首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bed of estuaries is often characterized by ripples and dunes of varying size. Whereas smaller bedforms adapt their morphological shape to the oscillating tidal currents, large compound dunes (here: asymmetric tidal dunes) remain stable for periods longer than a tidal cycle. Bedforms constitute a form roughness, that is, hydraulic flow resistance, which has a large-scale effect on tidal asymmetry and, hence, on hydrodynamics, sediment transport, and morphodynamics of estuaries and coastal seas. Flow separation behind the dune crest and recirculation on the steep downstream side result in turbulence and energy loss. Since the energy dissipation can be related to the dune lee slope angle, asymmetric dune shapes induce variable flow resistance during ebb and flood phases. Here, a noncalibrated numerical model has been applied to analyze the large-scale effect of symmetric and asymmetric dune shapes on estuarine tidal asymmetry evaluated by residual bed load sediment transport at the Weser estuary, Germany. Scenario simulations were performed with parameterized bed roughness of symmetric and asymmetric dune shapes and without dune roughness. The spatiotemporal interaction of distinct dune shapes with the main drivers of estuarine sediment and morphodynamics, that is, river discharge and tidal energy, is shown to be complex but substantial. The contrasting effects of flood- and ebb-oriented asymmetric dunes on residual bed load transport rates and directions are estimated to be of a similar importance as the controls of seasonal changes of discharge on these net sediment fluxes at the Lower Weser estuary. This corroborates the need to consider dune-induced directional bed roughness in numerical models of estuarine and tidal environments.  相似文献   

2.
In estuaries, the morphology of inland and offshore areas usually evolves synergistically. This study examines the decadal link between longitudinal changes in morphology of branching channels and movement of the offshore depo-center (where sediment deposition rate is maximum) of the Yangtze River estuary, under intense human interference. Integrated data analysis is provided on morphology, runoff discharge, and ebb partition ratio from 1950 to 2017. Channel-volume reductions and change rates between isobaths in branching channels reflect the impact of estuarine engineering projects. Ebb partition ratio and duration of discharge ≥ 60 000 m3 s-1 act as proxies for the water excavating force in branching channels and runoff intensity. It is found that deposition occurs in the lower/upper sub-reaches (or further downstream/upstream channels) of the inland north/south branching channels, and the offshore depo-center moves southward or southeastward, as runoff intensity grows; the reverse occurs as runoff intensity declines. This is because the horizontal circumfluence in the Yangtze estuary rotates clockwise as ebb partition ratios of the north/south branching channels increase/decrease for increasing runoff, and conversely rotates anticlockwise for decreasing runoff. Land reclamation activities, the Deepwater Channel Project, and the Qingcaosha Reservoir have impacted greatly on longitudinal changes of morphology in the North Branch and the South Passage and on ebb partition ratio variations in the North/South Channel and the North/South Passage. Dam-induced runoff flattening has enhanced deposition in the upper/lower sub-reaches of the north/south branching channels and caused northward movement of the offshore depo-center, except in areas affected by estuarine engineering projects. Dam-induced longitudinal evolution of branching channel morphology and offshore depo-center movement will likely persist in the future, given the ongoing construction of large cascade dams in the upper Yangtze and the completion of major projects in the Yangtze estuary. © 2020 John Wiley & Sons, Ltd.  相似文献   

3.
A correct understanding of the hydrodynamics and morphodynamics of tidal basins is of fundamental importance for the fate of the Venice Lagoon, Italy. If on one hand, the development of sophisticated numerical models is called for in order to reproduce the complexity of the mechanisms governing the morphodynamic evolution of many natural environments, including lagoons, on the other hand, a clear knowledge of the reliability and limits of the results provided by these models is crucial in order to establish the condition under which they can be safely applied. To this aim, researchers involved in numerical modeling in the framework of the recent Corila research programmes, agreed to perform an accurate comparison of results provided by three different numerical models, applying them to the test case offered by the experimental investigations performed under controlled conditions by Tambroni et al. (2005a). Here, we consider the following numerical models: (i) a 2D finite element hydrodynamic model coupled with a 2D finite volume morphodynamic model (5 and 3); (ii) a 2D finite element morphodynamic model (Ferrarin et al., 2008); (iii) a 2D depth-averaged model for the inlet region, coupled with a 1D model for the channel (Tambroni et al., 2005b). A first set of simulations concerns the fixed bed case and shows that all the models provide similar results: in particular, they are able to predict the observed free surface oscillations satisfactorily, while comparison with the measured velocity field is less satisfactory. Moreover, as far as the flow field at the inlet is concerned, the models describe accurately the potential flow into the channel during the flood phase, while they are not able to adequately reproduce the occurrence of the fine structure of the shear layers shed by the inlet edges during the ebb phase. This limit is related to the shallow water character of the models. As for the morphodynamics, the long term equilibrium configurations of the bottom of the channel and of the near inlet region show qualitative agreement with the experimental observations, although in this case the differences between the results provided by the distinct numerical approaches are more marked.  相似文献   

4.
A method is presented to calculate indirectly the heat budget of a tidal flat area from downstream observations of temperature and horizontal velocity in a tidal channel. It is only necessary to establish a relationship between the velocity and the volume flux. Then the heat budget of the upstream region is determined by integrating the heat flux over one tide. The proposed method is applied to long-term measurements obtained in 2004 at two sites in a tidal channel in the Hörnum Basin, German Wadden Sea. At the site located farther downstream in the channel, the upstream catchment area is diagnosed to export heat (heat gain in the interior) from March to August, while import is diagnosed for the same period of time at the other upstream site. From September to November the situation is reversed. An analytical estimate suggests that the sign of the budget is controlled by the tidal prism and the length of the dry-falling period of the flats in the respective upstream region. In addition, a simple model is developed which can be used to determine the integral bottom heat flux of the tidal flats.  相似文献   

5.
The freshwater budget of a tidal flat area is evaluated from long-term hydrographic time series from an observation pole positioned in a tidal channel in the Hörnum Basin (Germany). For each tidal cycle, the freshwater budget is calculated from the total imported and exported water volumes and the corresponding mean densities. The variability of the budget on a tidal scale is characterised by a period of twice the tidal period, exhibiting a minimum when the tidal flats are dry around daylight hours during the foregoing low tide, and a maximum when low tide occurs at night; enhanced evaporation on the flats at daylight hours is identified as the driving process. On the average over one year, while winter observations are missing, the freshwater budget is negative for the years 2002–2005 and positive only for 2006. The interannual mean is negative and amounts to a freshwater loss of about 2 mm day−1, although the large-scale climate in this region is humid. The results demonstrate that the bulk parametrisations for the latent and sensible heat flux between the ocean and the atmosphere must not be applied for the tidelands.  相似文献   

6.
The evolution of the shore-normal profile shape of accreting tidal flats is controlled mainly by tidally induced mud and sand transport. To understand the evolution processes, a model is developed to simulate the tidal flat profile changes in response to spring-neap tidal cycles. The model treats both sand and mud transport patterns over the tidal flats and adopts an algorithm to deal with the areas near the high water (HW) level on springs. The model is applied to an accreting tidal flat on the central Jiangsu coast, to investigate the relationship between the equilibrium profile shape of the tidal flat and the various influencing factors (e.g. initial profile shape of tidal flat, tidal range and sediment supply). Based on the modeling results the following conclusions are derived: (1) the accreting tidal flat tends to be convex in profile shape when it reaches an equilibrium state; (2) sediment supply is a key factor affecting the width and accretion-erosion status of the tidal flat; (3) filling the area close to high water (HW) on spring tides is essential for reproducing the shape evolution and the morphodynamic behavior of tidal flats; (4) after an equilibrium shape is formed, a tidal flat with abundant sediment supply can steadily prograde to seaward, at the same time maintaining the equilibrium shape; and (5) the modeled width and the slope of the tidal flat are consistent with those of the central Jiangsu coast when the parameters adopted in the model are appropriate for the local conditions.  相似文献   

7.
8.
From July 2003 to July 2004, samples were collected on Chongming Island east tidal flat every two months. The research showed that the nitrous oxide (N2O) production rate was very low in the water, Chongming east tidal flat (CM) sediment was the N2O source of the water. Sediment N2O natural production rate was between -0.08 and 1.74 μmolN·m-2·h-1. N2O natural production rate was higher in the summer. The difference of the N2O natural production rate in the different tidal flats, the correlation between the N2O natural production rate and the denitrification rate, and those with the temperature and DO indicate that middle tidal flat sediment denitrification was the main process of the N2O production, while in the low tidal flat sediment, the production of the N2O came from several processes of the nitrogen cycling. Tidal flat sediment denitrification reaction was stronger in summer and winter but relatively lower in the late autumn and early spring. Seasonal change of the sediment denitrification rate was wide, from 1.12 to 33.34 μmolN·m-2·h-1. Temperature, DO and the coactions of them had the prominent effect on the tidal flat sediment denitrification.  相似文献   

9.
Tidal flat ecosystem simulators are used to clarify the effects of stranded fuel oil on tidal flat ecosystems. Results show that oil spills increase the periphyton on sediment by decreasing the predation stress caused by deposit feeders. About a month after an oil spill, the total population density of the macrobenthos recovered. The oxidation-reduction potential in the surface sediment drops to a negative value after the oil spill, and the anaerobic condition throughout the sediment seems to be responsible for the decrease in the population density of the macrobenthos. The infiltration volume of seawater into the oil-stranded sediment decreases to a third of that without the oil spill. The recovery of infiltration volume after about a month coincides with the recovery of the population density of the macrobenthos. This result suggests that the macrobenthic population is highly dependent on the infiltration of seawater.  相似文献   

10.
Nitrogen budgets and predominant benthic organisms were examined at a matured artificial tidal flat of Osaka Nanko bird sanctuary and an artificial young tidal flat of Hannan Second District, Osaka Bay, Japan. At the Osaka Nanko bird sanctuary, indexes of the quality of the bottom sediment increased over the time course and no abiotic area was observed in the macrobenthic fauna. Dissolved inorganic nitrogen imported into the tidal flat changed its form and was exported in the form of dissolved organic nitrogen. As a result, total nitrogen was trapped at the tidal flat at an average rate of 138 mgN m(-2)day(-1). At the young tidal flat of Hannan Second District net exchange of nitrogen varied markedly among 2000, 2001, 2002 and 2003. In September 2000 when only 5 months had passed after construction, the tidal flat functioned as a site of source for nitrogen. However, it changed as a sink for nitrogen in 2001-2002 in relation to the growth of seaweeds (Ulva spp. and Gracilaria vermiculophylla) and clams (Tapes philippinarum). In 2003 nitrogen was again released from the artificial tidal flat due to the decrease of biomass of the dominant organisms. Comparing the nitrogen budget between the two sites on a per unit time and area basis, net exchanges of nitrogen by tidal exchange were apparently low and relatively constant at the tidal flat of Osaka Nanko bird sanctuary. This suggests that the aged artificial tidal flat of Osaka Nanko bird sanctuary has a stable ecosystem compared to the young artificial tidal flat of Hannan Second District.  相似文献   

11.
The single, long and narrow channel that usually connects choked coastal lagoons to the ocean can serve as a natural hydraulic low-pass filter that reduces or eliminates tidal and subtidal effects inside the lagoon. This study proposes an alternative method of estimating the attenuation of the tidal and subtidal oscillations throughout the Patos Lagoon estuary. The attenuation is estimated for conditions of contrasting river runoff and weather (summer and winter). A high-pass/low-pass filter (fast fourier transformation technique – FFT) is applied to time series of sea-surface elevation (SSE) measured at the mouth of the Patos Lagoon. The resulting high-frequency (tidal) and low-frequency (subtidal) signals are used in independent simulations to force the TELEMAC-2D model. Attenuation of the tidal and subtidal signals throughout the estuary is estimated by applying cross-spectral analysis between the model-generated SSE time series at different locations throughout the estuary and the filtered SSE time series measured at the mouth. Results from the proposed method suggest that: (1) the low-frequency (subtidal) oscillations are less attenuated and propagate further than the high-frequency (tidal) oscillations in the Patos Lagoon estuary; (2) the filtering capability of the Patos Lagoon estuary is expected to follow a seasonal pattern, although further investigations on an interannual time scale are recommended in order to confirm this hypothesis; (3) the influence of the oceanic boundary processes on the SSE dynamics of the lagoon is restricted to the lower estuary. Further inland, the local forcing generated by the wind and freshwater input is likely to be the main forcing effect controlling the dynamics of the system. The proposed method proved to be an efficient and alternative way of estimating the attenuation of energy in the tidal and subtidal bands throughout the access channel of a choked coastal lagoon located in an area of reduced tidal influence.Responsible Editor: Iris Grabemann  相似文献   

12.
Observations of thermohaline properties and currents were undertaken in the Curimataú River estuary (6°18′S), Rio Grande do Norte state (RN), Brazil, during consecutive neap–spring tidal cycles in the austral autumn rainy season. Highly asymmetric neap tide along channel velocities (−0.4 to 0.9 m s−1) and highly stratified conditions were generated by an increase of the buoyancy energy from the freshwater input (R iE≈5.6). During the spring-tidal cycle the river discharge decreased and the longitudinal velocity components were higher, less asymmetrical (−0.8 to 1.1 m s−1) and semidiurnal, associated with moderately stratified conditions (R iE≈0.1) due to the increase of the kinetic tidal energy forcing mechanism. The overall salinity variation from surface to bottom during two tidal cycles was from 20.5 to 36.3 and 29 to 36.7 in the neap and spring tide experiments, respectively; in the last experiment, the tropical water (TW) mass intrusion was enhanced. The net salt transport reversed from down to up estuary during the neap and spring tide experiments, respectively, varied from 6.0 to –2.0 kg m−1 s−1, an indication of changes in the main forcing of the estuary dynamics. Evaluation of a classical steady analytical model, in comparison with nearly steady experimental vertical profiles of velocity, shows an agreement classifiable as reasonably fair.  相似文献   

13.
Understanding the effects of anthropogenic eutrophication on coastal fisheries may help in the enhancement of fishery production by effective utilization of sewage effluents, as well as in the consequent reduction of eutrophication. In this study, it was revealed that the nitrogen stable isotope ratio (δ15N) in the soft tissues of the manila clam, Ruditapes philippinarum, can be used as an indicator of anthropogenic eutrophication levels in tidal flat environments by investigation of δ15N in dissolved inorganic nitrogen (DIN), particulate organic matter (POM), sedimentary organic matter (SOM) and soft tissues of the clam in five tidal flats in Japan with different levels of DIN concentration. In addition, it was found that the acid insoluble fraction of the shell organic matrix, conchiolin, can be used as a proxy for the soft tissues in δ15N analyses. This will contribute in easier storage handling and the expansion of chances for sample acquisition.  相似文献   

14.
In a tidal channel with adjacent tidal flats, along–channel momentum is dissipated on the flats during rising tides. This leads to a sink of along–channel momentum. Using a perturbative method, it is shown that the momentum sink slightly reduces the M2 amplitude of both the sea surface elevation and current velocity and favours flood dominant tides. These changes in tidal characteristics (phase and amplitude of sea surface elevations and currents) are noticeable if widths of tidal flats are at least of the same order as the channel width, and amplitudes and gradients of along–channel velocity are large. The M2 amplitudes are reduced because stagnant water flows from the flats into the channel, thereby slowing down the current. The M4 amplitudes and phases change because the momentum sink acts as an advective term during the fall of the tide, such a term generates flood dominant currents. For a prototype embayment that resembles the Marsdiep–Vlie double–inlet system of the Western Wadden Sea, it is found that for both the sea surface elevation and current velocity, including the momentum sink, lead to a decrease of approximately 2% in M2 amplitudes and an increase of approximately 25% in M4 amplitudes. As a result, the net import of coarse sediment is increased by approximately 35%, while the transport of fine sediment is hardly influenced by the momentum sink. For the Marsdiep–Vlie system, the M2 sea surface amplitude obtained from the idealised model is similar to that computed with a realistic three–dimensional numerical model whilst the comparison with regard to M4 improves if momentum sink is accounted for.  相似文献   

15.
The morphodynamics of shallow, vertically well-mixed estuaries, characterised by tidal flats and deeper channels, have been investigated. This paper examines what contributes to flood/ebb-dominant sediment transport in localised regions through a 2D model study (using the TELEMAC modelling system). The Dyfi Estuary in Wales, UK has been used as a case study and, together with idealised estuary shapes, shows that shallow water depths lead to flood dominance in the inner estuary whilst tidal flats and deep channels cause ebb dominance in the outer estuary. For medium sands and with an artificially ‘flattened’ bathymetry (i.e. no tidal flats), the net sediment transport switches from ebb-dominant to flood-dominant where the parameter a/h (local tidal amplitude ÷ local tidally averaged water depth) exceeds 1.2. Sea level rise will reduce this critical value of a/h and also reduce the ebb-directed sediment transport significantly, leading to a flood-dominated estuarine system. A similar pattern, albeit with greater transport, was simulated with tidal flats included and also with a reduced grain size. This suggests that analogous classifications for flood/ebb asymmetry of the tide in estuaries as a whole may not represent the local sediment transport in sufficient detail. Through the Dyfi simulations, the above criterion involving a/h is shown to be complicated further by augmented flow past a spit at the estuary mouth which gives rise to a self-maintaining scour hole. Simulations of one year of bed evolution in an idealised flat-bottomed estuary, including tidal flow past a spit, recreate the flood/ebb dominance on either side of the spit and the formation of a scour hole in between. The erosion rate at the centre of the hole is reduced as the hole deepens, suggesting the establishment of a self-maintaining equilibrium state.  相似文献   

16.
The polychaetes of the tidal flats near the town of Iqaluit, Baffin Island were analysed along gradients of environmental disturbance resulting from human activity. Sources of environmental disturbance include a sewage lagoon, garbage sites; and an area of the tidal flat that is cleared by bulldozer. Sampling of the tidal flats included 300 biological sediment cores taken from 75 sites along seven transects. Environmental disturbance has resulted in four zones of polychaete communities with increasing distance. The heavily disturbed zone is closest to the disturbances and is devoid of polychaetes. The disturbed zone follows and is characterized by low diversity the result of increased densities of a few opportunistic species such as, Capitella 'capitata' sp. The moderately disturbed zone is characterized by increased species diversity due to organic enrichment from the disturbances. The undisturbed zone, located the furthest from the sources of disturbance, is characterized by moderate levels of diversity compared to the other three zones.  相似文献   

17.
A new numerical model for simulating estuarine dynamics is introduced here. This model, called General Estuarine Transport Model (GETM), has been specifically designed for reproducing baroclinic, bathymetry-guided flows where the tidal range may exceed the mean water depth in large parts of the domain such that drying and flooding processes are relevant. Several physical and numerical features of the model support exact and stable results for such domains. For the physics, high-order turbulence closure schemes guarantee proper reproduction of vertical exchange processes. Among the specific numerical features, generalised vertical coordinates, orthogonal curvilinear horizontal coordinates, high-order TVD advection schemes and stable drying and flooding algorithms have been implemented into GETM. The model is applied here to simulate the dynamics of estuarine turbidity maxima (ETMs), a complex feature present in most tidal estuaries. First, idealised simulations for a two-dimensional domain in the xz space will be shown to reproduce the basic generation mechanisms for ETMs. Then, a realistic three-dimensional simulation of the Elbe estuary in Northern Germany will be carried out. It is demonstrated that for a given forcing situation the model reproduces a stable ETM at the correct location.Responsible Editor: Phil Dyke  相似文献   

18.
The tidal limit is the key interface indicating whether water levels will be affected by tidal waves, which is of great significance to navigation safety and regional flood control. Due to limitations in research methods, recent changes in the Yangtze River tidal limit, caused by sea level rise and large-scale engineering projects, urgently need to be studied. In this study,spectrum analysis was undertaken on measured water level data from downstream Yangtze River hydrological stations from2007 to 2016. The bounds of the tidal limit were identified through comparisons between the spectra and red noise curves, and the fluctuation range and characteristics were summarized. The results showed that:(1) During the extremely dry period, when the flow rate at Jiujiang station was about 8440 m3 s-1, the tidal limit was near Jiujiang; whereas during the flood season, when the flow rate at Jiujiang station was about 66700 m3 s-1, the tidal limit was between Zongyang Sluice and Chikou station.(2)From the upper to lower reach, the effect of the Jiujiang flow rate on the tidal limit weakens, while the effect of the Nanjing tidal range increases. The tidal limit fluctuates under similar flow rates and tidal ranges, and the fluctuation range increases with increasing flow rate and decreasing tidal range.(3) With the continued influence of rising sea levels and construction in river basin estuaries, the tidal limit may move further upstream.  相似文献   

19.
《Journal of Hydrology》2006,316(1-4):108-128
The topography, hydroperiod, water table, and selected edaphic characteristics are described for Piermont Marsh, an irregularly flooded tidal marsh in the Hudson River Estuary, New York, USA. Despite variations in microtopography, overall the marsh is flat, and although the observations were conducted at a high point in the Estuary's 18.6 year metonic cycle, its surface was only inundated 10–12 times a month. Observations of spatial differences in the saturated hydraulic conductivity and surface infiltration rates are also discussed. ‘Edge’ portions of the marsh are characterized by a slightly higher, more uniform, more structured, less organic, and less hydrologically conductive substrate than found in the marsh interior. Preferential flow is facilitated by macropores in the creekbank wall. The water table is close to the marsh surface for a lesser percentage of the lunar month in the marsh ‘edge’ when compared to the interior, where it is almost always within 10 cm of the surface. The extent to which the spatial variability of these hydrologic characteristics determines the marsh's ability to provide various ecosystem services is also discussed and the implications of these observations on tidal marsh restoration efforts briefly presented.  相似文献   

20.
Tidal creek networks have in 50 years extended over 30 km inland across the coastal plains of the Mary River in northern Australia, invading freshwater wetlands and destroying the associated vegetation. The networks have grown at an exponential rate through a combination of main channel extension and tributary development, with concomitant widening of the creeks. A large tidal range, very small elevational differences over the plains, and the availability of preexisting channel lines (notably in the form of palaeochannels) have been major factors contributing to the rapid rate of expansion. Close parallels exist between these networks and terrestrial networks as regards modes of growth and planimetric properties. A channel is initiated when the diffuse flow of a seepage zone becomes concentrated through localized scour. Subsequent development is characterized by the rapid extension of long first-order channels, with most tributary addition occurring later. Model tests suggest that branching was more likely on exterior links in the early stages but that exterior and interior link branching became more equally likely through time. Although the headward limits of the main creeks seem to have been reached, tributary infilling will continue to progress upstream. Only in the most downstream parts is a stable drainage density being approached. The networks not only satisfy the laws of drainage network composition and the basic postulates of the random model but also depart from topologic randomness in similar ways to terrestrial networks. Both topologic and length properties have changed during evolution but largely at the link rather than network scale. The close correspondence with terrestrial networks may be due to the low relief and the relatively unconstrained nature of growth in which availability of space was the main determining factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号