首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the field investigation in August 2001 and August 2002, digital China Vegetation Map in 2001 and Qinghai-Xizang(Tibet) Plateau Vegetation Regionalization Map in 1996, vegetation characteristics along two sides of Qinghai-Xizang highway and railway are studied in this paper. Meanwhile, the impact of Qinghai-Xizang highway and railway constructions on the vegetation types are analyzed using ARCVIEW. ARC/1NFO and PATCH ANALYSIS. It was found that: 1) Qinghai-Xizang highway and railway span 9 latitudes, 12 longitudes and 6 physical geographic regions (East Qinghai and Qilian mountain steppe region, Qaidam mountain desert region,South Qinghai-Xizang alpine meadow steppe region. Qiangtang alpine steppe region, Golog-Nagqu alpine shrubmeadow region and South Xizang mountain shrub steppe region); 2) the construction of Qinghai-Xizang highway and railway destroyed natural vegetation and landscape, especially in 50m-wide buffer regions along both sides of the roads, it was estimated that the net primary productivity deceased by about 30 504.62t/a and the gross biomass deceased by 432 919.25-1 436 104.3t. The losing primary productivity accounted for 5.70% of the annual primary productivity within lkm-wide buffer regions (535 005.07-535 740.11t/a), and only 0.80%-0.89% of that within 10km-wide buffer regions (3 408 950.45-3 810 480.92t/a). The losing gross biomass was about 9.47%-17.06% of the gross biomass within lkm-wide buffer regions (7 502 971.85-25 488 342.71t), and only 1.47%-2.94% of that within 10km-wide buffer regions (43 615 065.35-164 150 665.37t).  相似文献   

2.
Urban parks composed mostly of vegetation and water bodies can effectively mitigate the urban heat island effect. Many studies have investigated the cooling effects of urban parks; however, little attention has been given to park landscape structure. Based on landscape metrics, this study has explored the influences of the park landscape structure on its inner thermal environment, taking heavily urbanized Beijing Municipality in China as the study area. Three indices, including the percentage of landscape (PLAND), landscape shape index (LSI) and aggregation index (AI), were used to measure the composition and configuration characteristics of the landscape components inside the parks. The indices were calculated for five landscape types being interpreted from Quickbird images. Urban thermal conditions were measured using the land surface temperature (LST) derived from Landsat TM images. The results showed that the park LST had a negative relationship with the park size, but no significant relationship was found with park shape. For the park’s interior landscape, however, the configuration and composition characteristics of the landscape components inside the park explained 70% of the park LST variance. The area percentage of water bodies and the aggregation index of woodland were identified as the key influencing characteristics. In addition, when the composition and configuration characteristics of the park landscape components were separately considered, the configuration characteristics (LSI and AI) explained approximately 54% of the variance in park LST, which was comparable with that explained by the composition characteristics (PLAND). Thus, this study suggested that an effective and practical way for urban cooling park design is the optimization of spatial configuration of landscape components inside the park.  相似文献   

3.
On 18 January 2016, the Zhangjiazhuang high-speed railway tunnel in Ledu, Qinghai Province, China, underwent serious deformation and structural damage. A crack formed at the top of the tunnel and the concrete on the crown peeled off. As a result, the tunnel could not be operated for three months. In order to determine the types and spatial distribution of the landslides in the region and the surface deformation characteristics associated with the tunnel deformation, we used field geological and geomorphological surveys, unmanned aerial vehicle image interpretation and differential interferometric synthetic aperture radar(D-In SAR) surface deformation monitoring. Nine ancient and old landslides were identified and analysed in the study area. Surface deformation monitoring and investigation of buildings in several villages on the slope front showed that the tunnel deformation was not related to deep-seated gravitational slope deformation. However, surface deformation monitoring revealed an active NEE–SWW fault in the area intersecting the tunnel at the location of the tunnel rupture. This constitutes a plausible mechanism for the deformation of the tunnel. Our study highlights the need for detailed engineering geomorphological investigations to better predict the occurrence of tunnel deformation events in the future.  相似文献   

4.
为了阐明喀斯特水库对河流水体碳循环造成的影响,总结了近年来喀斯特流域筑坝作用对不同形态碳迁移转化和环境影响的研究进展。通过光谱学、稳定及放射性同位素等手段等对喀斯特地区河流-水库系统中的溶解无机碳(DIC)、溶解有机碳(DOC)、颗粒无机碳(PIC)和颗粒有机碳(POC)迁移转化及其控制机制的研究,发现喀斯特水库碳循环展现出明显的季节性分布特征以及梯级水库群可能会进一步放大单个水库的生态效应,这一结果不仅极大地促进了人们对水库碳循环的认识,还有利于探索河流碳循环中“遗失”的碳汇以及更加准确的评估岩溶水库在全球河流碳循环中扮演的角色。喀斯特水库相比非喀斯特水库对人为活动加剧的影响可能具有更强的响应强度,这也意味着喀斯特水库在全球变暖的趋势中发挥的作用需要得到更准确的评估,而在未来的研究中,通过不同分析手段从微观到宏观系统性的总结不同形态碳迁移转化特点将更准确的回答该问题。  相似文献   

5.
The topography and geomorphology of southwest China are complex, and the intensity of human activities not balanced. The impact of climate change and anthropogenic activities on vegetation shows temporal and spatial differences. Therefore, we used normalized difference vegetation index(NDVI)to analyze the impact of climate change and anthropogenic activities on vegetation in four provinces and municipality in the southwest China from 2000 to 2015. The results showed that(1) NDVI increased 0.004–...  相似文献   

6.
工程建设改变地下水流场危及建筑物的安全。以济南经十路沿线大型地下综合体为例,通过数值模拟计算工程建设对地下水渗流场的影响,并建立了地下水流场修复模型。结果表明:地下空间结构会阻挡地下水运移,地下水水位壅高造成地基承载力降低;将地下工程设置导流措施后,其迎水面水位随时间呈现衰减趋势,且越接近天然状态水位衰减速率越慢;因地层结构差异,壅高水位基本回落的时间存在较大差异;不同地质条件下流场修复所需导流井数量与导流几何体结构参数呈负相关关系,所需导流井数量的预测方程反映了地质条件的复杂性和多变性。除导流几何体自身结构外,围岩水力梯度与渗透系数对导水能力产生影响,其中渗透系数大小制约导水速率的快慢,水力梯度则控制导水行为的发生。导流措施的实施可减小工程建设对地下水环境的影响,确保地下工程建设对水环境影响可控。  相似文献   

7.
Landsat satellite images were used to map and monitor the snow-covered areas of four glaciers with different aspects(Passu: 36.473°N, 74.766°E;Momhil: 36.394°N, 75.085°E; Trivor: 36.249°N,74.968°E; and Kunyang: 36.083°N, 75.288°E) in the upper Indus basin, northern Pakistan, from 1990-2014. The snow-covered areas of the selected glaciers were identified and classified using supervised and rule-based image analysis techniques in three different seasons. Accuracy assessment of the classified images indicated that the supervised classification technique performed slightly better than the rule-based technique. Snow-covered areas on the selected glaciers were generally reduced during the study period but at different rates. Glaciers reached maximum areal snow coverage in winter and premonsoon seasons and minimum areal snow coverage in monsoon seasons, with the lowest snow-covered area occurring in August and September. The snowcovered area on Passu glacier decreased by 24.50%,3.15% and 11.25% in the pre-monsoon, monsoon and post-monsoon seasons, respectively. Similarly, the other three glaciers showed notable decreases in snow-covered area during the pre-and post-monsoon seasons; however, no clear changes were observed during monsoon seasons. During pre-monsoon seasons, the eastward-facing glacier lost comparatively more snow-covered area than the westward-facing glacier. The average seasonal glacier surface temperature calculated from the Landsat thermal band showed negative correlations of-0.67,-0.89,-0.75 and-0.77 with the average seasonal snowcovered areas of the Passu, Momhil, Trivor and Kunyang glaciers, respectively, during pre-monsoon seasons. Similarly, the air temperature collected from a nearby meteorological station showed an increasing trend, indicating that the snow-covered area reduction in the region was largely due to climate warming.  相似文献   

8.
由于岩溶发育的极不均匀性和岩溶含水介质的多重介质性等特征,使得岩溶水系统的地下水运动规律呈现出复杂多变的特点,在孔隙或微小裂隙含水介质中岩溶水满足达西流,而在岩溶管道中可能出现非达西运动,这给岩溶区地下水模拟带来了极大挑战。系统地梳理了岩溶水流和溶质运移模拟的主要方法,总结了复杂岩溶多重介质系统地下水模拟技术的现状,并结合我国南方岩溶和北方岩溶各自的特点,提出岩溶水模型在实际应用中需要关注的要点。主要包括:需加强野外调查和观测,提高模型中对岩溶含水介质结构非均质性表征的精度;进一步深化对岩溶水运动机理的研究,刻画岩溶多重介质的水流特征以及水交换机理;针对北方岩溶水系统模拟,可选择等效连续多孔介质模型,重在耦合区域分布的岩溶溶孔-裂隙介质中慢速渗流与脉状分布的强径流带快速流;对于南方岩溶区,建议考虑建立分布式流域水文模型与能刻画集中管道流多流态变化的多重介质模型的岩溶地下水耦合模型。  相似文献   

9.
With a subtropical climate, Guangxi Zhuang Autonomous Region has a typical karst landscape. Rocky desertification has become a serious environmental issue due to its high vulnerability caused by the joint effect of natural settings and human activities, because of which its eco- environment has been deteriorated in recent years, and farmland has been disappearing sharply at the same time. This, in turn, has exacerbated the poverty level in the rural areas of the region. In this study, we monitored the spatial distribution of rocky land desertification and its temporal evolution using Landsat TM/ETM images of 1985, 1995, 2000 and 2005. We also analyzed the driving forces of the desertification and its expansion. Through constructing regression models by using all the relevant variables and considering the lagged effects as well as fixed effects, we quantified the exact role of different factors causing rocky land desertification in the study area with some new findings. The new findings in this study are greatly helpful for preserving, restoring and reconstructing the degraded mountain environment in Guangxi and other karst areas in Southwest China, and also for alleviating poverty in the rural areas in the future.  相似文献   

10.
Efficient and accurate access to coastal land cover information is of great significance for marine disaster prevention and mitigation. Although the popular and common sensors of land resource satellites provide free and valuable images to map the land cover, coastal areas often encounter significant cloud cover, especially in tropical areas, which makes the classification in those areas non-ideal. To solve this problem, we proposed a framework of combining medium-resolution optical images and synthetic aperture radar(SAR) data with the recently popular object-based image analysis(OBIA) method and used the Landsat Operational Land Imager(OLI) and Phased Array type L-band Synthetic Aperture Radar(PALSAR) images acquired in Singapore in 2017 as a case study. We designed experiments to confirm two critical factors of this framework: one is the segmentation scale that determines the average object size, and the other is the classification feature. Accuracy assessments of the land cover indicated that the optimal segmentation scale was between 40 and 80, and the features of the combination of OLI and SAR resulted in higher accuracy than any individual features, especially in areas with cloud cover. Based on the land cover generated by this framework, we assessed the vulnerability of the marine disasters of Singapore in 2008 and 2017 and found that the high-vulnerability areas mainly located in the southeast and increased by 118.97 km2 over the past decade. To clarify the disaster response plan for different geographical environments, we classified risk based on altitude and distance from shore. The newly increased high-vulnerability regions within 4 km offshore and below 30 m above sea level are at high risk; these regions may need to focus on strengthening disaster prevention construction. This study serves as a typical example of using remote sensing techniques for the vulnerability assessment of marine disasters, especially those in cloudy coastal areas.  相似文献   

11.
Deformation and failure of high slope impact the construction and operation safety of highway in the mountainous areas. The deformation and failure are mainly caused by poor design which normally has not well combined with the geological conditions and unplanned construction. Therefore, effective design and construction management should be conducted for ensuring a successful construction without damage and risk. In light of the reality of high slope construction along highway in the Huangshan area, this paper proposes a technical procedure for dynamic design and construction management of high slopes along highway in the mountainous area. The proposed construction management scheme is divided into three phases, i.e., 1) design phase, 2) preparation phase of excavation, and 3) construction phase. During the design phase, experiences and lessons learnt from the design and construction of other high slopes along highway in the same region are summarized. The number of slopes and slope height should be optimized from the aspects of route selection and route form. During the preparation phase of excavation, “Excavation Permit Management System” should be adopted, and construction scheme should be made by the construction unit, then the scientific research and design unit determine whether it guarantees slope stability and makes optimization measures. During the construction phase, the scientific research unit would make proposal of optimization design, and apply the achievements of scientific research into practice through common efforts of various units based on the understanding of excavation and investigation. The management system mentioned above is adopted to conduct dynamic design and construction management for more than 90 slopes along the Huangshan — Taling — Taolin Expressway, and successful results of application have been achieved.  相似文献   

12.
1IntroductionPopulation growth has created escalating pressureson our resources(natural,humanandsocial)onlocal,regional,and global scales.These pressures negativelyi mpact the natural environment,our communities andthe quality of our lives.In the face of …  相似文献   

13.
The mountainous areas of Central Asia provide substantial water resources, and studying change in water storage and the impacts of precipitation and snow cover in the mountain ranges of Central Asia is of the greatest importance for understanding regional water shortages and the main factors. Data from the GRACE(Gravity Recovery and Climate Experiment) satellites, precipitation products and snow-covered area data were used to analyze the spatio-temporal characteristics of water storage changes and the effects of precipitation and snow cover from April 2002 to December 2013. The results were computed for each mountain ranges, and the following conclusions were drawn. The water storage in the mountainous areas of Central Asia as a whole increases in summer and winter, whereas it decreases in autumn. The water storage is affected by precipitation to some extent and some areas exhibit hysteresis. The area of positive water storage changes moves from west to east over the course of the year. The water storage declined during the period 2002–2004. It then returned to a higher level in 2005–2006 and featured lower levels in 2007–2009 Subsequently, the water storage increased gradually from 2010 to 2013. The Eastern Tianshan Mountains and Western Tianshan Mountain subzones examined in this study display similar tendencies, and the trends observed in the Karakorum Mountains and the Kunlun Mountains are also similar. However, the Eastern Tianshan Mountains and Western Tianshan Mountains were influenced by precipitation to a greater degree than the latter two ranges. The water storage in Qilian Mountains showed a pronounced increasing trend, and this range is the most strongly affected by precipitation. Based on an analysis of all investigated subzones, precipitation has the greatest influence on total water storage relative to the snow covered area in some areas of Central Asia. The results obtained from this study will be of value for scientists studying the mechanisms that influence changes in water storage in Central Asia.  相似文献   

14.
青藏高原植被变化特征及其对气候变化的影响   总被引:2,自引:0,他引:2  
利用1982-2001年美国国家航天航空局(NASA)的归一化植被指数(NDVI)资料以及55个青藏高原地区气象台站实测的最高气温、最低气温、平均气温和降水资料,初步分析了青藏高原地区各季节植被变化特征及其对气候变化的影响,通过分析发现,各季节青藏高原地区NDVI均以增长为主.特别是高原南部、北部和西部等地区增加明显,高原中东部地区植被有所减少.通过相关分析和台站概率相关分析发现,高原冬季和春季NDVI与后期春季和夏季的最高气温、最低气温、平均气温和降水有较好的正相关关系,但有的表现在相关系数比较显著,有的表现为概率相关较明显.  相似文献   

15.
Forest structure analysis is important for understanding the properties and development of a forest community,and its outcomes can be influenced by how trees are measured in sampled plots.Although there is a general consensus on the height at which tree diameter should be measured[1.3 m:diameter at breast height(DBH)],the minimum measureddiameter(MMD)often varies in different studies.In this study,we assumed that the outcomes of forest structure analysis can be influenced by MMD and,to this end,we applied g(r)function and stand spatial structural parameters(SSSPs)to investigate how different MMDs affect forest spatial structure analysis in two pine-oak mixed forests(30 and 57 years old)in southwest China and one old-growth oak forest(120years old)from northwest China.Our results showed that 1)MMD was closely related to the distribution patterns of forest trees.Tree distribution patterns at each observational scale(r=0-20 m)tended tobecome random as the MMD increased.The older the community,the earlier this random distribution pattern appeared.2)As the MMD increased,neighboring trees became more regularly distributed around a reference tree.In most cases,however,nearest neighbors of a reference tree were randomly distributed.3)Tree species mingling decreased with increasing diameter,but it decreased slowly in older forests.4)No correlations can be found between individual tree size differentiation and MMD.We recommend that comparisons of spatial structures between communities would be more effective if using a unified MMD criterion.  相似文献   

16.
The drop structure will fail as a result of local scoring downstream. This paper discusses the influence of a drop structures’ upstream slope to local scour. Empirical equations of the scour hole were developed by laboratory experiment, theoretical assumptions, and regression analysis. These equations include the maximum scour depth and length during the scouring period, the maximum equilibrium scour depth and length, and the unit width scour rate. The four channel slopes (0%, 2%, 4%, and 6%) before the drop structure has been included in the analysis. A series of laboratory experiments were conducted to obtain 48 groups of experiments and 419 scour hole profiles during the scouring period. The material used in the scour section is uniform non-cohesive and with a median diameter of d 50 = 0.5 mm. The results have been used to develop empirical equations via regression analysis to determine the coefficients of theoretical equations. The high correlation coefficient indicates that the equations developed in this study are suitable for verifying the characteristics of a scour hole at drop structure in the sloped channel. The semi-empirical equation is more accurate than the empirical equation. Compared to a horizontal channel, a sloped channel tends to cause a greater equilibrium maximum scour length, shorter equilibrium maximum scour depth, and faster unit-wide scour rate.  相似文献   

17.
The rocky desert in a karst area directly causes the lack of soil, water and forest, hence leading to the poverty there. In 1990, the villagers from the Muzhe Village in Benggu Township, Xichou County, Yunnan declared a war against rocky desert in an attempt to ask the fields for more yields. They invented a distinctive land rehabilitation and sustainable use pattern called "transforming heaven and earth" that had been practiced in Southwest China's karst areas. The key mechanism of the pattern was to develop terraced fields with well conserved soil, water and fertility by exploding rocks in the fields, building stone walls, gathering more soil, and improving soil quality and productivity for the fields in combination with building of irrigation facilities and roads, as well as with forestation and agriculture structure adjustment. The purpose of the pattern was to alleviate poverty in the karst areas by improving soil productivity and promoting agricultural development. A typical area was studied with the help of Participatory Rural Appraisal (PRA) and the pattern was carried out there for fifteen years, have produced excellent ecological benefits and good economic benefits. Its application in the area approved that it was a sustainable land use pattern for rocky desert areas.  相似文献   

18.
19.
Identifying the impacts of climate change is important for conservation of ecosystems under climate change, particularly in mountain regions. Holdridge life zone system and K?ppen classification provide two effective methods to assess impacts of climate change on ecosystems, as typical climate-vegetation models. Meanwhile, these previous studies are insufficient to assess the complex terrain as well as there are some uncertainties in results while using the given methods. Analysis of the impacts of the prevailing climate conditions in an area on shifts of ecosystems may reduce uncertainties in projecting climate change. In this study, we used different models to depict changes in ecosystems at 1 km × 1 km resolution in Sichuan Province, China during 1961–2010. The results indicate that changes in climate data during the past 50 years were sufficient to cause shifts in the spatial distribution of ecosystems. The trend of shift was from low temperature ecosystems to high temperature ecosystems. Compared with K?ppen classification, the Holdridge system has better adaptation to assess the impacts of climate change on ecosystems in low elevation(0–1000 m). Moreover, we found that changed areas in ecosystems were easily affected by climate change than unchanged areas by calculating current climate condition.  相似文献   

20.
Glaciers in the Shaksgam valley provide important fresh water resources to neighbourhood livelihood. Repeated creation of the glacier inventories is important to assess glacier–climate interactions and to predict future runoff from glacierized catchments. For this study, we applied a multi-criteria technique to map the glaciers of the Shaksgam valley of China, using Landsat Thematic Mapper(Landsat TM)(2009) and Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model version two(ASTER GDEM V2) data. The geomorphometric parameters slope, plan, and profile curvature were generated from ASTER GDEM. Then they were organized in similar surface groups using cluster analysis. For accurate mapping of supraglacial debris area, clustering results were combined with a thermal mask generated from the Landsat TM thermal band. The debris-free glaciers were identified using the band ratio(TM band 4/TM band 5) technique. Final vector maps of the glaciers were created using overlay tools in a geographic information system(GIS).Accuracy of the generated glacier outlines was assessed through comparison with glacier outlines based on the Second Chinese Glacier Inventory(SCGI) data and glacier outlines created from high-resolution Google Earth? images of 2009. Glacier areas derived using the proposed approach were 3% less than in the reference datasets. Furthermore, final glacier maps show satisfactory mapping results, but identification of the debris-cover glacier terminus(covered by thick debris layer) is still problematic. Therefore, manual editing was necessary to improve the final glacier maps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号