher in the southeast and lower in the northwest of the study area. Distinct differences in the distribution of rocky desertification risk zones corresponding to different factors have been found.  相似文献   

13.
To evaluate the diurnal and seasonal variations in soil respiration(Rs) and understand the controlling factors, we measured carbon dioxide(CO2) fluxes and their environmental variables using a LI-6400 soil CO2 flux system at a temperate Leymus chinensis meadow steppe in the western Songnen Plain of China in the growing season(May–October) in 2011 and 2012. The diurnal patterns of soil respiration could be expressed as single peak curves, reaching to the maximum at 11:00–15:00 and falling to the minimum at 21:00–23:00(or before dawn). The time-window between 7:00 and 9:00 could be used as the optimal measuring time to represent the daily mean soil CO2 efflux. In the growing season, the daily value of soil CO2 efflux was moderate in late spring(1.06–2.51 μmol/(m2·s) in May), increased sharply and presented a peak in summer(2.95–3.94 μmol/(m2·s) in July), and then decreased in autumn(0.74–0.97 μmol/(m2·s) in October). Soil temperature(Ts) exerted dominant control on the diurnal and seasonal variations of soil respiration. The temperature sensitivity of soil respiration(Q10) exhibited a large seasonal variation, ranging from 1.35 to 3.32, and decreased with an increasing soil temperature. Rs gradually increased with increasing soil water content(Ws) and tended to decrease when Ws exceeded the optimum water content(27%) of Rs. The Ts and Ws had a confounding effect on Rs, and the two-variable equations could account for 72% of the variation in soil respiration(p 0.01).  相似文献   

14.
Land cover type is critical for soil organic carbon(SOC) stocks in territorial ecosystems. However, impacts of land cover on SOC stocks in a karst landscape are not fully understood due to discontinuous soil distribution. In this study, considering soil distribution, SOC content and density were investigated along positive successional stages(cropland, plantation, grassland, scrubland, secondary forest, and primary forest) to determine the effects of land cover type on SOC stocks in a subtropical karst area. The proportion of continuous soil on the ground surface under different land cover types ranged between 0.0% and 79.8%. As land cover types changed across the positive successional stages, SOC content in both the 0–20 cm and 20–50 cm soil layers increased significantly. SOC density(SOCD) within 0–100 cm soil depth ranged from 1.45 to 8.72 kg m-2, and increased from secondary forest to primary forest, plantation, grassland, scrubland, and cropland, due to discontinuous soil distribution. Discontinuous soil distribution had a negative effect on SOC stocks, highlighting the necessity for accurate determination of soil distribution in karst areas. Generally, ecological restoration had positive impacts on SOC accumulation in karst areas, but this is a slow process. In the short term, the conversion of croplandto grassland was found to be the most efficient way for SOC sequestration.  相似文献   

15.
In order to reveal transpiration rates of wetland plants and its relationships to micro- meterological factors in a mountain valley wetland, relative humidity, air temperature, leaf temperature, soil temperature, photo flux density and transpiration rates were measured once two hours in a Carex meyeriana wetland of the Changbai Mountain valley in dry (July) and wet (September) of 2003, respectively. Results showed that the tendency of "decreasing after increasing" was obvious in wet season. However, a relatively stable trend was observed for the transpiration in dry season.. Generally, the photon flux density of Carex meyeriana was higher in wet season than that in dry season. However, the variabilities of leaf temperature, air temperature and relative humidity were similar in both seasons. Higher transpiration rates of Carex meyeriana leaves were observed in July (varied from 40 to 150 mol.m^-2.s^-1) compared to those (varied from 7 to 14 mol.m^-2.s^-1) in September. Transpiration rates were significantly correlated with air temperature (P〈0.01), leaf temperature (P〈0.01), and wind speed (P〈0.05), but correlationship between relative humidity and photo flux density was not significant (P〈0.05).  相似文献   

16.
中国国土绿化状况公报指出,2010—2020年中国许多城市的绿化面积增加、绿化质量提高,可随之而来的影响人体健康的致敏性花粉风险也逐渐提高。本文利用遥感手段获得北京市乔木和草地生长区域平均植被叶面积指数(LAI)时间序列作为植被物候信息,并将其作为花粉浓度预测因子之一,结合日气象数据,使用具有外部输入的非线性自回归神经网络模型(NARXnet),进行北京市次日花粉浓度的预测。结果显示:① 通过逐步回归计算,对于春季数据,日均气温3日平滑,积温,叶面积指数(LAI)和叶面积指数一阶导为次日花粉浓度预测的关键变量;对于秋季数据,日均气温、平均风速、最低日气温、日均气温3日平滑、积温和叶面积指数(LAI)为次日花粉浓度预测的关键变量;② 加入遥感物候信息可显著地提高NARXnet模型的春秋时段的花粉浓度的预测精度。使用本文提出的结合叶面积指数的NARX模型后,预测模型的总体精度为71%。由此,本研究认为在原有气象因子的基础上,辅之以用遥感技术手段获取的大面积植被物候信息,如叶面积指数动态,可作为预测次日花粉浓度的一种有效手段。  相似文献   

17.
Carbon sequestration occurs when cultivated soils are re-vegetated. In the hilly area of the Loess Plateau, China, black locust(Robinia pseudoacacia) plantation forest and grassland were the two main vegetation types used to mitigate soil and water loss after cultivation abandonment. The purpose of this study was to compare the soil carbon stock and flux of these two types of vegetation which restored for 25 years. The experiment was conducted in Yangjuangou catchment in Yan′an City, Shaanxi Province, China. Two adjacent slopes were chosen for this study. Six sample sites were spaced every 35–45 m from summit to toe slope along the hill slope, and each sample site contained three sampling plots. Soil organic carbon and related physicochemical properties in the surface soil layer(0–10 cm and 10–20 cm) were measured based on soil sampling and laboratory analysis, and the soil carbon dioxide(CO2) emissions and environmental factors were measured in the same sample sites simultaneously. Results indicated that in general, a higher soil carbon stock was found in the black locust plantation forest than that in grassland throughout the hill slope. Meanwhile, significant differences in the soil carbon stock were observed between these two vegetation types in the upper slope at soil depth 0–10 cm and lower slope at soil depth 10–20 cm. The average daily values of the soil CO2 emissions were 1.27 μmol/(m2·s) and 1.39 μmol/(m2·s) for forest and grassland, respectively. The soil carbon flux in forest covered areas was higher in spring and less variation was detected between different seasons, while the highest carbon flux was found in grassland in summer, which was about three times higher than that in autumn and spring. From the carbon sequestration point of view, black locust plantation forest on hill slopes might be better than grassland because of a higher soil carbon stock and lower carbon flux.  相似文献   

18.
The ability to manage and restore plant communities in the face of human-induced landscape change may rely on our ability to predict how species respond to environmental variables.Understanding this response requires examining factors or their interactions that have influence on plant and resource availability.Our objective was to analyze the relationships between changes in plant abundance and the interaction among environmental habitat factors including soil, geological(rock type), and other environmental variables in the Longhushan karst mountains ecosystem.Species density and dominance were examined using ANOVA, ANCOVA,and Generalized Linear Models to establish the single or combined effects of these groups of factors.The results showed that trends in abundance were mainly affected by rock type(related to the percentage content of dolomite and calcite), soil characteristics in association with topography.Both plant indices were higher in dolomite dominated areas and varied positively with moisture, and elevation, but negatively with organic matter, while density also increased with slope degree.The results demonstrate that significant variations in species abundance was produced with the combination of variables from soil, geological, andenvironmental factors, suggesting their interaction influence on plants.We postulate that spatial variations in plant abundance in karst ecosystem depends on the carbonate rock type in addition to water and nutrient availability which are mainly controlled by topography and other factors such as soil texture and temperature.The study suggests that in karst areas carbonate rock type, in addition to local environmental variables, should be taken into account when analyzing the factors that have impact on plant communities.  相似文献   

19.
20.
In order to reveal transpiration rates of wetland plants and its relationships to micro-meterological factors in a mountain valley wetland, relative humidity, air temperature, leaf temperature, soil temperature, photo flux density and transpiration rates were measured once two hours in a Carex meyeriana wetland of the Changbai Mountain valley in dry (July) and wet (September) of 2003, respectively. Results showed that the tendency of "decreasing after increasing" was obvious in wet season. However, a relati...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号