首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
阿拉伯海北部的莫克兰增生楔是阿拉伯板块以低速、低角度俯冲到欧亚板块之下形成的主动陆缘构造,蕴藏着丰富的天然气水合物资源。依据2019年中国在莫克兰增生楔海域采集的高分辨率多道地震资料、浅地层剖面及多波束测深数据,并结合以往的调查成果,探讨莫克兰海域天然气水合物存在的浅表层识别标志。地震识别标志主要有似海底反射层(BSR)和振幅空白带2种标志,地形地貌标志包括海底麻坑、海底滑塌、丘状体、泥火山、冷泉系统等,水体标志主要为羽状流。在水深1000m和2900m的站位已分别钻获水合物样品。莫克兰增生楔丰富的水合物识别标志可能与低速、低角度的俯冲地质背景有关,使该区水合物存在指示兼具主动大陆边缘和被动大陆边缘的特征。综合研究区的异常标志分布特征,推测增生楔中部和西部的背斜脊及其附近区域是天然气水合物远景区。  相似文献   

2.
3.
The Gulf of Cadiz spans the plate boundary between Africa and Eurasia west of the Betic-Rif mountain belt. A narrow east dipping subduction zone descends beneath the Gulf of Cadiz and the straits of Gibraltar. The deep crustal structure of the Gulf and the adjacent SW Iberian and Moroccan margins is constrained by numerous multi-channel seismic reflection and wide-angle seismic surveys. A compilation of these existing studies is presented in the form of depth to basement, sediment thickness, depth to Moho and crustal thickness maps. These structural maps image an E-W trending trough, with thin (< 10 km) crust beneath the Gulf of Cadiz. This trough is filled by an eastward thickening wedge of sediments, reaching a thickness of 10-15 km in the eastern Gulf. These sediments are tectonically deformed, primarily along a series of westward-vergent thrust faults and represent a 200-250 km wide accretionary wedge. The northern and especially the southern limits of the accretionary wedge are marked by sharp morphological lineaments showing evidence of recent deformation. These tectonic limits are situated in an internal position with respect to the Miocene deformation front (external Betic and Rif allocthons), which has been abandoned. At the western boundary of the accretionary wedge, near the adjacent Seine and Horseshoe abyssal plains, an E-W trending basement high (Coral Patch Ridge) can be seen indenting the deformation front in an asymmetric manner. Analog modeling is performed using granular materials accreted against a semicircular backstop (representing the basement of the Rif and Betic mountain belts). The modeling initially produces a symmetric, arcuate accretionary wedge. The ensuing collision of an oblique rigid indenter retards accretion on one side, resulting in an embayment and a locally steeper deformation front. The deformation pattern observed in morphology and high-resolution seismic profiles suggests the accretionary wedge and underlying subduction system is still active. The implications of active subduction for the source region of the 1755 Lisbon earthquake and the regional seismic hazard assessment are discussed.  相似文献   

4.
The Bajgan Complex, one of the basement constituents of the arc massif in Iranian Makran forms a rugged, deeply incised terrain. The complex consists of pelitic schists with minor psammitic and basic schists, calc silicate rocks, amphibolites, marbles, metavolcanosediments, mafic and felsic intrusives as well as ultramafic rocks. Metapelitic rocks show an amphibolite facies regional metamorphism and contain garnet, biotite, white mica, quartz, albite ± rutile ± apatite. Thermobarometry of garnet schist yields pressure of more than 9 kbar and temperatures between 560 and 675 °C. The geothermal gradient obtained for the peak of regional metamorphism is 19 °C/km, corresponding to a depth of ca. 31 km. Replacement of garnet by chlorite and epidote suggest greenschist facies metamorphism due to a decrease in temperature and pressure through exhumation and retrograde metamorphism (370–450 °C and 3–6 kbar). The metapelitic rocks followed a ‘clockwise’ P–T path during metamorphism, consistent with thermal decline following tectonic thickening. The formation of medium-pressure metamorphic rocks is related to presence of active subduction of the Neotethys Oceanic lithosphere beneath Eurasia in the Makran.  相似文献   

5.
《China Geology》2020,3(4):611-622
The Makran accretionary prism is located at the junction of the Eurasian Plate, Arabian Plate and Indian Plate and is rich in natural gas hydrate (NGH) resources. It consists of a narrow continental shelf, a broad continental slope, and a deformation front. The continental slope can be further divided into the upper slope, middle slope, and lower slope. There are three types of diapir structure in the accretionary prism, namely mud diapir, mud volcano, and gas chimney. (1) The mud diapirs can be grouped into two types, namely the ones with low arching amplitude and weak-medium activity energy and the ones with high arching amplitude and medium-strong activity energy. The mud diapirs increase from offshore areas towards onshore areas in general, while the ones favorable for the formation of NGH are mainly distributed on the middle slope in the central and western parts of the accretionary prism. (2) The mud volcanoes are mainly concentrated along the anticline ridges in the southern part of the lower slope and the deformation front. (3) The gas chimneys can be grouped into three types, which are located in piggyback basins, active anticline ridges, and inactive anticline ridges, respectively. They are mainly distributed on the middle slope in the central and western parts of the accretionary prism and most of them are accompanied with thrust faults. The gas chimneys located at different tectonic locations started to be active at different time and pierced different horizons. The mud diapirs, mud volcanoes, and gas chimneys and thrust faults serve as the main pathways of gas migration, and thus are the important factors that control the formation, accumulation, and distribution of NGH in the Makran accretionary prism. Mud diapir/gas chimney type hydrate develop in the middle slope, mud volcano type hydrate develop in the southern lower slope and the deformation front, and stepped accretionary prism type hydrate develop on the central and northern lower slope. The middle slope, lower slope and deformation front in the central and western parts of the Makran accretionary prism jointly constitute the NGH prospect area.  相似文献   

6.
Jonas B. Ruh 《地学学报》2016,28(3):163-170
Seamounts entering active subduction zone trenches initially collide with the frontal sedimentary accretionary wedges resulting in severe deformation of the overriding plate. A typical feature of this deformation is the occurrence of submarine landslides due to gravitational instabilities. Such landslides have been reported from the Middle America and Hikurangi trenches and potentially generate tsunami waves. Yet, the dynamics of accretionary wedges during seamount indentation, and landsliding as a mechanical response in particular, have not been investigated qualitatively. Here, I use 3D high‐resolution numerical experiments to model the collision of conical and flat‐topped seamounts into accreting sedimentary sequences. Results show that the topographical evolution of an accretionary wedge mainly depends on the volume of the entering seamount and not on its height. Submarine landslides occur only if seamounts are not completely buried by the sedimentary sequence, and the volume of the avalanche is roughly correlated with the seamount volume overtopping the incoming sediments.  相似文献   

7.
《地学前缘》2017,(4):200-212
东亚陆缘中生代增生造山过程及变形响应一直以来都是中国区域地质研究的重大课题,也是东亚地质构造演化的一个难点和热点。其中一个最为关键的科学问题就是,古太平洋板块(Izanagi)何时开始启动俯冲?对中生代东亚大陆边缘产生何种影响?那丹哈达地体出露于中国东北,为一套构造混杂岩系,是中国境内由古太平洋板块俯冲-增生形成的唯一证据,为解决这一问题提供了可能。本文通过总结大量前人最新的岩石学、同位素年代学、沉积岩石组合、主干断裂、岩浆活动、古生物及古地磁等资料,试图厘定那丹哈达地体构造属性、增生过程、拼贴时间以及古太平洋板块开始俯冲的时间,并与周缘地体进行对比。结果表明:(1)那丹哈达增生杂岩分为饶河杂岩和跃进山杂岩,饶河杂岩具有洋岛玄武岩(OIB)的特征,不是前人认为的蛇绿岩,可称之为洋岛(海山)杂岩;跃进山杂岩具有洋中脊玄武岩(MORB)的特征,是典型的蛇绿岩,同时暗示古太平洋板块可能于晚三叠世开始启动俯冲,并在136~131 Ma期间就位于现今位置。(2)那丹哈达与日本丹波—美浓—尾足地体都是侏罗纪增生楔,在沉积岩石组合和年龄、放射虫类型及分布、地质构造等特征上都非常相似,在中新世日本海打开之前应是一个统一的超级地体。  相似文献   

8.
Tetsuro Hirono   《Tectonophysics》2005,397(3-4):261-280
Geological investigation of the deformation structures and sedimentary setting of the Emi Group, a Miocene sand-rich accretionary complex, central Japan, revealed a six stage-structural evolution during shallow level accretion in a subduction zone. The early deformation (stage 1) is characterized by independent particulate flow in layer parallel faults, scaly cleavages and web structures, and upward dewatering in dish-and-pillar structures and breccia injections, while later deformation (stages 2–6) involve mappable scale folding, meso- to macro-scopic thrusts and web structures with cataclastic flow. Based on microscopic analyses of these structures, the early faulting with independent particulate flow (stage 1 deformation) is associated with dilatancy and preferred orientation of void space, whereas the later faulting with cataclastic flow (stage 2 deformation) occurs with compaction and crude preferred orientation. The former features imply more permeable fluid migration pathways, supported by the permeability measurements and direct imaging of fluid flow by X-ray CT. On the other hand, the later fault zone has lower permeability and porosity than intact rock, and plays as fluid sealing. Thus, in the early stage (stages 1), fluid flow occurs as focused flow through dilatant fault zones with independent particulate flow or fluid migration by upward dewatering forming dish-and-pillar structures and breccia injections, whereas no evidence of fluid flow is recognized at the later stages (stages 2–6). Namely the fault zones focus fluid flow during primary accretion in shallow levels, and the fluid flow is strongly controlled by the deformation mechanism. Furthermore, the change of the deformation mechanism could be effected by progressive increment of the confining pressure, accompanied with accretion and lithification in the accretionary prism. In the shallow, dilatant-faulting regime where the deformation mechanism is independent particulate flow, focused flow dominates, whereas in the deep, cataclastic regime distributed flow may play a main conduit rather than the focused flow.  相似文献   

9.
The East Sakhalin accretionary wedge is a part of the Cretaceous-Paleogene accretionary system, which developed on the eastern Asian margin in response to subduction of the Pacific oceanic plates. Its formation was related to the evolution of the Early Cretaceous Kem-Samarga island volcanic arc and Late Cretaceous-Paleogene East Sikhote Alin continental-margin volcanic belt. The structure, litho-, and biostratigraphy of the accretionary wedge were investigated in the central part of the East Sakhalin Mountains along two profiles approximately 40 km long crossing the Nabil and Rymnik zones. The general structure of the examined part of the accretionary wedge represents a system of numerous east-vergent tectonic slices. These tectonic slices. tens to hundreds of meters thick. are composed of various siliciclastic rocks, which were formed at the convergent plate boundary, and subordinate oceanic pelagic cherts and basalts, and hemipelagic siliceous and tuffaceous-siliceous mudstones. The siliciclastic deposits include trench-fill mudstones and turbidites and draping sediments. The structure of the accretionary wedge was presumably formed owing to off-scraping and tectonic underplating. The off-scraped and tectonically underplated fragments were probably tectonically juxtaposed along out-of-sequence thrusts with draping deposits. The radiolarian fauna was used to constrain the ages of rocks and time of the accretion episodes in different parts of the accretionary wedge. The defined radiolarian assemblages were correlated with the radiolarian scale for the Tethyan region using the method of unitary associations. In the Nabil zone, the age of pelagic sediments is estimated to have lasted from the Late Jurassic to Early Cretaceous (Barremian); that of hemipelagic sediments, from the early Aptian to middle Albian; and trench-fill and draping deposits of the accretionary complex date back to the middle-late Albian. In the Rymnik zone, the respective ages of cherts, hemipelagic sediments, and trench facies with draping deposits have been determined as Late Jurassic to Early Cretaceous (middle Albian), middle Aptian-middle Cenomanian, and middle-late Cenomanian. East of the rear toward the frontal parts of the accretionary wedge, stratigraphic boundaries between sediments of different lithology become successively younger. Timing of accretion episodes is based on the age of trench-fill and draping sediments of the accretionary wedge. The accretion occurred in a period lasting from the terminal Aptian to the middle Albian in the western part of the Nabil zone and in the middle Cenomanian in the eastern part of the Rymnik zone. The western part of the Nabil zone accreted synchronously with the Kiselevka-Manoma accretionary wedge located westerward on the continent. These accretionary wedges presumably formed along a single convergent plate margin, with the Sakhalin accretionary system located to the south of the Kiselevka-Manoma terrane in the Albian.  相似文献   

10.
A Late Palaeozoic accretionary prism, formed at the southwestern margin of Gondwana from Early Carboniferous to Late Triassic, comprises the Coastal Accretionary Complex of central Chile (34–41°S). This fossil accretionary system is made up of two parallel contemporaneous metamorphic belts: a high‐pressure/low temperature belt (HP/LT – Western Series) and a low pressure/high temperature belt (LP/HT – Eastern Series). However, the timing of deformation events associated with the growth of the accretionary prism (successive frontal accretion and basal underplating) and the development of the LP/HT metamorphism in the shallower levels of the wedge are not continuously observed along this paired metamorphic belt, suggesting the former existence of local perturbations in the subduction regime. In the Pichilemu region, a well‐preserved segment of the paired metamorphic belt allows a first order correlation between the metamorphic and deformational evolution of the deep accreted slices of oceanic crust (blueschists and HP greenschists from the Western Series) and deformation at the shallower levels of the wedge (the Eastern Series). LP/HT mineral assemblages grew in response to arc‐related granitic intrusions, and porphyroblasts constitute time markers recording the evolution of deformation within shallow wedge material. Integrated P–T–t–d analysis reveals that the LP/HT belt is formed between the stages of frontal accretion (D1) and basal underplating of basic rocks (D2) forming blueschists at c. 300 Ma. A timeline evolution relating the formation of blueschists and the formation and deformation of LP/HT mineral assemblages at shallower levels, combined with published geochronological/thermobarometric/geochemistry data suggests a cause–effect relation between the basal accretion of basic rocks and the deformation of the shallower LP/HT belt. The S2 foliation that formed during basal accretion initiated near the base of the accretionary wedge at ~30 km depth at c. 308 Ma. Later, the S2 foliation developed at c. 300 Ma and ~15 km depth shortly after the emplacement of the granitoids and formation of the (LP/HT) peak metamorphic mineral assemblages. This shallow deformation may reflect a perturbation in the long‐term subduction dynamics (e.g. entrance of a seamount), which would in turn have contributed to the coeval exhumation of the nearby blueschists at c. 300 Ma. Finally, 40Ar–39Ar cooling ages reveal that foliated LP/HT rocks were already at ~350 °C at c. 292 Ma, indicating a rapid cooling for this metamorphic system.  相似文献   

11.
Hydrothermal quartz from mineralized joints of the Carpathian accretionary wedge contains immiscible aqueous, oil‐condensate, methane and carbon dioxide‐rich fluid inclusions. Distribution patterns of the inclusion trapping PT parameters point to a crack‐seal mechanism during upward and lateral migration of hot methane‐rich fluids from overpressured sediments at the base of the accretionary wedge. A simple equation is proposed to calculate depths from densities and trapping pressures of the buoyant inclusion fluids. In the Carpathian accretionary wedge, the paleofluid pressures of 52–306 MPa correspond to a 5‐ to 11‐km‐thick overburden. Prior to exhumation, thickness of the wedge must have attained 10–25 km, of which only c. 50% was preserved until recently. Anomalously high methane densities (up to 0.43 g cm?3) recorded in the lowermost nappe sheets are provisionally interpreted as a result of supralithostatic overpressure due to thermal cracking of oil and kerogen to methane and pyrobitumen at temperatures above 200 °C.  相似文献   

12.
南祁连拉脊山口增生楔的结构与组成特征   总被引:1,自引:1,他引:1  
造山带内增生楔/增生杂岩结构与组成的精细研究可为古洋盆演化和古板块构造格局重建提供最直接证据。北祁连构造带发育多条增生杂岩带,记录了阿拉善和中祁连地块之间原特提斯洋的俯冲和闭合过程,然而南祁连构造带大地构造演化长期存在争议。地质填图结果表明,南祁连构造带拉脊山口地区存在一套强烈片理化的玄武岩、灰黑色和红色硅质岩、砂岩和泥岩组合,它们与一套呈现"块体裹夹于基质"结构特征的混杂岩共同构成了增生杂岩,发育双重逆冲构造、逆冲断层、无根褶皱、紧闭褶皱和透入性面理。该增生杂岩与蛇绿岩之间为断层接触,并位于断层下盘。混杂岩是由斜长花岗岩(561Ma)、斜长岩(507Ma)、辉绿岩、玄武岩、硅质岩和砂岩等外来或原地岩块与浊流成因的细碎屑岩基质共同组成;基质和砂岩块体均发育同沉积构造,呈现出滑塌堆积典型特征。空间上,拉脊山口增生杂岩与上覆蛇绿岩被断层所分割且共同仰冲于中祁连南缘青石坡组浊积岩之上,具有与东侧昂思多地区增生杂岩和蛇绿岩相似的岩石组成、构造变形和时空结构特征。它们与南侧的岛弧带共同构成了南祁连构造带寒武纪-早奥陶世沟-弧体系,指示了寒武纪-早奥陶世时期南祁连洋盆向南俯冲。  相似文献   

13.
研究目的】通过查明理塘地区拉扎嘎山花岗闪长岩的年龄、地球化学特征,探讨花岗闪长岩形成的时代、成因及构造背景,为研究甘孜—理塘洋盆俯冲增生构造演化过程提供依据。【研究方法】选取甘孜—理塘蛇绿混杂岩带俯冲增生楔内花岗闪长岩,系统开展岩相学、LA-ICP-MS锆石U-Pb年代学和岩石地球化学研究。【研究结果】花岗闪长岩含有大量的角闪石、黑云母等铁镁矿物,局部见大量的闪长质包体和围岩捕掳体。岩体形成于晚三叠世((207.2±1.5) Ma),岩石属I型钙碱性准铝质花岗岩类,具富集大离子亲石元素Rb、Ba、K、Th、U,亏损高场强元素Nb、Ta、P、Zr、Ti,显示轻稀土富集、重稀土亏损的右倾式配分模式,具有Eu的负异常,是典型的火山弧型花岗岩。【结论】结合区域地质资料及本文研究成果,认为四川理塘地区拉扎嘎山花岗闪长岩与甘孜—理塘洋向西俯冲致使中咱地块东缘增生楔不断扩大密切相关,是增生楔杂岩熔融成不同类型岩浆混合的产物。创新点:四川理塘地区拉扎嘎山花岗岩形成于晚三叠世,具典型的火山弧型花岗岩地球化学特征,形成于甘孜—理塘洋西向俯冲致使增生楔杂岩熔融,为甘孜—理塘洋俯冲增生构造演化提供了新的证据。  相似文献   

14.
D.R. Gray  D.A. Foster   《Tectonophysics》2004,385(1-4):181-210
Structural thickening of the Torlesse accretionary wedge via juxtaposition of arc-derived greywackes (Caples Terrane) and quartzo-feldspathic greywackes (Torlesse Terrane) at 120 Ma formed a belt of schist (Otago Schist) with distinct mica fabrics defining (i) schistosity, (ii) transposition layering and (iii) crenulation cleavage. Thirty-five 40Ar/39Ar step-heating experiments on these micas and whole rock micaceous fabrics from the Otago Schist have shown that the main metamorphism and deformation occurred between 160 and 140 Ma (recorded in the low grade flanks) through 120 Ma (shear zone deformation). This was followed either by very gradual cooling or no cooling until about 110 Ma, with some form of extensional (tectonic) exhumation and cooling of the high-grade metamorphic core between 109 and 100 Ma. Major shear zones separating the low-grade and high-grade parts of the schist define regions of separate and distinct apparent age groupings that underwent different thermo-tectonic histories. Apparent ages on the low-grade north flank (hanging wall to the Hyde-Macraes and Rise and Shine Shear Zones) range from 145 to 159 Ma (n=8), whereas on the low-grade south flank (hanging wall to the Remarkables Shear Zone or Caples Terrane) range from 144 to 156 Ma (n=5). Most of these samples show complex age spectra caused by mixing between radiogenic argon released from neocrystalline metamorphic mica and lesser detrital mica. Several of the hanging wall samples with ages of 144–147 Ma show no evidence for detrital contamination in thin section or in the form of the age spectra. Apparent ages from the high-grade metamorphic core (garnet–biotite–albite zone) range from 131 to 106 Ma (n=13) with a strong grouping 113–109 Ma (n=7) in the immediate footwall to the major Remarkables Shear Zone. Most of the age spectra from within the core of the schist belt yield complex age spectra that we interpret to be the result of prolonged residence within the argon partial retention interval for white mica (430–330 °C). Samples with apparent ages of about 110–109 Ma tend to give concordant plateaux suggesting more rapid cooling. The youngest and most disturbed age spectra come from within the ‘Alpine chlorite overprint’ zone where samples with strong development of crenulation cleavage gave ages 85–107 and 101 Ma, due to partial resetting during retrogression. The bounding Remarkables Shear zone shows resetting effects due to dynamic recrystallization with apparent ages of 127–122 Ma, whereas overprinting shear zones within the core of the schist show apparent ages of 112–109 and 106 Ma. These data when linked with extensional exhumation of high-grade rocks in other parts of New Zealand indicate that the East Gondwana margin underwent significant extension in the 110–90 Ma period.  相似文献   

15.
《Geodinamica Acta》2013,26(5):331-348
New biostratigraphic data from the formations unconformably lying above the tectonic units resulting from the Flysch Basin Domain (FBD) in the Sicilian Maghrebids are here reported. The FBD constituted a southern branch of the western Tethys, separating during the Jurassic to Paleogene a Mesomediterranean Microplate from the African Plate.

The age of the youngest sediments involved in the nappes and that of the unconformable terrains deposited in thrust-top basins on these tectonic units, allow to define both the age of deformation of the oceanic realm and the onset of the continental collision. The deformation migrated from internal to external areas of FBD starting from the latest Burdigalian-Langhian to Serravallian. Therefore, the previously proposed Eocene-Oligocene mesoalpine deformation of the Maghrebian FBD cannot be supported. The continental collision started during the Serravallian and it was accomplished in the late Tortonian, when clastic deposits sealed the boundaries of the tectonic units originated from all the paleogeographic domains of the Maghrebian Chain.

The steps of the tectonic evolution in the Sicilian Maghrebids are now very well constrained and the proposed tectonic evolution may be extended to the whole Maghrebian Chain, as far as to the western Betic Cordilleras and to the southern Apennines, where most of the tectonic events show highly similar features and ages.  相似文献   

16.
Veins in the Sicilian accretionary wedge were studied petrographically and geochemically with the aim to investigate the relation between fluid flow in a décollement horizon and in overlying Mesozoic basinal sediments. Fluids expelled along the décollement horizon precipitated calcite cements that show a broad spread in stable isotope signatures and that generally have rather high Fe and Mn content. The fluids most likely originated from mixing of hot deep metamorphic fluids and dewatering of the clay unit along which the principal overthrusting occurred.Synkinematic veins in the overlying basinal units are cemented with calcite. The trace element content and δ13C signatures of these veins are host-rock dependent, pointing to a host-rock buffering effect. Petrographic observations indicate that calcite cements have been recrystallized. Thus the cements could have inherited their geochemical signatures from the host-rock during recrystallization. This is also supported by their δ18O signature, which is controlled by temperature fractionation.  相似文献   

17.
柴北缘赛坝沟增生杂岩组成与变形特征   总被引:1,自引:0,他引:1  
曹泊  闫臻  付长垒  牛漫兰 《岩石学报》2019,35(4):1015-1032
柴北缘构造带由高压-超高压变质岩、蛇绿岩、增生杂岩、火山-岩浆弧及前寒武纪中-高级变质岩共同构成。该构造带内的"滩间山群"岩石组合与构造属性复杂,其岩性包括中基性火山岩、碎屑沉积岩以及超基性岩和中酸性侵入岩,普遍遭受低绿片岩相变质作用和强烈构造变形。结合区域资料和地质填图结果,综合分析认为该构造带东段赛坝沟地区的"滩间山群"由火山-岩浆弧、增生杂岩、蛇绿岩三个不同构造单元岩石组成。其中增生杂岩主要是一套深海-半深海沉积组合,夹玄武岩、灰岩、硅质岩等块体,自南而北总体呈现出来自洋壳、海山和海沟环境的大洋板块地层的岩石组合特征,同时呈现与日本西南部增生杂岩极为相似的岩石组合类型。该套组合构造变形强烈,主要表现为2期构造变形。其中第一期构造变形(D1)主要表现为双冲构造和同斜紧闭褶皱,断层和褶皱轴面主体倾向为NE,形成于大洋俯冲阶段;第二期构造变形(D2)主要表现为不对称褶皱和S-C组构,可能是晚期柴达木与祁连地块发生陆-陆碰撞过程中形成的,形成时间为440~400Ma。空间上,该增生杂岩与出露于其北侧的蛇绿岩、火山-岩浆弧共同构成了相对完整的沟-弧系统,指示了寒武-奥陶纪时期,柴北缘地区曾发生古洋盆向北俯冲造山作用。  相似文献   

18.
Indentation of a rigid box into a sand layer leads to accretion of sand into a wedge which has an arcuate shape in map-view. Curvature of the wedge is most pronounced at the corners of the indentor, where deformation has been investigated in detail in this study. Several features of the arcuate wedge in the corner region depend on the indentation angle, i.e. the angle between the indentation direction and the normal to the frontal face of the indentor: (a) The ratio between the widths of the lateral and frontal parts of the wedge increases linearly with increasing indentation angle. (b) Orogen-parallel extension (OPE) in the corner area is initially high and leads thus to large finite OPE in the firstly formed nappes, but decreases and attains a stable level during progressive convergence. Finite OPE in the corner region is smaller at larger indentation angles. (c) Displacement vectors of accreted material exhibit fanning around the arc, but in oblique indentation the spread of their orientation is smaller than the change of structural strike (nappe traces and fold axes). Displacement vectors trend mainly in such positions normal to structural strike where displacement is parallel to the indentation direction. The results from these experiments can be applied to natural arcuate fold–thrust belts if natural conditions do not differ much from experimental boundary conditions. Such an application may give information about the former plate movement direction across an arcuate plate margin. In the example of the Eastern Carpathian arc, a Tertiary plate-movement direction of approx. 125–130° was determined. This direction is in accordance with current models of large-scale tectonics of the Carpathian region, which indicates the applicability of the experimental results to natural examples.  相似文献   

19.
The mechanism for generation of Silurian-Devonian hornblende-bearing I-type granitoids in the Chinese Altai still remains rather obscure. The possibility that they are derived from the regional anatexis of the Ordovician accretionary wedge, i.e., the Habahe Group, is investigated. The Habahe Group contains a large number of intermediate-to-basic components. These components occur mainly as interlayered volcanogenic bands or admixtures and less commonly as blocks varying in size from several meters to several hundreds of meters. Geochemically, this volcanogenic component is characterized by enrichment of large-ion lithophile elements relative to many of the high-field strength elements and rather radiogenic Nd isotopic signatures (εNd(t): +4.1 to +9.1). Phase equilibrium and trace element modelling indicate that partial melting of the volcanogenic component at an attainable 900–1000 °C can produce 30–35 vol% silicic melts that show a good chemical match, in terms of major element contents and trace element patterns, with those of the local I-type granitoids. Combined with regional available data, we suggest that Silurian-Devonian hornblende-bearing I-type granitoids could be derived from the partial melting of the volcanogenic components of the Habahe Group and previously inferred large input of mantle-derived magma is un-necessary. Regional anatexis of the Ordovician accretionary wedge led to the stabilization of the wedge, which may represent an important mechanism contributing to the formation of vertically stratified continental crust in accretionary orogens in general.  相似文献   

20.
从缅甸某区块已钻井和手工顿钻井的有机质丰度、类型及热演化分析,该区具有一定的生烃能力。基于钻井的有机碳( TOC)、热解生烃潜力( S2)、氯仿沥青“A”、总烃( HC)、镜质体反射率( Ro )等测试化验,对研究区的两套主要烃源岩———始新统和中新统的泥、页岩进行评价,认为主力烃源岩为中—下始新统,上始新统—中中新统组为低—中等丰度烃源岩;有机质类型主要为Ⅱ2-Ⅲ型,南部生气、北部生油;有机质热演化达到低熟—成熟阶段,南部热演化程度高于北部。综合分析认为研究区具有较好的烃源潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号