首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The instability of an internal gravity wave due to nonlinear wave-wave interaction is studied theoretically and numerically. Three different aspects of this phenomenon are examined. 1. The influence of dissipation on both the resonant and the nonresonant interactions is analysed using a normal mode expansion of the basic equations. In particular, the modifications induced in the interaction domain are calculated and as a result some modes are shown to be destabilised by dissipation. 2. The evolution of an initial unstable disturbance of finite vertical extent is described as the growth of two secondary wave packets travelling at the same group velocity. A quasi-linear correction to the basic primary wave is calculated, corresponding to a localised amplitude decrease due to the disturbance growth. 3. Numerical experiments are carried out to study the effect of a basic shear on wave instability. It appears that the growing secondary waves can have a frequency larger than that of the primary wave, provided that the shear is sufficient. The instability of waves with large amplitude and long period, such as tides or planetary waves, could therefore be invoked as a possible mechanism for the generation of gravity waves with shorter period in the middle atmosphere.  相似文献   

2.
3.
Summary A new radiometer has been designed which employs a black plate whose radiation towards the night sky is balanced by infrared radiation transferred in vacuo. The instrumental characteristics are described by a simplified theory and by laboratory tests making use of large surfaces with known emissivities. The instrument allows the incoming IR atmospheric flux to be measured with a high degree of accuracy and independently of the ventilation rate.  相似文献   

4.
This brief review summarizes recent findings related to particle precipitation associated with electromagnetic ion–cyclotron (EMIC) waves seen on the ground as geomagnetic Pc1 and IPDP pulsations.Particle precipitation signatures of ion–cyclotron interaction are described as revealed from low-altitude satellite measurements of the energetic proton fluxes as well as from observations of the proton aurora. As a result, localized proton precipitation patterns situated equatorward of the isotropy boundary are disclosed. One of the patterns is a proton precipitation spot in the morning sector, presumably mapped onto plasmapause; another one is an elongated region of the precipitation, presumably mapped onto the plasmaspheric plume.Clear evidence of the pitch-angle scattering associated with the ion–cyclotron wave activity is found near the equatorial plane in the region conjugated with the localized proton precipitation at low altitude.Thus, the revealed precipitation patterns determine the location of the region of intense pitch-angle scattering of energetic protons, and, therefore, their observations can be used to monitor the region of the ion–cyclotron interaction and to study its origin and properties. Some examples of such application of the low-altitude observations of energetic particles are described.  相似文献   

5.
多次透射公式的一种高频失稳机制   总被引:2,自引:3,他引:2  
本文利用一维双曲型偏微分方程组初边值问题数值稳定性的GKS定理的物理解释和推广,分析了多次透射公式在数值实现中可能出现的一种高频失稳机制,即在多维离散网格,沿某一空间方向的外行简谐波,由于与其他空间方向节点运动的耦合效应可以使能量传播方向反向。文中通过数值试验对这一失稳机制作了初步验证。  相似文献   

6.
7.
Abstract

The normal mode instability of steady Wu-Verkley (1993) wave and modons by Verkley (1984, 1987, 1990) and Neven (1992) is considered. All these flows are solutions to the vorticity equation governing the motion of an ideal incompressible fluid on a rotating sphere. A conservation law for infinitesimal perturbations to each solution is derived and used to obtain a necessary condition for its exponential instability. By these conditions, Fjörtoft's (1953) average spectral number of the amplitude of an unstable mode must be equal to a specific number that depends on the degree of the solution in its inner and outer regions as well as on spectral distribution of the mode energy in these regions. Some properties of the conditions for different types of modons are discussed. The maximum growth (and decay) rate of the modes is estimated, and the orthogonality of the amplitude of each unstable, decaying, or non-stationary mode to the basic solution is shown in the energy inner product.

The new instability conditions confine the unstable disturbances of the WV wave and modon to a hypersurface in the perturbation space and allow interpretation of their energy structure. They are also useful both in estimating the maximum growth rate of unstable modes and in testing the numerical algorithms designed for the linear stability study.  相似文献   

8.
The losses of radiation belt electrons to the atmosphere due to wave–particle interactions with electromagnetic ion-cyclotron (EMIC) waves during corotating interaction region (CIR) storms compared to coronal mass ejections (CME) storms is investigated. Geomagnetic storms with extended ‘recovery’ phases due to large-amplitude Alfvén waves in the solar wind are associated with relativistic electron flux enhancements in the outer radiation belt. The corotating solar wind streams following a CIR in the solar wind contain large-amplitude Alfvén waves, but also some CME storms with high-speed solar wind can have large-amplitude Alfvén waves and extended ‘recovery’ phases. During both CIR and CME storms the ring current protons are enhanced. In the anisotropic proton zone the protons are unstable for EMIC wave growth. Atmospheric losses of relativistic electrons due to weak to moderate pitch angle scattering by EMIC waves is observed inside the whole anisotropic proton zone. During storms with extended ‘recovery’ phases we observe higher atmospheric loss of relativistic electrons than in storms with fast recovery phases. As the EMIC waves exist in storms with both extended and short recovery phases, the increased loss of relativistic electrons reflects the enhanced source of relativistic electrons in the radiation belt during extended recovery phase storms. The region with the most unstable protons and intense EMIC wave generation, seen as a narrow spike in the proton precipitation, is spatially coincident with the largest loss of relativistic electrons. This region can be observed at all MLTs and is closely connected with the spatial shape of the plasmapause as revealed by simultaneous observations by the IMAGE and the NOAA spacecraft. The observations in and near the atmospheric loss cone show that the CIR and CME storms with extended ‘recovery’ phases produce high atmospheric losses of relativistic electrons, as these storms accelerate electrons to relativistic energies. The CME storm with short recovery phase gives low losses of relativistic electrons due to a reduced level of relativistic electrons in the radiation belt.  相似文献   

9.
Natural loess slopes are characterized by a strong geological structure, which is an important factor in maintaining slope stability. The magnitude and duration of the earthquake may disturb the soil structure at different levels degrees, locally changing the arrangement between soil particles. The process of rainfall humidification weakens the cementation between soil particles, and the disturbance and humidification change the structural state of the soil, which in turn causes sliding of the slope along with the decay of soil mechanical properties. As slope instability is often the result of a series of post-earthquake ripple effects, it is of great scientific significance to study the mechanism of slope instability due to the structural decay of earthquake-damaged loess exacerbated by rainfall. In this paper, the impact of structural decay of loess on slope stability is simulated by GEOSTUDIO software under three conditions: pre-earthquake rainfall, post-earthquake rainfall and earthquake, taking the landslide in Buzi Village, Min County, Gansu Province as an example. The comparative analysis of the calculation results shows that the structural properties of the slope without earthquake disturbance are influenced by infiltration amount. When it is fully saturated, the structural properties are similar to those of saturated soil, and the safety factor is reduced by 12.9%. In addition, the earthquake intensity and duration have different degrees of structural damage to the soil. When the structure is fully damaged, it is similar to that of remodelled soil, and the safety factor is reduced by 45.84%. Notably, the process of the earthquake and the following humidification generates the most serious damage to the loess structure, with a reduction in the safety factor of up to 56.15%. The quantitative analysis above obviously illustrates that the post-earthquake rainfall causes the most severe damage to structural loess slopes, and the resulting landslide hazard should not be underestimated.  相似文献   

10.
人工边界高频振荡失稳机理的一点注记   总被引:1,自引:1,他引:1       下载免费PDF全文
谢志南  廖振鹏 《地震学报》2008,30(3):302-306
进一步完善了人工边界高频振荡失稳机理的解释. 解析证明了对于一维波动模型的离散模型, 当人工波速大于1.5倍的离散空间步距与时间步距的比值时, 则在某一高频段内, 其稳态波动解在人工边界上反射系数的模大于1的命题. 在此基础上对失稳的高频段作了进一步的讨论, 揭示了高频振荡失稳发生于对波动数值模拟无意义的高频段.   相似文献   

11.
The question of the instability of internal gravity waves (IGWs) propagating at small angles to the vertical is re-visited. The case of an IGW of finite-amplitude propagating at a very small but finite angle to the vertical is considered. This angle serves as a small parameter in the problem, and the instability of such an IGW is investigated by using the Fourier method and the Sivashinsky integral relations. The analysis undertaken confirms the existence of short-wave instability for small IGW amplitudes and for an arbitrarily small value of their propagation angle to the vertical. For small viscosity and thermal conductivity of the fluid medium, the growth rate of the most unstable mode is proportional to the square of the amplitude of the IGW. The results obtained may be of interest for interpreting the results of observations and confirming the existence of turbulence in the middle atmosphere.  相似文献   

12.
Tropical instability waves (TIWs) are not easily simulated by ocean circulation models primarily because such waves are very sensitive to wind forcing. In this study, we investigate the impact of assimilating sea surface height (SSH) observations on the control of TIWs in an observing system simulation experiment (OSSE) context based on a regional model configuration of the tropical Atlantic. A Kalman filtering method with suitable adaptations is found to be successful when altimetric data are assimilated in conjunction with sea surface temperature and some in situ temperature/salinity profiles. In this rather realistic system, the TIW phase is roughly controlled with a single nadir observing satellite. However, a right correction of the TIW structure and amplitude requires at least two nadir observing satellites or a wide swath observing satellite. The significant impact of orbital parameters is also demonstrated: in particular, the Jason or GFO satellite orbits are found to be more suitable than the ENVISAT orbit. More generally, it is found that as soon as adequate sub-sampling exists (with periods of 5–10?days), the length of the repetitivity cycle of orbits does not have a significant impact.  相似文献   

13.
Purkait  Anushri  Debsarma  Suma 《Ocean Dynamics》2019,69(1):21-27
Ocean Dynamics - This research report is concerned with the derivation of two evolution equations of two obliquely interacting wave packets in a two-layer fluid domain in which the lower fluid is...  相似文献   

14.
The initial motion of primary body waves and polarization directions of secondary body waves have been applied successfully to the study of the mechanism operating at the earthquake focus. Equal area plots of these body wave characteristics resulted in radiation patterns that were compared to patterns due to theoretical focal mechanism sources. Such an approach indicated that a double couple force is the source mechanism operating at earthquake foci. This can be physically represented by faulting at the focus. This seems likely because of the relation between earthquakes and fault motion in shallow earthquakes. The possibility of other mechanisms operating in deep focus earthquakes has not been ruled out.The technique of solving for fault plane orientation/motion in equal area plots ofP-wave first motion andS-wave polarization, has been a powerful tool in areas where fault motions cannot be directly observed in studying tectonics. Such an approach has been used to test the theory of global tectonics. This approach has resulted in the confirmation of the suggested mechanics of plate motion, and the results of plate motion, such as spreading of the sea floor from mid-oceanic ridges and underthrusting of lithospheric plates at the sites of oceanic trenches.  相似文献   

15.
Abstract

The normal mode instability of harmonic waves in an ideal incompressible fluid on a rotating sphere is analytically studied. By the harmonic wave is meant a Legendrepolynomial flow αPn(μ) (n ≥ 1) and steady Rossby-Haurwitz wave of set F 1 ⊕ Hn where Hn is the subspace of homogeneous spherical polynomials of the degree n(n ≥ 2), and F 1 is the one-dimensional subspace generated by the Legendre-polynomial P1(μ). A necessary condition for the normal mode instability of the harmonic wave is obtained. By this condition, Fjörtoft's (1953) average spectral number of the amplitude of each unstable mode must be equal to . It is noted that flow αPn (μ) is Liapunov (and hence, exponentially and algebraically) stable to all the disturbances whose zonal wavenumber m satisfies condition |m| ≥ n. The bounds of the growth rate of unstable normal modes are estimated as well. It is also shown that the amplitude of each unstable, decaying or non-stationary mode is orthogonal to the harmonic wave.

The new instability condition can be useful in the search of unstable perturbations to a harmonic wave and on trials of numerical stability study algorithms. For a Legendre-polynomial flow, it complements Kuo's (1949) condition in the sense that while the latter is related to the basic flow structure; the former characterizes the structure of a growing perturbation.  相似文献   

16.
The differentially heated rotating annulus is a laboratory experiment historically designed for modelling large-scale features of the mid-latitude atmosphere. In the present study, we investigate a modified version of the classic baroclinic experiment in which a juxtaposition of convective and motionless stratified layers is created by introducing a vertical salt stratification. The thermal convective motions are suppressed in a central region at mid-depth of the rotating tank, therefore double-diffusive convection rolls can develop only in thin layers located at top and bottom, where the salt stratification is weakest. For high enough rotation rates, the baroclinic instability destabilises the flow in the top and the bottom shallow convective layers, generating cyclonic and anticyclonic eddies separated by the stable stratified layer. Thanks to this alternation of layers resembling the convective and radiative layers of stars, the planetary’s atmospheric troposphere and stratosphere or turbulent layers at the sea surface above stratified waters, this new laboratory setup is of interest for both astrophysics and geophysical sciences. More specifically, it allows to study the exchange of momentum and energy between the layers, primarily by the propagation of internal gravity waves (IGW). PIV velocity maps are used to describe the wavy flow pattern at different heights. Using a co-rotating laser and camera, the wave field is well resolved and different wave types can be found: baroclinic waves, Kelvin and Poincaré type waves. The signature of small-scale IGW can also be observed attached to the baroclinic jet. The baroclinic waves occur at the thin convectively active layer at the surface and the bottom of the tank, though decoupled they show different manifestation of nonlinear interactions. The inertial Kelvin and Poincaré waves seem to be mechanically forced. The small-scale wave trains attached to the meandering jet point to an imbalance of the large-scale flow. For the first time, the simultaneous occurrence of different wave types is reported in detail for a differentially heated rotating annulus experiment.  相似文献   

17.
使用宁夏四个地电台站记录的地电场数据,研究其变化特征、频谱特征、与区域气压变化的关系及测量方向与附近断裂走向的关系。研究结果显示:部分地电场具有日变化特征,同时也具有气压非周期性变化特征,这种特征与气压变化呈负相关,当场地裂隙优势方位与附近断裂带方位呈近似垂直或较大夹角时,测向与附近断裂走向近垂直的地电场与气压相关性较高。分析认为地电场具有气压非周期变化特征是因为测量位置基岩孔隙的渗透率与附近断裂裂缝的渗透率不同,流体渗流过程中气压系统变化引起的流体“窜流”所致。  相似文献   

18.
Stratorotational instability (SRI) has been proposed as a mechanism for outward angular momentum transport in Keplerian accretion disks. A particular designed Taylor–Couette laboratory experiment with axial stratification is suitable for studying the instability. Bottom endplate is cooled and top endplate is heated to achieve axial stratification. Due to constructive constraints, endplates are visually unamenable and quantitative measurement techniques in the co-rotating frame can only be done by looking through the outer cylinder. For this purpose, we built a co-rotating mini-PIV (Particle Image Velocimetry) system with a camera having a tilted viewing angle regarding the horizontal laser sheet. The aim of this study is (i) to quantify the uncertainty of the mini-PIV together with the used calibration technique and (ii) to compare experimental findings on SRI with theoretical predictions.

We perform measurements of the azimuthal and radial component of the velocity in axial stably stratified Taylor–Couette flows, consider velocity profiles and do frequency-filtering and flow decomposition. The absolute error of the mini-PIV system is 2% and we realised that stratified Taylor–Couette flows have smaller Ekman endwall effects than homogeneous ones. Still, Ekman pumping has an impact of the flow and might be responsible for differences between the data and theoretical models ignoring the endwalls. Here we focus on the flow structure during transition to SRI, the drift rate of SRI modes and the radial momentum flux as a function of the Reynolds number. Whereas the structure in form of trapped boundary Kelvin modes and the drift rate corresponds well with earlier predictions, the momentum flux shows a nonlinear dependency with respect to the Reynolds number. Away from the region of transition, theoretical models show a linear relationship. Several possible reasons for the mismatch between the experimental and theoretical models are discussed. Most important, we experimentally demonstrated that in the Rayleigh stable flow regime the SRI can provide a significant amount of outward momentum flux which makes this instability interesting in the context of accretion disks and also of atmospheric vortices where rotation and stratification also play a significant role.  相似文献   

19.
A new dissipation model based on memory mechanism   总被引:5,自引:0,他引:5  
Summary The model of dissipation based on memory introduced by Caputo is generalized and checked with experimental dissipation curves of various materials.List of symbols unidimensional stress - unidimensional strain - Q –1 specific dissipation function - c(t) creep compliance - m(t) relaxation modulus - c 0 instantaneous compliance - m equilibrium modulus - (t) creep function - relaxation function - () spectral distribution of retardation times - spectral distribution of relaxation times - c *() complex compliance - m *() complex modulus - tang loss-tangent  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号