首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Coastal embayments located downwind of large rivers under an upwelling-favorable wind are prone to develop low-oxygen or hypoxic conditions in their bottom water. One such embayment is Mirs Bay, off the Guangdong coast, which is affected by upwelling and the Pearl River Estuary (PRE) plume during summer. The relative importance of physical and biochemical processes on the interannual variability of hypoxia in Mirs Bay and its adjacent waters was investigated using statistical analyses of monthly hydrographic and water quality monitoring data from 2001 to 2015. The results reveal that the southwesterly wind duration and the PRE river discharge together explain 49% of the interannual variability in the size of the hypoxic area, whereas inclusion of the nutrient concentrations inside Mirs Bay and phytoplankton on the shelf explains 75% of the interannual variability in the size of the hypoxic area. This finding suggests that the interannual variability of hypoxia in Mirs Bay is regulated by coupled physical and biochemical processes. Increase of the hypoxic area under a longer-lasting southwesterly wind is caused by increased stratification, extended bottom water residence time, and onshore transport of a low-oxygen water mass induced by stable upwelling. In contrast, a reduction in the size of the hypoxic area may be attributed to a decrease in the surface water residence time of the particulate organic matter outside Mirs Bay due to increased discharge from the PRE. The results also show that the effects of allochthonous particulate organic matter outside Mirs Bay on bottom hypoxia cannot be neglected.  相似文献   

2.
A three-dimensional baroclinic nonlinear numerical model is employed to investigate the summer upwelling in the northern continental shelf of the South China Sea (NCSCS) and the mechanisms of the local winds inducing the coastal upwelling, associated with the QuikSCAT wind data. First, the persistent signals of the summer upwelling are illustrated by the climatological the Advanced Very High-Resolution Radiometer (AVHRR) Sea Surface Temperature (SST) image over 1985–2006 and field observations in 2006 summer. Then, after the successful simulation of the summer upwelling in the NCSCS, four numerical experiments are conducted to explore the different effects of local winds, including the wind stress and wind stress curl, on the coastal upwelling in two typical strong summer upwelling regions of the NCSCS. The modeled results indicate that the summer upwelling is a seasonal common phenomenon during June–September in the NCSCS with the spatial extent of a basin-scale. Typical continental shelf upwelling characteristics are clearly shown in the coastal surface and subsurface water, such as low temperature, high salinity and high potential density in the east of the Hainan Island, the east of the Leizhou Peninsula and the southeast of the Zhanjiang Bay (noted as the Qiongdong-QD), and the inshore areas from the Shantou Coast to the Nanri Islands of the Fujian Coast (noted as the Yuedong-YD). The analysis of the QuikSCAT wind data and modeled upwelling index suggests that the local winds play significant roles in causing the coastal upwelling, but the alongshore wind stress and wind stress curl have different contributions to the upwelling in the Qiongdong (QDU) and the coastal upwelling in the Yuedong (YDU), respectively. Furthermore, model results from the numerical experiments show that in the YD the stable alongshore wind stress is a very important dynamic factor to induce the coastal upwelling but the wind stress curl has little contribution and even unfavorable to the YDU. However, in the QD the coastal upwelling is strongly linked to the local wind stress curl. It is also found that not only the offshore Ekman transport driven by the alongshore wind stress, the wind stress curl-induced Ekman pumping also plays a crucial effect on the QDU. Generally, the wind stress curl even has more contributions to the QDU than the alongshore wind stress.  相似文献   

3.
The South China Sea (SCS) is one of the large marginal seas of the western Pacific Ocean. In comparison with open oceans, the SCS circulation has obviously transient characteristics due to its small basin-scale and semi-annually reversed monsoon forcing. …  相似文献   

4.
Observational and modeling studies were conducted to investigate the Pearl River plume and its interaction with the southwesterly driven upwelling circulation in the northern South China Sea during the summer. After exiting the Pearl River Estuary, the discharged freshwater generates a nearly stationary bulge of freshwater near the entrance of the estuary. Forced by the wind-driven coastal upwelling current, the freshwater in the outer part of the bulge flows downstream at the speed of the current and forms a widening and deepening buoyant plume over the shelf. The plume axis gradually shifts offshore of the current maximum as a result of currents induced by the contrasting density at the nose of plume and by the intensified Ekman drift in the plume. In this plume–current system, the fraction of the discharged freshwater volume accumulated in the bulge reaches a steady state and the volume of newly discharged freshwater is transported downstream by the upwelling current. Enhancement of stratification by the plume thins the surface frictional layer and enhances the cross-shelf circulation in the upper water column such that the surface Ekman current and compensating flow beneath the plume are amplified while the shoaling of the deeper dense water in the upwelling region changes minimally. The pressure gradient generated between the buoyant plume and ambient seawater accelerates the wind-driven current along the inshore edge of the plume but retards it along the offshore edge. Along the plume, downward momentum advection is strong near the highly nonlinear source region and a weaker upward momentum advection occurs in the far field over the shelf. Typically, the plume is shaped by the current over the shelf while the current itself is adjusting to a new dynamic balance invoked by the plume-induced changes of vertical viscosity and the horizontal pressure gradient. The spatial variation of this new balance leads to a coherent change in the cross-isobath transport in the upper water column during upwelling.  相似文献   

5.
The late Pliocene-Pleistocene is of great interest for understanding the Earth’s climate system, because not only the late Pliocene is the latest period with tem-perature significantly higher than the Holocene, but also during the Pliocene/Pleistocene transition the Earth’s environment changed from a warm and uni-form climate state into an extreme one with typical glacial-interglacial cycles. During this period the Earth’s climate experienced through the grandly phased rising of the Qing…  相似文献   

6.
南海北部神狐海域是我国首次获取海洋天然气水合物实物样品的海域.然而, 陆坡区深水水道和海底峡谷的侵蚀以及频发的沉积物失稳, 将会加剧地层对比和沉积相识别的难度, 导致目前该区域典型地震相-沉积相特征、沉积体类型、成因机制和空间匹配关系等方面还缺少精细的研究, 特别是第四纪以来的沉积演化涉及较少, 区域内水合物形成和分布的沉积地质条件尚不清晰.基于海底地形特征的描述、层序地层格架的对比和地震资料的综合解释, 本次研究在第四纪以来的沉积充填序列中识别出5种典型的地震相类型, 并分析了对应的沉积体类型:进积型的陆坡、第四纪早期发育的小型浊积水道、沉积物失稳(滑移和滑塌)、海底峡谷和伴生的沉积物变形、以及深海沉积-块体流沉积的复合体.通过沉积单元的空间匹配关系, 将沉积演化划分为3个阶段:浊积水道侵蚀-沉积物再沉积阶段、陆坡进积-沉积物失稳阶段、海底峡谷的侵蚀-充填阶段.研究结果表明, 受第四纪早期小型浊积水道的侵蚀, 再沉积的沉积物将在中-下陆坡以"近源"的方式堆积下来, 可能具有相对较好的物性条件, 从而可被视为适于水合物赋存的有利沉积体.进积型陆坡带来的沉积物易于发生失稳, 在研究区内广泛分布, 因其具有较小的沉积物颗粒粒度和较好的垂向连续性, 可被认为是水合物的区域盖层.大量发育的海底峡谷及伴生的沉积物变形, 将会侵蚀和破坏先前沉积的有利沉积体, 使其呈现为"斑状/补丁状"的平面展布特征, 进而影响了神狐海域水合物的分布.因此, 神狐海域第四纪以来的沉积演化是钻探区水合物不均匀性分布的关键控制因素之一.  相似文献   

7.
南海北部神狐海域天然气水合物成藏演化分析研究   总被引:2,自引:4,他引:2       下载免费PDF全文
南海北部陆坡具备天然气水合物成藏的基本地质条件,神狐海域天然气水合物是当前我国海洋天然气水合物勘探开发研究的重点靶区.然而,神狐海域水合物集中分布在水合物稳定带的底部薄层中,饱和度高,其水合物特征与典型的低甲烷通量控制的水合物分布有很大差异,对其成藏机理和控制因素尚不明确.本文构建了针对神狐水合物成藏过程的一维动力学模型,模型包括沉积压实作用、甲烷溶解度、以及水合物生成和沉积体渗透率,模拟计算的主控参量为海底沉积速率和水流通量,在孔隙水中甲烷浓度一定的情况下,水流速率决定了溶解甲烷的迁移速率和稳定带中甲烷的供给速率,并以此模型计算了神狐海域水合物聚集成藏的动力学过程.模型讨论了特定沉积速率和水流通量条件下水合物成藏与分布特征,并与实际观测数据进行比较研究.研究发现,基于当前沉积速率和水流通量条件模拟的水合物形成演化过程,与神狐海域实际水合物分布特征存在很大差异,但在假定系统中水合物饱和度初值达16~20%时,模拟的水合物饱和度分布特征与观测数据吻合,并因此推测在早期地质历史上,神狐海域存在更加丰富的甲烷水合物,当前的水合物分布特征是在对早期水合物继承基础上发展而成的,而且神狐海域水合物含量正逐渐减少.  相似文献   

8.
华南及南海北部地区瑞利面波层析成像   总被引:1,自引:1,他引:1       下载免费PDF全文
基于华南及周边地区106个宽频带地震台站多年记录的MS≥5.0中浅源地震事件, 开展瑞利面波层析成像和速度结构特征研究, 获得了华南大陆及南海北部地区10~100 s瑞利波群速度分布图像和典型剖面下方地壳上地幔速度结构, 为理解该地区构造演化和深部过程提供约束.考虑到实际地震射线的覆盖情况以及华南地区主要构造的主体展布特征, 本文同时采用传统的规则网格剖分和平行主要构造走向的非规则网格剖分方法, 分别进行分格频散反演, 开展了不同参数化方案对反演结果影响的对比分析研究.基于瑞利面波层析成像结果, 进行了典型剖面横波速度结构反演, 重建了华南地区由内陆至南海海域主要构造单元的壳幔横波速度结构.研究结果表明, 扬子和华夏块体地壳上地幔结构特征差异显著, 扬子块体地壳和岩石圈厚度均大于华夏地块, 且扬子块体上地幔顶部速度较华夏块体低, 岩石圈厚度在雪峰山造山带下方发生过渡和转换;南海北部陆缘和南海海盆上地幔速度较高且形态相对完整, 表现为非火山型大陆边缘和已停止扩张海盆的壳幔结构特征.  相似文献   

9.
通过对南海北部陆坡下部ODP1148站位沉积物中陆源矿物组分的含量、堆积速率、粒度、石英氧同位素及石英扫描电镜的分析,探讨南海沉积演化及其构造响应.结果显示,根据综合指标的变化特征可将南海海盆的沉积演化划分为5个阶段:扩张初期 (34~28.5 Ma)、构造活动剧烈期(28.5~23 Ma)、构造活动减弱期(23~16.5 Ma)、热沉降期(16.5~3.5 Ma)和台湾隆升形成期(3.5 Ma~现今).其中28.5~23 Ma为物源转换期,陆源矿物组成和石英氧同位素值发生了明显改变,对应南海渐新世以来演化过程中构造活动最为活跃的时期.在此之前的渐新世南海扩张初期,研究区的沉积物主要来源于南部(很可能来自巴拉望陆块);随着南海的不断扩张,尤其是南海扩张轴在25~23 Ma发生向南跳跃后,南部巴拉望陆块不断远去,而此时由于青藏高原隆升导致的区域地貌变化还没有波及到云贵高原和华南地区,珠江等大河尚未发育,因此研究区以北的华南大陆的影响还很小或根本没有影响到研究区,结果陆源矿物沉积速率极低.随后由于青藏高原隆升的高度不断增加,河流发育,溯源侵蚀增加,华南内陆古老的沉积岩区成为南海北部主要物源区,南海北部转为以远源沉积为主,直到3.5 Ma前后由于台湾岛的抬升,大量物质进入南海北部,成为主要物源.物源转换期间在南海不断扩张的构造运动背景下由于物源供应匮乏,加上海平面的上升和较强的底流作用导致了ODP1148站位渐新世晚期的沉积间断.  相似文献   

10.
Lozovatsky  Iossif  Liu  Zhiyu  Fernando  Harindra Joseph S.  Hu  Jianyu  Wei  Hao 《Ocean Dynamics》2013,63(11):1189-1201

The microstructure measurements taken during the summer seasons of 2009 and 2010 in the northern South China Sea (between 18°N and 22.5°N, and from the Luzon Strait to the eastern shelf of China) were used to estimate the averaged dissipation rate in the upper pycnocline 〈ε p〉 of the deep basin and on the shelf. Linear correlation between 〈ε p〉 and the estimates of available potential energy of internal waves, which was found for this data set, indicates an impact of energetic internal waves on spatial structure and temporal variability of 〈ε p〉. On the shelf stations, the bottom boundary layer depth-integrated dissipation \( {\widehat{\varepsilon}}_{\mathrm{BBL}} \) reaches 17–19 mW/m2, dominating the dissipation in the water column below the surface layer. In the pycnocline, the integrated dissipation \( {\widehat{\varepsilon}}_{\mathrm{p}} \) was mostly ∼10–30 % of \( {\widehat{\varepsilon}}_{\mathrm{BBL}} \). A weak dependence of bin-averaged dissipation \( \overline{\varepsilon} \) on the Richardson number was noted, according to \( \overline{\varepsilon}={\varepsilon}_0+\frac{\varepsilon_{\mathrm{m}}}{{\left(1+ Ri/R{i}_{\mathrm{cr}}\right)}^{1/2}} \), where ε 0 + ε m is the background value of \( \overline{\varepsilon} \) for weak stratification and Ri cr = 0.25, pointing to the combined effects of shear instability of small-scale motions and the influence of larger-scale low frequency internal waves. The latter broadly agrees with the MacKinnon–Gregg scaling for internal-wave-induced turbulence dissipation.

  相似文献   

11.
The TKE dissipation rate in the northern South China Sea   总被引:1,自引:0,他引:1  
The microstructure measurements taken during the summer seasons of 2009 and 2010 in the northern South China Sea (between 18°N and 22.5°N, and from the Luzon Strait to the eastern shelf of China) were used to estimate the averaged dissipation rate in the upper pycnocline 〈ε p〉 of the deep basin and on the shelf. Linear correlation between 〈ε p〉 and the estimates of available potential energy of internal waves, which was found for this data set, indicates an impact of energetic internal waves on spatial structure and temporal variability of 〈ε p〉. On the shelf stations, the bottom boundary layer depth-integrated dissipation $ {\widehat{\varepsilon}}_{\mathrm{BBL}} $ reaches 17–19 mW/m2, dominating the dissipation in the water column below the surface layer. In the pycnocline, the integrated dissipation $ {\widehat{\varepsilon}}_{\mathrm{p}} $ was mostly ~10–30 % of $ {\widehat{\varepsilon}}_{\mathrm{BBL}} $ . A weak dependence of bin-averaged dissipation $ \overline{\varepsilon} $ on the Richardson number was noted, according to $ \overline{\varepsilon}={\varepsilon}_0+\frac{\varepsilon_{\mathrm{m}}}{{\left(1+ Ri/R{i}_{\mathrm{cr}}\right)}^{1/2}} $ , where ε 0 + ε m is the background value of $ \overline{\varepsilon} $ for weak stratification and Ri cr?=?0.25, pointing to the combined effects of shear instability of small-scale motions and the influence of larger-scale low frequency internal waves. The latter broadly agrees with the MacKinnon–Gregg scaling for internal-wave-induced turbulence dissipation.  相似文献   

12.
Progress on shelf and slope circulation in the northern South China Sea   总被引:1,自引:0,他引:1  
Influenced by the seasonally reversed monsoons, water exchange through straits, and topography, the shelf and slope circulation in the northern South China Sea (NSCS) is complex and changeable. The typical current system in the NSCS consists of the slope current, South China Sea warm current (SCSWC), coastal current, and associated upwelling (in summer) and downwelling (in winter). This paper reviews recent advances in the study of NSCS shelf and slope circulation since the 1990s, and summarizes the roles of Kuroshio intrusion, the monsoons, topography, and the buoyancy effect of the Pearl River plume in the shelf and slope current system of the NSCS. We also point out some potential scientific issues that require further study, such as the dynamic connection between the internal basin and shelf areas of the NSCS, the persistence of the SCSWC in winter, the temporo-spatial characteristics of downwelling during winter in the NSCS, and its material and energy transport.  相似文献   

13.
Guo  Zheng  Cao  Anzhou  Lv  Xianqing  Song  Jinbao 《Ocean Dynamics》2020,70(2):187-198
Ocean Dynamics - Previous studies have indicated that internal tides (ITs) in the South China Sea (SCS) are dominated by the M2, K1, and O1, among which intense nonlinear interaction occurs. In...  相似文献   

14.
Tides are the major energy source for ocean mixing, regulating the variation of oceanic circulation and sediment transport in the deep sea. Here twenty months of high-resolution current profiles, which were observed via a mooring system at a water depth of 2100 m in the northern South China Sea(SCS), are used to investigate seasonal variability in deep-sea tides.Spectral analysis shows that tides in this region are dominated by diurnal tide, and both diurnal and semidiurnal tide are vertical mode-1 dominant. Baroclinic diurnal tidal current exhibits pronounced seasonal variability, showing its kinetic energy was the strongest in summer, and the maximum depth-averaged value was up to 86.7 cm~2 s~(-2), which was about 1.5 times of that in winter and twice that in spring and autumn. In contrast, baroclinic semidiurnal tide displays no evident seasonal variability. Such seasonal variability in baroclinic tide was mainly modulated by the barotropic forcing from the Luzon Strait. On the other hand,two anticyclonic eddies and one cyclonic eddy, which originated off southwestern Taiwan in winter, crossed the mooring system.The cyclonic eddy had weak impact on current velocity in the deep sea, but the two deep-reaching anticyclonic eddies enhanced the current velocity through the full-water column by inducing strong subinertial flows. Consequently, the kinetic energy of tides was strengthened and the incoherent variance of baroclinic diurnal tide increased in winter, which contributed ~85% of the variability in diurnal tide. Meanwhile, the velocity of baroclinic diurnal tide was reduced in winter, which was attributed to the weakened stratification induced by the passage of anticyclonic eddies in the deep sea. The seasonal variability of tides in the deep northern SCS can provide a dynamic mechanism for interpreting sediment transport processes in the deep sea on different time scales.  相似文献   

15.
南海北部深水区盆地热历史及烃源岩热演化研究   总被引:2,自引:0,他引:2       下载免费PDF全文
南海北部深水区是中国重要的油气潜力区.本文在前人对其现今地温场和正演热史研究的基础上,利用磷灰石(U-Th)/He和镜质体反射率(Ro)数据对根据拉张盆地模型正演获得的热历史进行了进一步约束,并在此基础上对南海北部深水区的烃源岩热演化进行了研究.研究结果表明基于盆地构造演化模型的正演热历史可以作为烃源岩热演化计算的热史基础,而盆地内主力烃源岩热演化计算结果显示:南海北部深水区存在4个生烃中心,即珠江口盆地的白云凹陷和琼东南盆地的乐东凹陷、陵水凹陷和松南凹陷,生烃中心烃源岩有机质现今处于过成熟状态,以生气为主;受盆地基底热流显著升高的影响,32~23.3 Ma时段为南海北部深水区烃源岩快速成熟阶段,琼东南盆地烃源岩有机质现今(2.48 Ma后)还存在一期加速成熟过程,而珠江口盆地则不存在此期快速成熟过程.  相似文献   

16.
应用1949~2005年热带气旋(台风)年鉴资料,对西太平洋以及登陆我国东南沿海地区的热带气旋活动的特征进行了分析,发现西太平洋生成热带气旋个数和登陆我国热带气旋的个数有略为减少的趋势,而登陆我国热带气旋的强度有显著增强趋势.2005年西太平洋生成热带气旋数偏少,但其中登陆我国的强热带气旋比例却明显偏高.对导致这种异常现象的大尺度环流条件的分析表明,前期南亚高压和副热带高压势力偏强,台风期副高偏强、东亚夏季风偏弱、水平风垂直切变等因子不利于热带气旋生成;而西太平洋西部异常的水汽输送、弱风垂直切变、海表面温度异常以及中低纬系统之间相互作用等则可能是导致登陆我国热带气旋强度异常偏强的主要原因.  相似文献   

17.
深海潮汐是深海混合过程的主要能量来源,对深海环流变异和沉积物搬运具有重要的调控作用.文章利用深水锚系观测系统在南海北部2100m水深处开展了近两年的高分辨率海流剖面观测,用于研究深海潮汐的季节性变化特征.通过谱分析显示,南海北部深海潮汐以全日潮为主,且在观测区域的深海中,全日潮和半日潮以垂向第一模态结构为主.斜压全日潮具有显著的季节性变化特征,夏季最强,深度平均的最大动能达86.7cm2s-2,分别是冬季的1.5倍、春秋季的2倍;而斜压半日潮没有明显的季节性变化.通过对比发现斜压全日潮的季节性变化受控于吕宋海峡附近的正压潮.另外,观测期间有三个强中尺度涡经过锚系站位,其中一个气旋式中尺度涡对深海海流影响较小,而另外两个反气旋式中尺度涡经过研究海域时可影响全水深海流,激发强亚惯性流,对深海潮汐产生边缘强化效应,并使深海斜压全日潮冬季的异相成分增强,占全日潮的85%.同时,中尺度涡对深海海水混合的增强弱化了海水层结,导致冬季的斜压全日潮流速减弱,低于夏季.南海北部深海潮汐季节性变化为研究深海盆沉积物在不同时间尺度上的分布及搬运过程提供了重要的动力机制.  相似文献   

18.
The distribution of dissolved lead in the coastal waters of the East China Sea was investigated seasonally. The average concentrations in surface waters during the spring and autumn were 0.52 nM and 0.27 nM, respectively. In the spring, the concentration of dissolved Pb in the surface waters and bottom waters ranged from 0.13 to 1.86 nM and from 0.15 to 0.94 nM, respectively. For both the surface water and the bottom water, the highest values were observed at the Yangtze River Estuary. Seasonal variability of D-Pb between spring and autumn in the ECS was observed. These results suggested that riverine inputs and atmospheric inputs may be the main sources of lead in this area, while adsorption and co-precipitation on suspended particles at the river estuary and biological process may be the major sinks.  相似文献   

19.
Deep water bottom current deposition in the northern South China Sea   总被引:18,自引:0,他引:18  
There are some active bottom currents on the northern continental slope of the South China Sea (SCS). Reflection seismic profiles show that the bottom current channels occur in the water depth range of 1000 to 2700 m,extending from the NE to the SW,leading to accumulation of discontinuous drifts with higher sedimentation rates on the eastern side of the channel. The stacking pattern of the layers sug-gests that these drifts propagated southwestward,following the direction of the bottom currents. One sedimentary drift to the southeast of the Dongsha Islands has the highest sedimentation rate of 97cm/ka in the last 12 ka. The sedimentary characteristics of the sediment layers indicate that these bottom currents are most likley caused by the water movement of a branch of the West Pacific Ocean Current,which enters the northern SCS via the Bashi Strait. Once formed,the bottom currents trans-port sediments along the northern slope of SCS southwestward and finally disappear into the central basin of the SCS. Due to the bottom current activity,the deep-sea sedimentary process in the northern SCS is complex.  相似文献   

20.
Darbyshire  Mollie 《Ocean Dynamics》1962,15(6):256-264
Ocean Dynamics - Wave records obtained from the Smith's Knoll and Morecambe Bay light vessels are used to obtain relationships between wind speed and wave height and period in shallow water...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号