首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Woody debris (WD) is an important part of natural Pinus tabulaeformis mixed stands, and it affects the forest ecosystem stability and development. The WD spatial patterns are especially important structural characteristics that can provide insights into forest dynamics. In this paper, the WD storage, WD spatial patterns and WD associations among the main species were examined in the natural secondary forest on Loess Plateau in northwest China. Data were collected in a 1 ha (100 m × 100 m) permanent plot, and all the trees with a diameter at breast height of more than 3 cm were measured and stem-mapped. Ripley’s K functions from the spatial-point-pattern-analysis method were used to analyze the spatial distribution and associations. The results showed that: (1) The total storage of WD was 10.73 t/ha, fallen wood was the main source of WD, and the majority diameters were greater than 20 cm, and in intermediate levels of decay; (2) The overall spatial pattern was closely related to the spatial scale, which exhibited an aggregated pattern on a small scale, and a random pattern on a large scale. The spatial patterns of coarse woody debris also gradually transitioned from an aggregated pattern in fine scales to a random pattern in broader spatial scales, which matched the overall spatial pattern. The spatial intensity was gradually decreased with the increasing diameters, and increased with the decomposition classes; (3) The WD of Pinus tabulaeformis species was negatively associated with Betula platyphylla and Populus davidiana on a small scale but positively associated with these species on a large scale. The spatial pattern and interspecies relations were the results of long-term interactions between the natural secondary forest community and the surrounding natural environment. These findings would provide a scientific basis for the sustainable management and protection of natural secondary forest ecosystems on Loess Plateau.  相似文献   

2.
Close-to-nature forest management has been proposed as an effective method for improving the quality of plantation forests. Knowledge of spatial distribution patterns, structure, and succession trajectories in natural forests can provide guidelines for the establishment of close-to-nature forest plantations. Such knowledge is lacking in natural spruce (Picea crassifolia) forests in the Qilian Mountains of China, impeding the establishment of production forests. We conducted a case study in the Qilian Mountains to analyze the relationships between the naturally-formed forest patches and terrain factors, spatial heterogeneity of stand characteristics, and stand structure following harvesting disturbance. Our results suggested that spruce plantations will be effective on the N, NE, and NW slopes, at elevations between 2700 and 3300 m, and on slopes ranging from 15° to 45°. Further, planted forest patches should occupy 64% of the slope area on semi-shady slopes (NE, NW). Spatial patterns in the studied forest exhibited a strong scale-effect, and an area of 0.25 ha could be used as the most efficient plot scale for the management of spruce plantations. Partial logging is an effective method for the conversion of spruce planted forests into nearnatural forests, and the intensity of partial logging can be determined from the negative exponential function relationship between stand density and DBH. Our results provided critical information for the development of spruce plantations and conversion of existing plantations.  相似文献   

3.
In 2012 a plot was established with 1-ha area in a mixed coniferous-broadleaf forest in the Changbai Mountains, northeastern China for examining local forest processes, structure and succession. A method of O-ring statistics(paircorrelation function) was applied to analyze the spatial patterns and associations of the dominant species within different vertical layers. After the evaluation by their importance values, six tree species(or group)(i.e. Abies nephrolepis, Picea jezoensis, Pinus koraiensis, Tilia amurensis, and species group of Betula ssp. and species group of Acer ssp.) were determined as dominant trees species. It was found that some of these species exhibited closely clustered distributions at fine distances. As spatial distance increased, a random or even regular distribution gradually appeared with the exception of the upper layers of A. nephrolepis and P. koraiensis, and the lower layers of P. jezoensis, P. koraiensis and Betula ssp., which were substantially randomly distributed. Intra- and inter-species spatial associations varied in accordance with species, tree height and reciprocal distances. Positive associations were observedbetween the lower and upper height classes of trees of the same species(except for that of P. jezoensis) at fine distances. This may be owing to limited seed dispersal and geological heterogeneity. The aggregation intensity declines with increasing distances and this consistent with the predictions of self-thinning. Some coniferous trees(e.g. Pinus koraiensis) in the lower height class were positively associated with T. amurensis and group of Betula ssp. of the upper height class at some distances, suggesting that saplings of coniferous trees occupy a broader niche and can grow well under the canopy of the adult of broad-leaved trees. Negative associations were observed between upper coniferous trees and lower broad-leaved trees and between upper P. jezoensis and lower P. koraiensis, suggesting that a canopy of these trees might not provide suitable environment for the survival, establishment, and growth of lower individuals, corresponding well to Janzen-Connell hypothesis.  相似文献   

4.
Secondary forests account for a large amount of subtropical forest due to persistent anthropogenic disturbance in China. The interaction between vegetation and soil during recovery process is rather complex and dependent on forest conditions. Understanding how vegetation and soil properties changes and how their relationship develops in secondary forests is key to effective forest restoration and management. Here we explored the patterns of vegetation and soil properties as well as their correlations during forest recovery process in a subtropical forest in south China. Plots of three forest types, i.e., broadleaf-conifer mixed forest, broadleaved forest and old growth stand, were established to represent the recovery stages. The results showed that diversity patterns in the tree, shrub and herb layers were different: in the tree layer the species diversity peaked at the intermediate stage, while in the understory layers it decreased chronologically. Most of the soil factors showed an increasing trend, and different effects of soil factors were found for the three layers as well as for the two spatial scales. Together, our results suggested that vegetation and soil might be interdependent during the recovery course. Further studies are needed on exploring how vegetation interplays with soil at different scales and how nutrient limitations affects the vegetation development in a chronosequence.  相似文献   

5.
Forest structure analysis is important for understanding the properties and development of a forest community,and its outcomes can be influenced by how trees are measured in sampled plots.Although there is a general consensus on the height at which tree diameter should be measured[1.3 m:diameter at breast height(DBH)],the minimum measureddiameter(MMD)often varies in different studies.In this study,we assumed that the outcomes of forest structure analysis can be influenced by MMD and,to this end,we applied g(r)function and stand spatial structural parameters(SSSPs)to investigate how different MMDs affect forest spatial structure analysis in two pine-oak mixed forests(30 and 57 years old)in southwest China and one old-growth oak forest(120years old)from northwest China.Our results showed that 1)MMD was closely related to the distribution patterns of forest trees.Tree distribution patterns at each observational scale(r=0-20 m)tended tobecome random as the MMD increased.The older the community,the earlier this random distribution pattern appeared.2)As the MMD increased,neighboring trees became more regularly distributed around a reference tree.In most cases,however,nearest neighbors of a reference tree were randomly distributed.3)Tree species mingling decreased with increasing diameter,but it decreased slowly in older forests.4)No correlations can be found between individual tree size differentiation and MMD.We recommend that comparisons of spatial structures between communities would be more effective if using a unified MMD criterion.  相似文献   

6.
The Changbai Mountains and the Appalachian Mountains have similar spatial contexts. The elevation, latitude, and moisture gradients of both mountain ranges offer regional insight for investigating the vegetation dynamics in eastern Eurasia and eastern North America. We determined and compared the spatial patterns and temporal trends in the normalized difference vegetation index (NDVI) in the Changbai Mountains and the Appalachian Mountains using time series data from the Global Inventory Modeling and Mapping Studies 3rd generation dataset from 1982 to 2013. The spatial pattern of NDVI in the Changbai Mountains exhibited fragmentation, whereas NDVI in the Appalachian Mountains decreased from south to north. The vegetation dynamics in the Changbai Mountains had an insignificant trend at the regional scale, whereas the dynamics in the Appalachian Mountains had a significant increasing trend. NDVI increased in 55% of the area of the Changbai Mountains and in 95% of the area of the Appalachian Mountains. The peak NDVI occurred one month later in the Changbai Mountains than in the Appalachian Mountains. The results revealed a significant increase in NDVI in autumn in both mountain ranges. The climatic trend in the Changbai Mountains included warming and decreased precipitation, and whereas that in the Appalachian Mountains included significant warming and increased precipitation. Positive and negative correlations existed between NDVI and temperature and precipitation, respectively, in both mountain ranges. Particularly, the spring temperature and NDVI exhibited a significant positive correlation in both mountain ranges. The results of this study suggest that human actives caused the differences in the spatial patterns of NDVI and that various characteristics of climate change and intensity of human actives dominated the differences in the NDVI trends between the Changbai Mountains and the Appalachian Mountains. Additionally, the vegetation dynamics of both mountain ranges were not identical to those in previous broader-scale studies.  相似文献   

7.
Vegetation in high altitude areas normally exhibits the strongest response to global warming. We investigated the tundra vegetation on the Changbai Mountains and revealed the similarities and differences between the north and the southwest slopes of the Changbai Mountains in response to global warming. Our results were as follows: 1) The average temperatures in the growing season have increased from 1981 to 2015, the climate tendency rate was 0.38℃/10 yr, and there was no obvious change in precipitation observed. 2) The tundra vegetation of the Changbai Mountains has changed significantly over the last 30 years. Specifically, herbaceous plants have invaded into the tundra zone, and the proportion of herbaceous plants was larger than that of shrubs. Shrub tundra was transforming into shrub-grass tundra. 3) The tundra vegetation in the north and southwest slopes of the Changbai Mountains responded differently to global warming. The southwest slope showed a significantly higher degree of invasion from herbaceous plants and exhibited greater vegetation change than the north slope. 4) The species diversity of plant communities on the tundra zone of the north slope changed unimodally with altitude, while that on the tundra zone of the southwest slope decreased monotonously with altitude. Differences in the degree of invasion from herbaceous plants resulted in differences in species diversity patterns between the north and southwest slopes. Differences in local microclimate, plant community successional stage and soil fertility resulted in differential responses of tundra vegetation to global warming.  相似文献   

8.
Analyzing and understanding the structure and growth dynamics of forests at different stages is helpful to promote forest succession, restoration and management. Three spots representing three succession stages of spruce-fir mixed forest(SF: polar-birch secondary forest, MF: spruce-fir mixed forest and PF: spruce-fir near primary forest) were established. Structure, growth dynamics during two growth seasons for dominant tree species, regeneration were examined, and a univariate O-ring function statistic was used to analyze the spatial patterns of main regeneration tree species. Results showed that,(1) composition of tree species, periodic annual increment(PAI) of the diameter at breast height(DBH), basal area for overstory trees and of ground diameter(DGH) for saplings, were significantly different with the succession;(2) the current species composition and regeneration dynamics of SF suggested a development towards spruce-fir mixed forests. Pioneer species like Betula platyphyllaa will gradually disappear while climax species, such as Abies nephrolepis, Pinus koraiensis, Picea koraiensis and Tilia amurensis will dominate forest stands;(3) Despite the highest volume occurring in PF, and saplings in it grew better than in the others, this forest type is unstable because of its unsustainable structure of DBH class and insufficient regeneration; and(4) MF had the most reasonable distribution of DBH class for adult trees(DBH 5.0 cm) and DGH class for saplings(H ≥30 cm and DBH ≤5 cm), as well as an optimal volume increment. Limiting canopy opening size can lessen the physiological stress and promote the growth and competitive status of regeneration. Management implications for increasing the gaps and thus creating better growth conditions for understory saplings and facilitating forest succession were discussed.  相似文献   

9.
Broad leaved pine forests are the typical zonal vegetation and its central distribution zone is in the Changbai Mountains in northeast China. However, because of man's disturbance and destruction, primitive broad leaved pine forests exist now only in a few areas such as the Changbai Mountains of Jilin Province and Wuying, Liangshui Natural Reserves of Heilongjiang Province, and the forests in other places are substituted by natural secondary forests (WANG, 1994). Broad leaved pine …  相似文献   

10.
Abies georgei var.smithii is an important plant species in Southeast Tibet,China.It has high ecological value in terms of biodiversity protection,as well as soil and water conservation.We analyzed the spatial pattern and associations of A.georgei var.smithii populations at different growth stages by using Ripley's L function for point pattern analysis.The diameter structure was a nearly reverse 'J' shape.The amount of saplings and medium-sized trees accounts for a large part of the entire population,suggesting a high regeneration rate and an expanding population.In the transition from saplings to medium trees or to large trees,saplings show a significant aggregation distribution at small scales,while medium trees and large trees show a random distribution.There are significant inverse associations between saplings and medium trees and large trees at small scales,while there are no obvious associations between medium trees and large trees.The natural regeneration was affected by interspecific competition,and it was also affected by intraspecific competition.The joint effects of biological characteristics and environmental factors contribute to the spatial distribution pattern and associations of this A.georgei var.sm ithii population.  相似文献   

11.
Ever increasing pressures on tropical forests worldwide due to anthropogenic disturbances have greatly affected both above-and belowground functioning of these forests.While fine roots play major ecological roles in forests through assisting in nutrient and water uptake and returning elements to the soil environment,coarse roots play an important role in C sequestration.We studied changes in fine and coarse root biomass,production,turnover and carbon and nitrogen return to the soil in two regenerating forest stands(RFs)following stonemining that were 5 years(RF-5)and 15 years(RF-15)post-disturbance compared with a natural forest stand(NF)in Mizoram,North-east India.Fine(2mm)and coarse root(2-10 mm)biomass differed significantly among the forest stands and ranged from239(RF-5)to 415(NF)and 230(RF-5)to 436(NF)g m 2,respectively.Total root(fine+coarse)biomass increased during stand development but the proportion of very fine root(0.5 mm)to total root production decreased.Fine root biomass decreased with increasing soil depth.Fine and total root biomass showed strong seasonal correlations with soil moisture,more so than for rainfall and temperature,whereas these relationships were less clear for the coarse root biomass.The amount of N(25-55 kg ha~(-1))and C(1.9-3.6t ha~(-1))stored in root biomass increased with stand age with a corresponding increase in production and turnover of C and N to the soil.Disturbance to these tropical forests negatively affected root dynamics,influenced their spatiotemporal patterns,and reduced the production,amount and availability of nutrients returned to the soil along with a strong reduction in the root biomass carbon pool and sequestration in carbon residence time.We observed that root growth,especially fine roots,is dependent on abiotic variables,and plays a significant role in early stages of secondary succession by adding organic matter and nutrients through high turnover rates in these forests.  相似文献   

12.
In Europe, very small forest areas can be considered to be old-growth, and they are mainly located in Eastern Europe. The typical structures of old growth forests infrequently occur in Mediterranean mountainous environments, since they have been affected by human activities for centuries. This study focused on a remote and almost pure Italian maple stand located in southern Italy, which has not been managed for long time due to its inaccessibility. The effects of natural evolution on the forest stand were evaluated through the analysis of the spatial and chronological structure and the regeneration patterns, then estimating the amounts and quality of deadwood occurrence. Across the whole stand, all the trees with DBH (diameter at breast height) larger than 50 cm (LLT, large living trees) were measured (DBH and height) and age was also determined through a dendrochronological approach. The diameters observed ranged between 50 and 145 cm with ages of 120 to 250 years. The Latham index calculated for trees within the sample plot highlighted a multilayered canopy with a dominant layer of large living trees (age > 120 years). The size-class distribution of stems had a reverse-J shape, and basal area was 52 m2 ha-1. Deadwood was exclusively constituted by standing dead trees and CWD and its volume was on average 31 m3 ha-1.Pure Italian maple forests are generally rare in Europe, and it was unexpected to find a forest stand characterized by a so complex structure with old growth attributes. The study of complex forest stand, even if small, could give precious information on the forest evolution, clarifying also diverse auto-ecological traits of tree species that usually are not common in our forests.  相似文献   

13.
Land use changes are known to alter soil organic carbon (SOC) and microbial properties, however, information about how conversion of natural forest to agricultural land use as well as plantations affects SOC and microbial properties in the Changbai Moun- tains of Northeast China is meager. Soil carbon content, microbial biomass carbon (MBC), basal respiration and soil carbon mineraliza- tion were studied in five selected types of land use: natural old-growth broad-leaved Korean pine mixed forest (NF); spruce plantation (SP) established following clear-cutting of NF; cropland (CL); ginseng farmland (GF) previously under NF; and a five-year Mongolian oak young forest (YF) reforested on an abandoned GF, in the Changbai Mountains of Northeast China in 2011. Results showed that SOC content was significantly lower in SP, CL, GF, and YF than in NF. MBC ranged from 304.4 mg/kg in CL to 1350.3 mg/kg in NF, which was significantly higher in the soil of NF than any soil of the other four land use types. The SOC and MBC contents were higher in SP soil than in CL, GF, and YF soils, yielding a significant difference between SP and CL. The value of basal respiration was also higher in NF than in SP, CL, GF, and YF. Simultaneously, higher values of the metabolic quotient were detected in CL, GF, and YF soils, indicat- ing low substrate utilization of the soil microbial community compared with that in NF and SP soil. The values of cumulative mineral- ized carbon and potentially mineralized carbon (Co) in NF were significantly higher than those in CL and GF, while no significant dif- ference was observed between NF and SP. In addition, YF had higher values of Co and C mineralization rate compared with GF. The results indicate that conversion from NF into agricultural land (CL and GF) uses and plantation may lead to a reduction in soil nutrients (SOC and MBC) and substrate utilization efficiency of the microbial community. By contrast, soils below SP were more conducive to the preservation of soil organic matter, which was reflected in the comparison of microbial indicators among CL, GF, and YF land uses. This study can provide data for evaluating soils nutrients under different land use types, and serve as references for the rational land use of natural forest in the study area.  相似文献   

14.
By using field survey data from the sixth forest inventory of Jiangxi Province in 2003, the biomass and carbon storage for three studied species (Pinus massoniana, Cunninghamia lanceolata, and Pinus elliottii) were estimated in Taihe and Xingguo counties of Boyang Lake Basin, Jiangxi Province, China. The relationship between carbon density and forest age was analyzed by logistic equations. Spatio-temporal dynamics of forest biomass and carbon storage in 1985-2003 were also described. The results show that total stand area of the three forest species was 3.10 × 10^5 ha, total biomass 22.20 Tg, vegetation carbon storage 13.07 Tg C, and average carbon density 42.36 Mg C/ha in the study area in 2003. Carbon storage by forest type in descending order was: P. massoniana, C. lanceolata and P. elliottii. Carbon storage by forest age group in descending order was: middle stand, young stand, near-mature stand and mature stand. Carbon storage by plantation forests was 1.89 times higher than that by natural forests. Carbon density of the three species increased 8.58 Mg C/ha during the study period. The carbon density of Taihe County was higher in the east and west, and lower in the middle. The carbon density of Xingguo County was higher in the northeast and lower in the middle. In general, the carbon density increased with altitude and gradient. Afforestation projects contribute significantly to increasing stand area and carbon storage. Appropriate forest management may improve the carbon sequestration capacity of forest ecosystems.  相似文献   

15.
There is uncertainty and limited knowledge regarding stand characteristics and soil properties of middle-aged pure forest plantations in the mountainous area of Western Sichuan. Plantation forests are almost exclusively planted as monocultures in the Pengzhou forest farm in the western mountainous area of Sichuan Province. This study aimed to assess the spatial and ecological characteristics of middle-aged Cunninghamia lanceolata(Lamb.) Hook. and Cryptomeria fortunei Hooibr. in the Pengzhou forest farm. The relationships and differences between stand growth characteristics and forest soil composition were assessed on the two forests planted simultaneously within the same area and exposed to the same environmental conditions. Cr. fortunei grew sparse, and slower than Cun. lanceolata. Principal component analysis indicated that the soil properties in the Cr. fortunei plantation were better than those in the Cun. lanceolata plantation. Redundancy analysis revealed that the differences in stand structure were affected significantly by the total nitrogen content and pH value. Thus, we propose that Cr. fortunei is planted for priority consideration in the subtropical high mountain area. Further, tending operations and application of fertilizers need to be conducted in Cun. lanceolata forests. Based on theoretical and experimental data, the present study explains why local farmers are more willing to plant Cr. fortunei, and thus provides a useful theoretical reference for the development of sustainable plantations in the future.  相似文献   

16.
The Changbai Mountains is rich in the resources of green food. At present, the low marketization of green food resources in the forest region of the Changbai Mountains becomes the bottleneck to restrict the benign development of its green food industry. With huge market demands at home and abroad, it is the urgent problem how to improve marketization process of green food resources and transfer the resources superiority into the market superiority in the region. According to the investigation, this paper analyzed the status quo and the cause of formation of low-marketization with the method of combining comparative research and practice research. It pointed out that necessary condition of marketization of green food resources in the forest region, such as strategy, economic environment, marketization allocation of sci-tech resources, etc. should be established. Furthermore, the concrete strategies of marketization of green food resources in the region such as market location, strategies of objective markets, combined strategy of marketing, etc. were advanced.  相似文献   

17.
漳平市森林可燃物类型变化遥感动态监测   总被引:4,自引:0,他引:4  
森林可燃物类型的空间分布是林火蔓延、灭火可视化建模与仿真中需要考虑的重要因素之一。在对森林可燃物类型划分的研究进行回顾的基础上,提出了考虑树种信息的分类方法。根据漳平市2003年小班图层中的优势树种信息,获得该市2003年四种森林可燃物类型即竹林、阔叶树、杉木林以及马尾松的空间分布专题图。在此基础上,采用面向对象分类技术,对ASTER影像进行分类,探测每种可燃物类型的内部变化和外部变化。该技术利用影像分割技术构建分类对象,使每个对象具有光谱信息的同时,具备大小、形状、拓扑关系、类别层次等诸多信息。对分类结果进行评价的结果表明,利用面向对象分类技术,充分利用了光谱特征以及类别相关特征,提高了分类精度,分类的面积精度达到89.3%。由于影像分割过程应用了专题图层,对象的边界不会超越专题图层的边界,使得对现有图层的更新尤为容易。最后,利用矢量格式的遥感分类结果对原森林小班图层进行更新,获得新的可燃物类型图层,作为林火可视化模型的输入图层。该研究不仅提供了现势性强的森林可燃物类型图层,而且在不破坏原小班边界的基础上,对发生变化的区域进行刻画。对于森林资源管理者,提供了实地调查过程的目标区域的信息。  相似文献   

18.
Abies georgei var. smithii is an important plant species in Southeast Tibet, China. It has high ecological value in terms of biodiversity protection, as well as soil and water conservation. We analyzed the spatial pattern and associations of A. georgei var. smithii populations at different growth stages by using Ripley’s L function for point pattern analysis. The diameter structure was a nearly reverse ‘J’ shape. The amount of saplings and medium-sized trees accounts for a large part of the entire population, suggesting a high regeneration rate and an expanding population. In the transition from saplings to medium trees or to large trees, saplings show a significant aggregation distribution at small scales, while medium trees and large trees show a random distribution. There are significant inverse associations between saplings and medium trees and large trees at small scales, while there are no obvious associations between medium trees and large trees. The natural regeneration was affected by interspecific competition, and it was also affected by intraspecific competition. The joint effects of biological characteristics and environmental factors contribute to the spatial distribution pattern and associations of this A. georgei var. smithii population.  相似文献   

19.
The broad-leaved Korean pine (Pinus koraiensis) forest is one of the most biodiverse zonal communities in the North Temperate Zone and an important habitat for many endangered species. Broad-leaved Korean pine forests (BKPFs) are shrinking quickly due to deforestation and rapid urbanization. Thus, scientific protection strategies are urgently needed to change this status. Changbai Mountains contains one of the largest BKPFs and is considered a priority biodiversity conservation area in China. Guided by systematic conservation planning (SCP) methods and procedures, we chose representative species and communities in BKPFs ecosystem as priority conservation objects, and set quantitative conservation target, which is in the light of the biodiversity characteristic of BKPFs. The watershed area is used as planning unit. We used C-Plan software to calculate the irreplaceability (Ir) value of each planning unit and the contribution value (T i ) of each conservation object to (1) assess the conservation efficiency; (2) identify the conservation gap of the existing conservation network. Then we calculated a human disturbance index (HDI) for planning units in the conservation gaps and combine this with the Ir value to design three conservation scenarios to optimize the conservation network. Results show that planning units with high conservation value 14.16% of the total area, with 3084.36 km2 were covered by the existing conservation network. 79.28% of planning units with high conservation value have not been protected which were concentrated mainly in the eight gap areas. Only 25.3% of protection objects achieved their conservation target with the existing conservation network. Conservation efficiency is low. Three conservation scenarios are constituted, each prioritizing a different aim: (1) ecological value; (2) species rescue; and (3) economical avoidance. The three conservation schemes potentially enable 93%, 88% and 51% of conservation objects, respectively, to achieve identified conservation targets, thereby improving conservation efficiency significantly.  相似文献   

20.
This study aims to verify the concept of niches at multiple spatial scales in plant communities. To this end, we analyzed the niche characteristic of Rhododendron dauricum plant communities in Northeast China at three spatial scales. At the local scale, we calculated the Importance Value(IV) of species in five communities in the north of the Da Hinggan Mountains. At the intermediate scale, we examined five communities in their entirety, calculated the niche breadth of the species, and integrated niche overlap and interspecific association to analyze interspecific relationships. Further, the generalized additive model(GAM) was used to analyze the impact of topography and soil factors on niche characteristics. At the regional scale, we analyzed the geographical distribution of dominant species of R. dauricum plant communities in Northeast China and used principal component analysis(PCA) to analyze the impact of geographical and climate factors on species distribution. The results show that at the local scale, the IV of the species in each community varies widely. At the intermediate scale, species with a wide niche breadth tend to have a high value for IV. Larix gmelinii, Betula platyphylla, R. dauricum, Ledum palustre, and Vaccinium vitis-idaea had a relatively wide niche breadth and a high niche overlap, and the interspecific associations were almost all positive. Elevation and soil nutrients were the most dominant environmental factors. At the regional scale, species with a wide niche breadth tend to have a wide range of distribution, and temperature and precipitation were the most dominant environmental factors. This study suggests that the niche characteristics at three scales are both related and different. Niche characteristics at the local scale were various and labile, and niche characteristics at the intermediate and regional scales were relatively regular. These results show some degree of consistency with previous studies from an evolutionary perspective. The action mechanisms of these communities are related to differences in the dominant environmental factors. In addition, the integration of niche overlap and interspecific association determine interspecific relationships more accurately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号