首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Debris flows are recurrent natural hazards in many mountainous regions.This paper presents a numerical study on the propagation of debris flows in natural erodible open channels,in which the bed erosion and sedimentation processes are important.Based on the Bingham fluid theory,a mathematical model of the two-dimensional non-constant debris flow is developed.The governing equations include the continuity and momentum conservation equations of debris flow,the sediment convection-diffusion equation,the bed erosion-deposition equation and the bed-sediment size gradation adjustment equation.The yield stress and shear stress components are included to describe the dynamic rheological properties.The upwind control-volume Finite Volume Method (FVM) is applied to discretize the convection terms.The improved SIMPLE algorithm with velocity-free-surface coupled correction is developed to solve the equations on non-orthogonal,quadrilateral grids.The model is applied to simulate a debris flow event in Jiangjia Gully,Yunnan Province and to predict the flow pattern and bed erosion-deposition processes.The results show the effectiveness of the proposed numercial model in debris flow simulation and potential hazard analysis.  相似文献   

2.
Characteristic rainfall for warning of debris flows   总被引:4,自引:2,他引:2  
A characteristic rainfall is introduced to overcome the difficulties encountered in determining a critical rainfall value for triggering debris flow.The characteristic value is defined as the rainfall at which debris-flow occurrence probability shows a rapid increase,and can be used as a warning rainfall threshold for debris flows.Investigation of recorded debris flows and 24-hour rainfall data at Jiangjia basin,Yunnan Province,in southwestern China,demonstrates the existence of such a characteristic rainfa...  相似文献   

3.
Debris flows in Jiangjia Ravine in Yunnan province,China are not only triggered by intense storms but also by short-duration and low-intensity rainfalls.This reflects the significance of antecedent rainfall.This paper tries to find the debris flowtriggering threshold by considering antecedent rainfall through a case study in Jiangjia Ravine.From 23 debris flow events,the I-D(Intensity-Duration) threshold was found,which is very close to the line of 95th percentile regression line of rainfall events,representing that 95% of rainfalls can potentially induce debris flows and reflects the limitation of I-D threshold application in this area.Taking into account the effect of antecedent rainfall,the debris flowtriggering threshold for rainfall quantity and intensity is statistically and empirically derived.The relationships can be used in debris flow warning system as key thresholds.Coupling with the rainfall characteristics in this area,new thresholds are proposed as triggering and warning thresholds.  相似文献   

4.
It is of great significance for gully prevention and management to identify the potential sediment source of debris flow. Debris flow in a gully always originates from tributaries that have different gravity potential energies and sediment condition. In this study, tributaries of the Jiangjia Gully(JJG) in Yunnan province, China, are taken as the study area to determine the possible sediment sources of debris flow. It was found that tributaries with a high evolution index(EI, the integral of the hypsometric curve) always had high gravity potential energy, which favors the occurrence of landslide activity. Furthermore, the relationship between sediment distribution, gravity potential energy, and EI is compared, respectively. The results showed that the EI had a greater influence on the occurrence of landslides, and sediments were concentrated in tributaries with EI between 0.5 and 0.6. Accordingly, tributaries with EI 0.5 were identified as the sediment sources of debris flow. In addition, the shape of a tributary was related to EI and can reflect the condition of water and sediment storage.  相似文献   

5.
Debris flows consist of grains of various sizes ranging from 10~(-6) m ~1 m. Field observations in the Jiangjia Gully (JJG) and other sites throughout China indicate that the grain size distribution of sediment in debris flows can be characterized by an exponential function fit to the cumulative distribution. The exponent value for the function varies by location and may be useful in distinguishing between debris flows from different valleys. For example, minimum values and ranges of the exponent are associated with the high frequency of debris flows in the JJG. Furthermore, the distribution presents piecewise fractality (i.e. scaling laws hold in various ranges of the grain size) and we propose that the fractal structure determines the matrix and that the fractal dimension plays a crucial role in material exchange between a debris flow and the substrate it flows over. Finally, the empirical data support an exponential relation between grain composition and non-dimensional shear stress for the critical state of the channel. Overall we propose a material-determinism approach to studying debris flows which contrasts with the enviro-determinism that has dominated much recent work in this field.  相似文献   

6.
Jiangjia Ravine is a world-famous debris flow valley in Dongchuan,Yunnan Province,China.Every year large numbers of landslides and collapses happened and caused enormous damages to people’s properties and lives.With longtime observation and testing in Jiangjia Ravine we had found out one kind of special landslide which had the characteristics of landslide and collapse.Landslide and collapse supplied sufficient materials for debris flow.When a debris flow broke out,some kind of intergrowth existed among rainfall,landslide and debris flow.In order to study the intergrowth and some key parameters,we carried out artificial rainfall landslide tests and model experiments to observe the phenomena such as collapse,surface slide and surface flow.By observing the experimental phenomena and monitoring water contents,the transformation process among landslide deposits and debris flow under the condition of rainfall had been analyzed.Research results revealed the relationship of this kind of intergrowth among rainfall,landslide and debris flow in Jiangjia Ravine.Meanwhile,it was found that this kind of intergrowth relationship existed only when the moisture content was in a certain range.That is,the critical state seemed to be existed in the transformation process.  相似文献   

7.
Low frequency infrasonic waves are emitted during the formation and movement of debris flows, which are detectable in a radius of several kilometers, thereby to serve as the precondition for their remote monitoring.However, false message often arises from the simple mechanics of alarms under the ambient noise interference.To improve the accuracy of infrasound monitoring for early-warning against debris flows, it is necessary to analyze the monitor information to identify in them the infrasonic signals characteristic of debris flows.Therefore, a large amount of debris flow infrasound and ambient noises have been collected from different sources for analysis to sum up their frequency spectra, sound pressures, waveforms, time duration and other correlated characteristics so as to specify the key characteristic parameters for different sound sources in completing the development of the recognition system of debris flow infrasonic signals for identifying their possible existence in the monitor signals.The recognition performance of the system has been verified by simulating tests and long-term in-situ monitoring of debris flows in Jiangjia Gully,Dongchuan, China to be of high accuracy and applicability.The recognition system can provide the local government and residents with accurate precautionary information about debris flows in preparation for disaster mitigation and minimizing the loss of life and property.  相似文献   

8.
The triggering mechanisms of debris flows were explored in the field using artificial rainfall experiments in two gullies, Dawazi Gully and Aizi Gully, in Yunnan and Sichuan Provinces, China, respectively. The soils at both sites are bare, loose and cohesive gravel-dominated. The results of a direct shear test, rheological test and back-analysis using soil mass stability calculations indicate that the mechanisms responsible for triggering debris flows involved the decreases in static and dynamic resistance of the soil. The triggering processes can be divided into 7 stages: rainfall infiltration, generation of excess runoff, high pore water pressure, surface erosion, soil creep, soil slipping, debris flow triggering and debris flow increment. In addition, two critical steps are evident: (i) During the process of the soil mass changing from a static to a mobile state, its cohesion decreased sharply (e.g., the cohesion of the soil mass in Dawazi Gully decreased from 0.520 to 0.090 kPa, a decrease of 83%). This would have reduced the soil strength and the kinetic energy during slipping, eventually triggered the debris flow. (ii) When the soil mass began to slip, the velocity and the volume increment of the debris flow fluctuated as a result of the interaction of soil resistance and the sliding force. The displaced soil mass from the source area of the slope resulted in the deposition of a volume of soil more than 7 - 8 times greater than that in the source area.  相似文献   

9.
Debris flow is one of the most destructive phenomena of natural hazards. Recently, major natural haz-ard, claiming human lives and assets, is due to debris flow in the world. Several practical methods for forecasting de-bris flow have been proposed, however, the accuracy of these methods is not high enough for practical use because of the stochastic and non-linear characteristics of debris flow. Artificial neural network has proven to be feasible and use-fill in developing models for nonlinear systems. On the other hand, predicting the future behavior based on a time se-ries of collected historical data is also an important tool in many scientific applications. In this study we present a three-layer feed-forward neural network model to forecast surge of debris flow according to the time series data collect-ed in the Jiangjia Ravine, situated in north part of Yunnan Province of China. The simulation and prediction of debris flow using the proposed approach shows this model is feasible, however, further studies are needed.  相似文献   

10.
On the basis of the observational data on the annual sediment transport by debris flow in recent 8 years, appling the catastrophe forecast method of Grey System Theory, this study has established the catastrophe model of the annual sediment transport by debris flow in Jiangjia Gully. It has forecasted the next potential catastrophic year in which the annual sediment transport will be over the catastrophic. threshold 2 million m3. Furthermore, it has introduced the "equal dimension-new information model", which makes the forecast be done continuously.  相似文献   

11.
In order to calculate the suspended sediment discharge of the flood debris flows into the main river,a small scale flume test was designed to simulate the process of confluence of Jiangjia Ravine and Xiangjiang River in Yunnan province,China.By test observation and data analysis,suspended sediment discharge of Debris flow after its entry into the main river was found to have a close relation with the bulk density,the confluence angle of the Debris flow and the main river,the ratio between per unit width discharge of Debris flow and main river.Based on the measured and simulated results,and statistical analysis,an empirical formula was proposed for the suspended SDR(Sediment Delivery Ratio) of the main river after the confluence of Debris flow.Compared with the observed results of Debris flow in 2009,the error between the data calculated by the empirical formula and the monitored data is only about 10%.  相似文献   

12.
泥石流危险范围预测模型及在昆明东川城区的应用   总被引:1,自引:0,他引:1  
结合泥石流危险范围模型实验数据,运用多元回归分析方法探讨了泥石流危险范围预测,并进行了误差分析。以昆明市东川城区后山3条泥石流沟为例,运用该模型对其危险范围进行了预测分析,为东川城区泥石流防灾提供了科学依据。  相似文献   

13.
Taking TM images, ETM images, SPOT images, aerial photos and other remote sensing data as fundamental sources, this research makes a thorough investigation on landslides and debris flows in Sichuan Province, China, using the method of manual interpretation and taking topography maps as references after the processes of terrain correction, spectral matching, and image mosaic. And then, the spatial characteristics of landslides and debris flows in the year of 2005 are assessed and made into figures. The environmental factors which induce landslides and debris flows such as slope, vegetation coverage, lithology, rainfall and so on are obtained by GIS spatial analysis method. Finally, the relationships of landslides or debris flows with some environmental factors are analyzed based on the grade of each environmental factor. The results indicate: 1) The landslides and debris flows are mainly in the eastern and southern area of Sichuan Province, however, there are few landslides and debris flows in the western particularly the northwestern Sichuan. 2) The landslides and debris flows of Sichuan Province are mostly located in the regions with small slope degree. The occurring rate of debris flow reduces with the increase of the vegetation coverage degree, but the vegetation coverage degree has little to do with the occurrence of landslide. The more rainfall a place has, the easier the landslides and debris flows take place.  相似文献   

14.
Fine root is critical to restrain soil erosion and its distribution pattern is of great influence on the restraining effects. This study studied the fine root biomass(Br) distribution of different aged Leucaena leucocephala(5, 10, 15 years) in debris flow source area in Jiangjia Gully by digging downward to the bottom at different distances to stem in three directions on slope. The results showed the Br increased dramatically by 143% from 5 years to 10 years and then rose slowly by 38% from 10 years to 15 years. The Br of 5 years was significantly asymmetric between uphill and alonghill directions, but there was little difference among directions for other ages, and a concentration trend appeared to exist in downhill and alonghill directions. Moreover, fine root(D≤1 mm) was significantly heavier than that of fine root(1mmD≤2 mm), playing a leading role in the vertical distribution of the whole fine root, with a logarithmic or an exponential function. The results presented may shed light on fine root distribution pattern and evaluation of its effect on slope stability in debris flow source area.  相似文献   

15.
The data on the hillslope and channelized debris flows in the Shitou area of central Taiwan occurred during Typhoons Toraji and Nali in 2001 were applied in this paper. The geomorphic parameters, including the flow length, gully gradient, drainage area and form factor of the debris flows were determined by spatial analysis using a Geographic Information System (GIS) based on the data derived from field investigation, aerial photographs, and topographical maps. According to such determined geomorphic parameters, the threshold conditions and empirical equations, such as the relationship between the gully gradient and drainage area and that between gully length and drainage area and topographic parameter, are presented and used to distinguish the geomorphic characteristics between the channelized and hillslope debris flows.  相似文献   

16.
Influences of the Wenchuan Earthquake on sediment supply of debris flows   总被引:2,自引:2,他引:0  
The 5.12 Wenchuan Earthquake and the subsequent rainstorms induced a large number of landslides, which later were transformed into debris flows. To evaluate the effect of the earthquake on the sediment supply of debris flows, eight debris flow basins near Beichuan City, Sichuan Province, China were chosen as the study area. The area variations of the debris flow source after the Wenchuan Earthquake and the subsequent rainstorm are analyzed and discussed in this paper. Interpretations of aerial photographs (after the 5.12 Wenchuan Earthquake) and SPOT5 images (after the rainstorm event of September 24, 2008) as well as field investigations were compared to identify the transformation of landslide surface in the study area, indicating that the landslide area in the eight debris flow basins significantly increased. The loose sediment area on the channel bed increased after the rainstorm event. In order to estimate the relationship of the landslide area with the rainfall intensity in different return periods, a model proposed by Uchihugi was adopted. Results show that new landslide area induced by heavy rainfall with 50-year and 100-year return period will be 0.87 km2 and 1.67 km2, respectively. The study results show the Wenchuan earthquake had particular influences on subsequent rainfall-induced debris flow occurrence.  相似文献   

17.
A large number of debris flows occurred in the Wenchuan earthquake zone after the 12 May 2008 earthquake.The risks posed by these debris flows were rather high.An appropriate model is required to predict the possible runout distance and impacted area.This paper describes a study on the runout characteristics of the debris flows that occurred in the Wenchuan earthquake zone over the past four years.A total of 120 debris flows are analyzed.Separate multivariate regression models are established for the runout distances of hill-slope debris flows and channelized debris flows.The control variables include type of debris flow,debris flow volume,and elevation difference.Comparison of the debris flows occurring before and after the earthquake shows that the runout distance increased after the earthquake due to sufficient material supply and increased mobility of the source materials.In addition,the runout distances of annual debris flow events in 2008,2010 and 2011 are analyzed and compared.There is a tendency that the runout distance decreases over time due to the decreasing source material volume and possible changes of debris flow type.Comparison between the debris flows in the earthquake zone and the debris flows in Swiss Alps,Canada,Austria,and Japan shows that the former have a smaller mobility.  相似文献   

18.
The Wenchuan earthquake caused numerous landslides and collapses that provide abundant unconsolidated material for future mobilization as debris flows.Debris flows will be very active and cause considerable damage for some time in the affected area.Because of environmental changes related to the earthquake,many potentially dangerous debris flow gullies have yet to be identified.This paper selects the upper Min River from Yinxiu to Wenchuan as the study area,interprets the unconsolidated deposits,and discusses their relationship to distance from the fault.Then,applying that information and the values of other factors relating to debris flow occurrence,the locations of potential debris flows are analyzed by multi-factor comprehensive identification and rapid identification.The multi-factor comprehensive identification employs fuzzy matter-element extension theory.The volume of unconsolidated material in the study area is about 3.28 × 108 m3.According to the analysis by multi-factor comprehensive identification,47 gullies have a high probability for potential debris flow,8 gullies have a moderate probability,and 1 gully has a low probability.  相似文献   

19.
An increase in extreme precipitation events due to future climate change will have a decisive influence on the formation of debris flows in earthquake-stricken areas. This paper aimed to describe the possible impacts of future climate change on debris flow hazards in the Upper Minjiang River basin in Northwest Sichuan of China, which was severely affected by the 2008 Wenchuan earthquake. The study area was divided into 1285 catchments, which were used as the basic assessment units for debris flow hazards. Based on the current understanding of the causes of debris flows, a binary logistic regression model was used to screen key factors based on local geologic, geomorphologic, soil, vegetation, and meteorological and climatic conditions. We used the weighted summation method to obtain a composite index for debris flow hazards, based on two weight allocation methods: Relative Degree Analysis and rough set theory. Our results showed that the assessment model using the rough set theory resulted in better accuracy. According to the bias corrected and downscaled daily climate model data, future annual precipitation (2030-2059) in the study area are expected to decrease, with an increasing number of heavy rainfall events. Under future climate change, areas with a high-level of debris flow hazard will be even more dangerous, and 5.9% more of the study area was categorized as having a high-level hazard. Future climate change will cause an increase in debris flow hazard levels for 128 catchments, accounting for 10.5% of the total area. In the coming few decades, attention should be paid not only to traditional areas with high-level of debris flow hazards, but also to those areas with an increased hazard level to improve their resilience to debris flow disasters.  相似文献   

20.
The upper Yangtze River region is one of the most frequent debris flow areas in China. The study area contains a cascade of six large hydropower stations located along the river with total capacity of more than 70 million kilowatts. The purpose of the study was to determine potential and dynamic differences in debris flow susceptibility and intensity with regard to seasonal monsoon events. We analyzed this region’s debris flow history by examining the effective peak acceleration of antecedent earthquakes, the impacts of antecedent droughts, the combined effects of earthquakes and droughts, with regard to topography, precipitation, and loose solid material conditions. Based on these factors, we developed a debris flow susceptibility map. Results indicate that the entire debris flow susceptibility area is 167,500 km2, of which 26,800 km2 falls within the high susceptibility area, with 60,900 km2 in medium and 79,800 km2 are in low susceptibility areas. Three of the six large hydropower stations are located within the areas with high risk of debris flows. The synthetic zonation map of debris flow susceptibility for the study area corresponds with both the investigation data and actual distribution of debris flows. The results of debris flow susceptibility provide base-line data for mitigating, assessing, controlling and monitoring of debris flows hazards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号