首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 2017 Guptkashi earthquake occurred in a segment of the Himalayan arc with high potential for a strong earthquake in the near future. In this context, a careful analysis of the earthquake is important as it may shed light on source and ground motion characteristics during future earthquakes. Using the earthquake recording on a single broadband strong-motion seismograph installed at the epicenter, we estimate the earthquake’s location (30.546° N, 79.063° E), depth (H?=?19 km), the seismic moment (M0?=?1.12×1017 Nm, M w 5.3), the focal mechanism (φ?=?280°, δ?=?14°, λ?=?84°), the source radius (a?=?1.3 km), and the static stress drop (Δσ s ~22 MPa). The event occurred just above the Main Himalayan Thrust. S-wave spectra of the earthquake at hard sites in the arc are well approximated (assuming ω?2 source model) by attenuation parameters Q(f)?=?500f0.9, κ?=?0.04 s, and fmax?=?infinite, and a stress drop of Δσ?=?70 MPa. Observed and computed peak ground motions, using stochastic method along with parameters inferred from spectral analysis, agree well with each other. These attenuation parameters are also reasonable for the observed spectra and/or peak ground motion parameters in the arc at distances ≤?200 km during five other earthquakes in the region (4.6?≤?M w ?≤?6.9). The estimated stress drop of the six events ranges from 20 to 120 MPa. Our analysis suggests that attenuation parameters given above may be used for ground motion estimation at hard sites in the Himalayan arc via the stochastic method.  相似文献   

2.
Attenuation characteristics in the New Madrid Seismic Zone (NMSZ) are estimated from 157 local seismograph recordings out of 46 earthquakes of 2.6?≤?M?≤?4.1 with hypocentral distances up to 60 km and focal depths down to 25 km. Digital waveform seismograms were obtained from local earthquakes in the NMSZ recorded by the Center for Earthquake Research and Information (CERI) at the University of Memphis. Using the coda normalization method, we tried to determine Q values and geometrical spreading exponents at 13 center frequencies. The scatter of the data and trade-off between the geometrical spreading and the quality factor did not allow us to simultaneously derive both these parameters from inversion. Assuming 1/R 1.0 as the geometrical spreading function in the NMSZ, the Q P and Q S estimates increase with increasing frequency from 354 and 426 at 4 Hz to 729 and 1091 at 24 Hz, respectively. Fitting a power law equation to the Q estimates, we found the attenuation models for the P waves and S waves in the frequency range of 4 to 24 Hz as Q P?=?(115.80?±?1.36) f (0.495?±?0.129) and Q S?=?(161.34?±?1.73) f (0.613?±?0.067), respectively. We did not consider Q estimates from the coda normalization method for frequencies less than 4 Hz in the regression analysis since the decay of coda amplitude was not observed at most bandpass filtered seismograms for these frequencies. Q S/Q P?>?1, for 4?≤?f?≤?24 Hz as well as strong intrinsic attenuation, suggest that the crust beneath the NMSZ is partially fluid-saturated. Further, high scattering attenuation indicates the presence of a high level of small-scale heterogeneities inside the crust in this region.  相似文献   

3.
The Gumbel’s third asymptotic distribution (GIII) of the extreme value method is employed to evaluate the earthquake hazard parameters in the Iranian Plateau. This research quantifies spatial mapping of earthquake hazard parameters like annual and 100-year mode beside their 90 % probability of not being exceeded (NBE) in the Iranian Plateau. Therefore, we used a homogeneous and complete earthquake catalogue during the period 1900–2013 with magnitude M w ? ?4.0, and the Iranian Plateau is separated into equal area mesh of 1° late?×?1° long. The estimated result of annual mode with 90 % probability of NBE is expected to exceed the values of M w 6.0 in the Eastern part of Makran, most parts of Central and East Iran, Kopeh Dagh, Alborz, Azerbaijan, and SE Zagros. The 100-year mode with 90 % probability of NBE is expected to overpass the value of M w 7.0 in the Eastern part of Makran, Central and East Iran, Alborz, Kopeh Dagh, and Azerbaijan. The spatial distribution of 100-year mode with 90 % probability of NBE uncovers the high values of earthquake hazard parameters which are frequently connected with the main tectonic regimes of the studied area. It appears that there is a close communication among the seismicity and the tectonics of the region.  相似文献   

4.
Thermal waters contain small amounts of dissolved sulfides which in places precipitate at or near the earth’s surface. Knowledge of the physical chemistry of hydrothermal solutions is needed at elevated temperatures and pressures. Therefore, solubilities of the epithermal minerals cinnabar, stibnite, quartz, and orpiment in aqueousNa 2 S solutions was determined from 25–250° C, 1–2000 bars, and at severalNa 2 S concentrations. All the minerals are appreciably soluble inNa 2 S solutions. Pressure increase decreases solubilities of metallic sulfides but slightly increases quartz solubility. Temperature increase causes increased solubility at temperatures above 150° C, but at lower temperatures, cinnabar, orpiment and quartz show solubility decreases with increasing temperatures. Quartz and cinnabar are mutually soluble, but in the presence of stibnite only a small amount of cinnabar dissolves. The second ionization constant ofH 2 S as calculated from the solubility data ranges from 10?16,21 at 0°C to 10?12,59 at 250°C. TheK 2 ofH 2 S is lower according to this study than any reported before, and the variation with temperature is several orders of magnitude greater than had been predicted.  相似文献   

5.
The Dinghushan flux observation site, as one of the four forest sites of ChinaFLUX, aims to acquire long-term measurements of CO2 flux over a typical southern subtropical evergreen coniferous and broad-leaved mixed forest ecosystem using the open path eddy covariance method. Based on two years of data from 2003 to 2004, the characteristics of temporal variation in CO2 flux and its response to environmental factors in the forest ecosystem are analyzed. Provided two-dimensional coordinate rotation, WPL correction and quality control, poor energy-balance and underestimation of ecosystem respiration during nighttime implied that there could be a CO2 leak during the nighttime at the site. Using daytime (PAR > 1.0 μmol?1·m?2·s?1) flux data during windy conditions (u* > 0.2 m·s?1), monthly ecosystem respiration (Reco) was derived through the Michaelis-Menten equation modeling the relationship between net ecosystem C02 exchange (NEE) and photosynthetically active radiation (PAR). Exponential function was employed to describe the relationship between Reco and soil temperature at 5 cm depth (Ts05), then Reco of both daytime and nighttime was calculated respectively by the function. The major results are: (i) Derived from the Michaelis-Menten equation, the apparent quantum yield (α) was 0.0027±0.0011 mgCO2·μmol?1 photons, and the maximum photosynthetic assimilation rate (Amax) was 1.102±0.288 mgCO2·m?2·s?1. Indistinctive seasonal variation of α or Amax was consistent with weak seasonal dynamics of leaf area index (LAf) in such a lower subtropical evergreen mixed forest, (ii) Monthly accumulated Reco was estimated as 95.3±21.1 gC·m?2mon?1, accounting for about 68% of the gross primary product (GPP). Monthly accumulated WEE was estimated as ?43.2±29.6 gC·m?2·mon?1. The forest ecosystem acted as carbon sink all year round without any seasonal carbon efflux period. Annual NEE of 2003 and 2004 was estimated as ?563.0 and ?441.2 gC·m?2·a?1 respectively, accounting for about 32% of GPP.  相似文献   

6.
Age determination of paleotsunami sediment from Lombok Island, Indonesia, and surrounding area has been carried out using the 210 Pb method in BATAN Jakarta. The basic theory of this method assumes that weathering of sediments, including paleotsunami sediments, will result in 210 Pb enrichment. The principle of this method is to calculate 210 Pb contents accumulation in a particular sedimentation interval from the surface to the deeper buried sediments. The results are then converted into age or depositional time in years ago unit. The dating results from the paleotsunami sediments of the Gawah Pudak(S8°46’2.91’’, E115°56’34.23’’) and Gili Trawangan areas(S8°21’1.38’’, E116°2’36.6’’) indicate the Gawah Pudak sediments were deposited 37 years ago(c. in 1977)and 22 years ago(c. in 1992). Three paleotsunami sediments from Gili Trawangan were deposited 149 years ago(c. in 1865), 117 years ago(c. in 1897) and 42 years ago(c. in 1972). These results are then compared to the available Indonesian earthquake catalogue data. This study reveals that paleotsunami sediments around Lombok Islands, from older to younger, were caused by the 1857 earthquake(epicentre in Bali Sea; M7; S8°00’09.45’’,E115°29’56.41’’), 1897 earthquake(epicentre in Flores Sea;M5.5; S6°47’59.62’’, E120°48’03.5’’ or Sulu Sea earthquake; M8.5; 70 km NW of Basilan Island), the 1975 earthquake(Nusa Tenggara; S10°6’16.61’’, E123°48’09.39’’), 1977 earthquake(in Waingapu, Sumba; M8.0;S11°5’39.34’’, E118°27’50.86’’) and the 1992 earthquake(Flores; M7.8; S8°28’52.11’’, E121°53’44.3’’).  相似文献   

7.
Attenuation of P and S waves has been investigated in Alborz and north central part of Iran using the data recorded by two permanent and one temporary networks during October 20, 2009, to December 22, 2010. The dataset consists of 14,000 waveforms from 380 local earthquakes (2 < M L < 5.6). The extended coda normalization method (CNM) was used to estimate quality factor of P (Q P) and S waves (Q S) at seven frequency bands (0.375, 0.75, 1.5, 3, 6, 12, 24 Hz). The Q P and Q S values have been estimated at lapse times from 40 to 100 s. It has been observed that the estimated values of Q P and Q S are time independent; therefore, the mean values of Q P and Q S at different lapse times have been considered. The frequency dependence of quality factor was determined by using a power-law relationship. The frequency-dependent relationship for Q P was estimated in the form of (62 ± 7)f (1.03 ± 0.07) and (48 ± 5)f (0.95 ± 0.07) in Alborz region and North Central Iran, respectively. These relations for Q S for Alborz region and North Central Iran have estimated as (83 ± 8)f (0.99 ± 0.07) and (68 ± 5)f (0.96 ± 0.05), respectively. The observed low Q values could be the results of thermoelastic effects and/or existing fracture. The estimated frequency-dependent relationships are comparable with tectonically active regions.  相似文献   

8.
Analysis of the frequency dependence of the attenuation coefficient leads to significant changes in interpretation of seismic attenuation data. Here, several published surface-wave attenuation studies are revisited from a uniform viewpoint of the temporal attenuation coefficient, denoted by χ. Theoretically, χ( f) is expected to be linear in frequency, with a generally non-zero intercept γ?=?χ(0) related to the variations of geometrical spreading, and slope dχ/df = π/Q e caused by the effective attenuation of the medium. This phenomenological model allows a simple classification of χ( f) dependences as combinations of linear segments within several frequency bands. Such linear patterns are indeed observed for Rayleigh waves at 500–100-s and 100–10-s periods, and also for Lg from ~2 s to ~1.5 Hz. The Lg χ( f) branch overlaps with similar linear branches of body, Pn, and coda waves, which were described earlier and extend to ~100 Hz. For surface waves shorter than ~100 s, γ values recorded in areas of stable and active tectonics are separated by the levels of \(\gamma _{D} \approx 0.2 \times 10^{-3}\) s???1 (for Rayleigh waves) and 8 ×10???3 s???1 (for Lg). The recently recognized discrepancy between the values of Q measured from long-period surface waves and normal-mode oscillations could also be explained by a slight positive bias in the geometrical spreading of surface waves. Similarly to the apparent χ, the corresponding linear variation with frequency is inferred for the intrinsic attenuation coefficient, χ i , which combines the effects of geometrical spreading and dissipation within the medium. Frequency-dependent rheological or scattering Q is not required for explaining any of the attenuation observations considered in this study. The often-interpreted increase of Q with frequency may be apparent and caused by using the Q-based model of attenuation and following preferred Q( f) dependences while ignoring the true χ( f) trends within the individual frequency bands.  相似文献   

9.
In this study, continuous wavelet transform is applied to estimate the frequency-dependent quality factor of shear waves, Q S , in northwestern Iran. The dataset used in this study includes velocigrams of more than 50 events with magnitudes between 4.0 and 6.5, which have occurred in the study area. The CWT-based method shows a high-resolution technique for the estimation of S-wave frequency-dependent attenuation. The quality factor values are determined in the form of a power law as Q S (f)?=?(147?±?16)f 0.71?±?0.02 and (126?±?12)f 0.73?±?0.02 for vertical and horizontal components, respectively, where f is between 0.9 and 12 Hz. Furthermore, in order to verify the reliability of the suggested Q S estimator method, an additional test is performed by using accelerograms of Ahar-Varzaghan dual earthquakes on August 11, 2012, of moment magnitudes 6.4 and 6.3 and their aftershocks. Results indicate that the estimated Q S values from CWT-based method are not very sensitive to the numbers and types of waveforms used (velocity or acceleration).  相似文献   

10.
Based on the light-photosynthesis response measurement at leaf level, combined with over-and under-canopy eddy covariance measurements, research on photosynthetic characteristics of single trees and forest canopy was conducted. The relationship between light intensity and photosynthetic rates for leaves and canopy can be well fitted by a non-rectangular hyperbola model. Mongolian oak presented a high light compensation point, L cp (28 μmol·m?2·s?1), a light saturation point L sp (>1800 μmol·m?2·s?1), and a maximal net photosynthetic rate P max (9.96 μmol·m?2·s?1), which suggest that it is a typical heliophilous plant. Mono maple presented the highest apparent quantum efficiency α (0.066) but the lowest, L cp (16 μmol·m?2·s?1), L sp (≈800 μmol·m?2·s?1), and P max (4.51 μmol·m?2·s?1), which suggest that it is heliophilous plant. Korean pine showed the lowest α value but a higher P max, which suggest that it is a semi-heliophilous plant. At the canopy level, the values of both α and P max approached the upper limit of reported values in temperate forests, while L cp was within the lower limit. Canopy photosynthetic characteristics were well consistent with those of leaves. Both showed a high ability to photosynthesize. However, environmental stresses, especially high vapor pressure deficits, could significantly reduce the photosynthetic ability of leaves and canopy.  相似文献   

11.
Geomagnetic pulsation in the Pc3-4 bands have been studied at high Antarctic latitudes during the local summer. The statistical relation between the occurrence probability of Pc3 and Pc4 pulsations and the solar wind (SW) and IMF parameters has been revealed by verifying the hypothesis that an indication is identical in two distributions. Different dependences of the occurrence probability of high-latitude Pc3 and Pc4 pulsations on the IMF value and orientation and SW density and velocity have been found out. It has been indicated that these dependences remain unchanged in the range of geomagnetic latitudes from 66° to 87°. It has been established that the Pc3 observation probability at small (20°–50°) IMF cone angles (θ = cos?1(B x/|B|)) is a factor of 1.5 higher than the average statistical probability and depends on the IMF value, which confirms the hypothesis that the Pc3 source is the turbulent region upstream of the magnetospheric quasiparallel low shock. On the contrary, the probability of occurrence of Pc4 weakly depends on the IMF cone angle and is maximal at θ ~ 0° and ~90°. With increasing negative B z values, the generation probability increases in the Pc4 band and tends to decrease in the Pc3 band. It has been found out for the first time that the dependence of the Pc4 occurrence probability on the IMF clock angle (? = tan?2 (B/B z) is identical in the regions of projections of closed and open field lines, whereas this dependence is different for Pc3. In the region of projections of closed field lines, the Pc3 occurrence probability increases at B z < 0 and B y > 0 (the condition under which the cusp shifts on the dawn side) and at B y < 0 and B z > 0 (which is typical of the formation of the low-latitude boundary plasma sheet). In the region of projections of open field lines such a probability increases at B y < 0 and B z < 0 (which results in the formation of the high-latitude boundary plasma sheet). Based on the discovered regularities, the conclusion has been made that the sources of generation of high-latitude Pc3 and Pc4 pulsations are different.  相似文献   

12.
We study the frictional and viscous effects on earthquake nucleation, especially for the nucleation phase, based on a one-degree-of-freedom spring-slider model with friction and viscosity. The frictional and viscous effects are specified by the characteristic displacement, U c, and viscosity coefficient, η, respectively. Simulation results show that friction and viscosity can both lengthen the natural period of the system and viscosity increases the duration time of motion of the slider. Higher viscosity causes a smaller amplitude of lower velocity motion than lower viscosity. A change of either U c (under large η) or η (under large U c) from a large value (U ch for U c and η h for η) to a small one (U cl for U c and η l for η) in two stages during sliding can result in a clear nucleation phase prior to the P-wave. The differences δU c = U ch ? U cl and δη = η h ? η l are two important factors in producing a nucleation phase. The difference between the nucleation phase and the P-wave increases with either δU c or δη. Like seismic observations, the peak amplitude of P-wave, which is associated with the earthquake magnitude, is independent upon the duration time of nucleation phase. A mechanism specified with a change of either η or U c from a larger value to a smaller one due to temporal variations in pore fluid pressure and temperature in the fault zone based on radiation efficiency is proposed to explain the simulation results and observations.  相似文献   

13.
Using bathymetry and altimetric gravity anomalies, a 1° 9 1° lithospheric effective elastic thickness(Te) model over the Louisville Ridge and its adjacent regions is calculated using the moving window admittance technique. For comparison, three bathymetry models are used: general bathymetric charts of the oceans, SIO V15.1,and BAT_VGG. The results show that BAT_VGG is more suitable for calculating T e than the other two models. T e along the Louisville Ridge was re-evaluated. The southeast of the ridge has a medium Te of 10–20 km, while Te increases dramatically seaward of the Tonga-Kermadec trench as a result of the collision of the Pacific and IndoAustralian plates.  相似文献   

14.
The regularities in the southward drift of the ionospheric current centers and luminosity boundaries during strong magnetic storms of November 2003 and 2004 (with Dst ≈ ?400 and ?470 nT, respectively) are studied based on the global geomagnetic observations and TV measurements of auroras. It has been indicated that the eastward and westward electrojets in the dayside and nightside sectors simultaneously shift equatorward to minimal latitudes of Φ min ° ~53°–55°. It has been obtained that the Φ min ° latitude decreases with increasing negative values of Dst, IMF B z component, and westward electric field strength in the solar wind. The dependence of the electrojet equatorward shift velocity (V av) on the rate of IMF B z variations (ΔB z t) has been determined. It is assumed that the electrojet dynamics along the meridian is caused by a change in the structure of the magnetosphere and electric fields in the solar wind and the Earth’s magnetosphere.  相似文献   

15.
CO2 flux was measured continuously in a wheat and maize rotation system of North China Plain using the eddy covariance technique to study the characteristic of CO2 exchange and its response to key environmental factors. The results show that nighttime net ecosystem exchange (NEE) varied exponentially with soil temperature. The temperature sensitivities of the ecosystem (Q 10) were 2.94 and 2.49 in years 2002–2003 and 2003–2004, respectively. The response of gross primary productivity (GPP) to photosynthetically active radiation (PAR) in the crop field can be ex-pressed by a rectangular hyperbolic function. Average A max and α for maize were more than those for wheat. The values of α increased positively with leaf area index (LAI) of wheat. Diurnal variations of NEE were significant from March to May and from July to September, but not remarkable in other months. NEE, GPP and ecosystem respiration (R ec) showed significantly seasonal variations in the crop field. The highest mean daily CO2 uptake rate was ?10.20 and ?12.50 gC·m?2?d?1 in 2003 and 2004, for the maize field, respectively, and ?8.19 and ?9.50 gC?m?2·d?1 in 2003 and 2004 for the wheat field, respectively. The maximal CO2 uptake appeared in April or May for wheat and mid-August for maize. During the main growing seasons of winter wheat and summer maize, NEE was controlled by GPP which was chiefly influenced by PAR and LAI. R ec reached its annual maximum in July when R ec and GPP contributed to NEE equally. NEE was dominated by R ec in other months and temperature became a key factor controlling NEE. Total NEE for the wheat field was ?77.6 and ?152.2 gC·m?2·a?1 in years 2002–2003 and 2003–2004, respectively, and ?120.1 and ?165.6 gC·m?2·a?1 in 2003 and 2004 for the maize field, respectively. The cropland of North China Plain was a carbon sink, with annual ?197.6 and ?317.9 gC·m?2·a?1 in years 2002–2003 and 2003–2004, respectively. After considering the carbon in grains, the cropland became a carbon source, which was 340.5 and 107.5 gC·m?2·a?1 in years 2002–2003 and 2003–2004, respectively. Affected by climate and filed managements, inter-annual carbon exchange varied largely in the wheat and maize rotation system of North China Plain.  相似文献   

16.
Gega lake, in southeastern Tibet, was formed by the blocking of Yarlung Tsangpo gorge by a glacier and is a well-known example of geomorphological damming. However, the evolution of the damming process at the site is still not understood in detail. Here, we use measurements of multiple magnetic parameters of the sediments from the Yusong (YS) 3 section, which is well-dated by optically stimulated luminescence, to provide a detailed history of the late stage of Gega dammed lake since 17.0 ka. Low-frequency field magnetic susceptibility (χlf) increases upwards gradually from 25 to 79?×?10?8 m3/kg above 5.5 m, but other magnetic properties, such as frequency-dependent magnetic susceptibility (χfd % and χfd), susceptibility of anhysteretic remanent magnetization (χARM), and saturation isothermal remanent magnetization (SIRM) did not show a similar degree of enhancement. The magnetic grain size indicators of χARM/χlf, χARM/SIRM, and χlf/SIRM all indicate a trend of increasing magnetic grain size from the 5.5 m to the top of section; however, the bulk sediment grain size decreases gradually within the same interval. The total organic carbon is very low (0.2–0.7%), and thus, it is unlikely that the sedimentary environment is sufficiently strongly reducing to lead to the dissolution of magnetic minerals. Therefore, we infer that the coarsening-upwards of the magnetic grain size, and the increasing magnetic susceptibility from 5.5 m, reflect the gradual preferential preservation of magnetic minerals, caused by the deepening of the lake. Thus, we interpret the magnetic record of the section as reflecting the gradual deepening of the late stage of Gega ice-dammed lake. Last, the abrupt disappearance of the lake may have resulted in an outburst flood.  相似文献   

17.
Two zones of seismicity (ten events with M w = 7.0–7.7) stretching from Makran and the Eastern Himalaya to the Central and EasternTien Shan, respectively, formed over 11 years after the great Makran earthquake of 1945 (M w = 8.1). Two large earthquakes (M w = 7.7) hit theMakran area in 2013. In addition, two zones of seismicity (M ≥ 5.0) occurred 1–2 years after theMakran earthquake in September 24, 2013, stretching in the north-northeastern and north-northwestern directions. Two large Nepal earthquakes struck the southern extremity of the “eastern” zone (April 25, 2015, M w = 7.8 and May 12, 2015, M w = 7.3), and the Pamir earthquake (December 7, 2015, M w = 7.2) occurred near Sarez Lake eastw of the “western” zone. The available data indicate an increase in subhorizontal stresses in the region under study, which should accelerate the possible preparation of a series of large earthquakes, primarily in the area of the Central Tien Shan, between 70° and 79° E, where no large earthquakes (M w ≥ 7.0) have occurred since 1992.  相似文献   

18.
Quality factor Q, which describes the attenuation of seismic waves with distance, was determined for South Africa using data recorded by the South African National Seismograph Network. Because of an objective paucity of seismicity in South Africa and modernisation of the seismograph network only in 2007, I carried out a coda wave decay analysis on only 13 tectonic earthquakes and 7 mine-related events for the magnitude range 3.6?≤?M L ?≤?4.4. Up to five seismograph stations were utilised to determine Q c for frequencies at 2, 4, 8 and 16 Hz resulting in 84 individual measurements. The constants Q 0 and α were determined for the attenuation relation Q c(f)?=?Q 0 f α . The result was Q 0?=?396?±?29 and α?=?0.72?±?0.04 for a lapse time of 1.9*(t s???t 0) (time from origin time t 0 to the start of coda analysis window is 1.9 times the S-travel time, t s) and a coda window length of 80 s. This lapse time and coda window length were found to fit the most individual frequencies for a signal-to-noise ratio of at least 3 and a minimum absolute correlation coefficient for the envelope of 0.5. For a positive correlation coefficient, the envelope amplitude increases with time and Q c was not calculated. The derived Q c was verified using the spectral ratio method on a smaller data set consisting of nine earthquakes and one mine-related event recorded by up to four seismograph stations. Since the spectral ratio method requires absolute amplitudes in its calculations, site response tests were performed to select four appropriate stations without soil amplification and/or signal distortion. The result obtained for Q S was Q 0?=?391?±?130 and α?=?0.60?±?0.16, which agrees well with the coda Q c result.  相似文献   

19.
Fine structured multiple-harmonic electromagnetic emissions at frequencies around the equatorial oxygen cyclotron harmonics are observed by Van Allen Probe A outside the core plasmasphere(L~5) off the magnetic equator(MLAT~.7.5°)during a geomagnetic storm. We find that the multiple-harmonic emissions have power spectrum density(PSD) peaks during 2–8equatorial oxygen gyroharmonics( f ~ n fO+, n=2–8), while the fundamental mode(n=1) is absent, implying that the harmonic waves are generated near the equator and propagate into the observation region. Additionally, these electromagnetic emissions are linearly polarized. Different from the equatorial noise emission that propagates considerably obliquely, these emissions have moderate wave normal angles(approximately 40°–60°), which predominately increase as the harmonic number increases.Considering their frequency and wave normal angle characteristics, it is suggested that these multiple-harmonic emissions play an important role in the dynamic variation of radiation belt electrons.  相似文献   

20.
The hill range of Vaivara Sinimäed in northeast Estonia consists of several narrow east- to northeast-trending glaciotectonic fold structures. The folds include tilted (dips 4–75°) Middle Ordovician (early Darriwilian) layered carbonate strata that were studied by mineralogical, palaeomagnetic, and rock magnetic methods in order to specify the postsedimentational history of the area and to obtain a better control over the palaeogeographic position of Baltica during the Ordovician. Mineralogical studies revealed that (titano)magnetite, hematite, and goethite are carriers of magnetization. Based on data from 5 sites that positively passed a DC tilt test, a south-easterly downward directed component A (Dref = 154.6°± 15.3°, Iref = 60.9°± 9.7°) was identified. The component is carried by (titano)magnetite, dates to the Middle Ordovician (Plat = 17.9°, Plon = 47.3°, K = 46.7, A95 = 11.3°), and places Baltica at mid-southerly latitudes. Observations suggest that in sites that do not pass the tilt test, the glaciotectonic event has caused some rotation of blocks around their vertical axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号