首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
表层岩溶带土壤中多环芳烃分布特征及来源解析   总被引:3,自引:0,他引:3  
利用气相色谱-质谱联用仪(GC-MS)对表层岩溶泉域土壤中的16种优控的多环芳烃(Polycyclic Aromatic Hydrocarbons, PAHs)含量进行了分析,并对其组成、污染水平和来源进行了探讨。结果表明,16种优控PAHs在表层岩溶泉域土壤中的检出率为100%,其含量介于439.19~3329.72ng/g之间,平均值为1392.44ng/g,7种致癌性PAHs占总量的26%。PAHs的组成特征受地形的控制,随着海拔升高,低环PAHs所占比例升高,高环PAHs比例降低。同分异构体比值分析表明,研究区土壤中的PAHs主要来自于煤、生物质和石油的燃烧排放。研究区土壤中16种PAHs的TEQcarc值介于18.65~501.13ng/g,平均值为140.57ng/g。7种致癌性PAHs占总TEQcarc的比例达到96.8%。研究区表土中,后沟泉域的污染程度最大,次之是兰花沟泉域和柏树湾泉域,水房泉泉域的污染程度最小,但由于柏树湾泉域松针落叶中BaP、PAHs含量较高,松针落叶中PAHs含量分别高达36.36ng/g和2370.1ng/g,土壤生态风险评价中应考虑松针落叶层的潜在影响。   相似文献   

2.
北京市东南郊不同灌区表层土壤中PAHs来源解析   总被引:2,自引:0,他引:2  
采用正三角形布点法在北京市东南郊污灌区、再生水灌区、清灌区分别进行了3个表土的样品采集,采样间隔为1 m,共采集9个样品,分别测试了样品中16种多环芳烃的质量分数。测试结果表明:大部分PAHs在3个灌区表土中均有检出,污灌区除了蒽和苯并[a]蒽外,其余均有检出;再生水灌区除二氢苊和苯并[a]蒽外,其余均有检出;清灌区16种PAHs均有检出。其中,污灌区的ΣPAHs大约为730 μg/kg,再生水灌区ΣPAHs大约为207 μg/kg,清灌区PAHs大约为43 μg/kg。分别利用比值法、聚类分析法和主成分分析法对研究区土壤中PAHs的可能来源进行解析,通过比值法和聚类分析法可以得出:污灌区表土PAHs污染主要来源于石油源,而再生水灌区和清灌区的PAHs主要来源于燃烧源。由主成分分析法可以定量地计算出各个污染源对PAHs的贡献率:在污灌区采样点,燃烧源/汽车尾气和焦炭源/石油源的贡献率分别为30%和70%;在再生水灌区,PAHs的主要来源为煤的燃烧、汽车尾气的排放和部分石油源的输入,贡献率分别为83.2%和16.8%;在清灌区,PAHs的主要来源为煤的燃烧和汽车尾气的排放,贡献率分别为83.6%和16.4%。  相似文献   

3.
4.
气相色谱-质谱联用法测定土壤中16种多环芳烃   总被引:1,自引:0,他引:1  
张小辉  王晓雁 《岩矿测试》2010,29(5):535-538
应用加速溶剂萃取气相色谱-质谱联用法测定土壤中16种多环芳烃。确定了二氯甲烷-丙酮(体积比1:1)作为提取溶剂,方法检出限为0.10~3.90ng/g,加标回收率为72.6%~123.5%。方法检出限较低,精密度好,适用于土壤样品中多环芳烃的分析。  相似文献   

5.
运用GC-MS测定黄河口及邻近海域表层沉积物中多环芳烃(PAHs)含量,探讨PAHs的分布、来源及潜在生态风险。结果表明沉积物中多环芳烃总浓度为111.3~204.8 ng/g,平均浓度为115.8 ng/g;PAHs高浓度样点多分布在黄河口西北缘、西南缘和东缘。黄河口南部和中部沉积物中的PAHs主要来源于燃烧源,西北缘沉积物的PAHs则呈现出石油源和燃烧源混合的特征。除局部(Sc11,Sc12和Sc18)沉积物PAHs具高潜在生态风险,大部分沉积物PAHs潜在生态风险为中等。  相似文献   

6.
刘顺民 《福建地质》2010,29(3):238-243
在福建省沿海经济带生态地球化学调查的基础上,应用富集因子法对福建省沿海地区表层土壤中铅的来源进行了分析,并对其自然来源和人为来源的分布特征及影响因素做了初步探讨。结果表明,福建沿海地区约98.2%的土地面积表层土壤中铅属于自然来源,其余地区含有人为来源铅,且集中分布于个别市县城区;铅自然来源区呈现广域性分布特征,人为来源区则呈现零星的斑点状分布特点;铅自然来源区和人为来源区的空间分布特征在很大程度上受到土壤类型、森林植被分布以及人为活动等因素的影响。  相似文献   

7.
本文建立了S-916快速溶剂萃取仪(Buchi瑞士)快速萃取-气相色谱-质谱仪(GC-MS联用测定土壤中15种多环芳烃(PAHs)含量的方法。土壤样品经正己烷、丙酮快速溶剂萃取,除水浓缩后,利用硅酸镁小柱进行净化,直接进GC-MS测定。结果表明,在5. 0~1000. 0μg/L浓度范围内,15种PAHs的相关系数均在0. 996以上,RF RSD<12%,加标回收率在80%~117%之间,15种PAHs的最低检出限均低于0. 40μg·kg-1.该方法灵敏、快速、准确可靠,完全满足实验室对土壤中PAHs的检测要求,可为土壤中多环芳烃(PAHs)的污染情况提供快速检测依据。  相似文献   

8.
气相色谱-质谱法分析土壤中十溴联苯醚   总被引:4,自引:0,他引:4  
通过优化分析仪器的条件设置,建立了使用气相色谱-质谱技术分析十溴联苯醚(BDE 209)的仪器分析方法。通过实施严格的质量控制和质量保证(QA/QC)措施,建立了使用加速溶剂萃取(ASE)技术测试土壤中十溴联苯醚的分析检测方法。该方法的仪器检出限为9.75pg,方法检出限3.25ng/g,方法的精密度为5.56%,平均回收率为86.8%。比较了加速溶剂萃取、微波萃取、超声萃取、索氏抽提等方法的萃取回收效率,实验结果表明,四种方法的萃取回收率在97.7%~108%,都可以作为分析检测土壤中BDE 209的萃取方法。  相似文献   

9.
近几年多环芳烃(PAHs)在地下水中的检出报道逐渐增多,但关于我国主要水文地质单元地下水中PAHs的研究匮乏。为研究不同水文地质条件地下水中PAHs分布特征,本文在华北平原、珠江三角洲平原及西南岩溶区采集浅层孔隙地下水和岩溶地下水样品共82组,使用气相色谱-质谱仪进行测试,采取统计学方法对比分析各区PAHs的检出率、浓度和组成。结果表明:检测的16种PAHs,每种PAH至少在一个样品中被检出,检出率最高的是(6.10%),检出浓度最大的是萘(5.41μg/L),仅苯并(a)芘超过《地下水水质标准》Ⅲ类水限值,超标率为2.44%。地下水中PAHs以2~4环为主,但三个研究区存在差异,北方孔隙水4环PAHs的相对比例(52.48%)较高;南方孔隙水与西南岩溶水分别是3环(56.60%)、2环(95.66%)PAHs占优。北方孔隙水PAHs主要是燃烧源,南方孔隙水PAHs来源与珠江三角洲产业布局相关,西南岩溶水PAHs则主要受大气降水影响。PAHs在各区检出差异与其理化性质、区域水文地质条件、污染源和气象水文等因素有关。研究结果可为我国地下水PAHs污染监测和地下水相关标准制定提供基础支撑。"  相似文献   

10.
为了研究有机氯农药(OCPs)在表层岩溶带土壤中的分布趋势、组成特征和来源,采用气相色谱-微池电子捕获检测器(GC-μECD)分析了重庆市南川区水房泉、后沟泉、柏树湾泉、兰花沟泉等典型表层带岩溶泉上覆土层中有机氯农药的浓度。结果显示,总体上表层岩溶带土壤中的OCPs的浓度范围是7.13~323.37ng/g,其中后沟泉、柏树湾泉、兰花沟泉表层土壤中的17种OCPs检出率为100%,水房泉土壤中除p,p'-DDD外其余全部检出,但不同种类有机氯含量差异较大。其中HCHs、DDTs、CHLs、灭蚁灵是主要检出物。研究区内土壤样品中的HCHs来源于工业品HCHs和林丹使用的残留,且由于环境影响,土壤中HCH的同系物组成发生了明显变化。水房泉和柏树湾泉土壤中的DDTs来自于工业DDTs和三氯杀螨醇的混合源,而后沟泉和兰花沟泉土壤中的DDTs可能来自于工业DDTs的使用,而非三氯杀螨醇类型的DDT。对比中国和荷兰的土壤质量标准,柏树湾泉土壤中DDTs浓度接近于荷兰无污染土壤的参考值,兰花沟泉土壤中的DDTs应属于轻度污染,后沟泉土壤中的DDTs和氯丹类化合物污染程度较重,而水房泉土壤为无污染土壤。   相似文献   

11.
李玉芳  潘萌  顾涛  佟玲  宋淑玲 《岩矿测试》2020,39(4):578-586
多环芳烃(PAHs)是一类普遍存在于水圈、生物圈、岩石圈和大气圈的持久性有机污染物,并在各种环境介质中交换、迁移,从而影响人体健康。以母乳为介质,评价哺乳期女性和婴幼儿PAHs暴露风险具有重要意义。早期研究表明,北京母乳中PAHs浓度在全球范围内处于较高水平。本文项目组在2012—2016年间,连续采集北京地区30位哺乳期女性6个月母乳,并检测其中PAHs浓度,旨在掌握该地区母乳中PAHs残留水平、婴幼儿的暴露量,以及哺乳期母体和婴幼儿暴露风险的变化趋势与特征。通过对30位女性分娩后连续6个月内180个母乳中15种PAHs的监测,采用气相色谱-质谱法(GC-MS)测定其含量,初步研究结果表明:①15种PAHs都有检出,其中检出浓度和检出率高的单体化合物包括菲、芴、苊烯、蒽、苊和荧蒽。母乳样品中Σ_(15)PAHs的浓度均值为348μg/kg脂质,与2005年该地区的报道值相比有下降趋势。②15种PAHs和7种高致癌活性PAHs的苯并[a]芘的等效致癌活性(BaP_(eq))浓度分别为8.53μg/kg脂质和7.89μg/kg脂质,婴幼儿每日暴露估算值分别为1.51μg/day/kg b.w.和0.19μg/day/kg b.w.,均比2005年有所下降,但高于捷克、美国、土耳其等国家婴幼儿在母乳喂养期的暴露量,低于我国兰州等重工业城市最新暴露量研究结果。③整个哺乳期,母乳中PAHs的总浓度没有明显下降趋势,但冬季可能由于采暖增加了大气中PAHs的排放,使得母乳样品中15种PAHs总浓度明显高于夏季、秋季和春季。SPSS双变量相关分析结果表明,母乳中15种PAHs的总浓度与母体年龄、身体质量指数和母乳脂肪含量不存在相关性。未来工作中需要更加充足的样品分析数据进一步证实以上研究结果。  相似文献   

12.
多环芳烃单体同位素分析进展   总被引:5,自引:0,他引:5  
多环芳烃(PAHs)单体同位素组成是辨识这类污染物来源,评价其在环境中生物可降解性的重要手段。准确高精度的PAHs单体同位素比值测定有赖于样品预处理方法的改进和相应仪器分析技术的提高。文章综合评述了近年来PAHs单体同位素分析中的预处理方法研究进展,主要包括索氏提取、加速溶剂萃取等提取方法和硅胶、氧化铝柱色谱、固相萃取、凝胶渗透色谱、高效液相色谱、薄层色谱等净化方法;介绍了PAHs单体同位素组成的气相色谱-同位素比值质谱分析方面的研究进展,包括色谱柱头压、进样时间、PTV大体积进样技术等仪器参数的选择和校准同位素内标的选择等数据处理方式。  相似文献   

13.
北京密云房山地区土壤中多环芳烃的组成与分布特征   总被引:15,自引:2,他引:15  
选择北京城近郊房山与密云地区的土壤进行了多环芳烃的定量分析,同时探讨了多环芳烃在土壤中的分布特征与来源。研究结果显示:密云、房山两地土壤中多环芳烃的含量值具有明显差异,提示了两地工业活动影响强度的不同;各采样区土壤中多环芳烃总量的平均值在45.98~388.23ng/g变化,根据多环芳烃的特征参数可以推测研究区土壤中的多环芳烃主要来自于化石燃料的不完全燃烧。  相似文献   

14.
杨清 《岩矿测试》2022,(3):404-411
多环芳烃(PAHs)是一类具有致癌、致突变、致畸的碳氢化合物,具有较高的辛醇-水分配系数,易被土壤颗粒吸附而影响环境和人体健康。过硫酸钠(Na2S2O8)氧化法是近些年来国内外修复PAHs污染土壤较为常用的方法,但现阶段在测定修复后土壤中PAHs含量、进行土壤修复效果评估时亟待解决的问题是:经该方法修复的土壤,若土壤中残留有过硫酸钠,在样品前处理过程中由于提取温度较高,可能会进一步加速多环芳烃的氧化反应,从而影响土壤中PAHs的准确测定。本文建立了一种在修复后土壤中加入还原剂抗坏血酸,与残留的过硫酸钠反应生成脱氢抗坏血酸,采用索氏提取结合气相色谱-质谱法(GC-MS)同时测定土壤中16种PAHs的方法,PAHs加标回收率为76.2%~110.0%。而修复后土壤若不加还原剂直接进行索氏提取,用GC-MS测定,可能会使部分PAHs及替代物的测定不准确,PAHs加标回收率仅为6.0%~72.4%。通过对比分析表明,在样品提取前加入还原剂,可以有效地消除残留过硫酸钠的影响,提高测定修复后土壤中PAHs含量的准确性。  相似文献   

15.
谢曼曼  刘美美  凌媛  孙青 《岩矿测试》2022,41(6):1060-1071
环境样品中PAHs的单体碳同位素比值在迁移转化过程中能基本保持稳定,是重要的溯源指标,可通过气相色谱-同位素比值质谱(GC-IRMS)分析获得。对于低PAHs含量的样品,满足GC-IRMS检出限是高精度、准确分析单体碳同位素比值的前提。本文优化了一种程序升温汽化进样(PTV)方法,通过对PTV进样模式及进样口参数进行优化调整,提高目标物谱峰强度,进而提高GC-IRMS碳同位素分析的灵敏度。实验对比研究了恒温不分流、PTV不分流和溶剂分流进样模式,并对PTV进样口参数包括进样口压力梯度、传输温度和时间、蒸发温度和时间、进样口不分流时间进行了对比优化,以选出最优的PAHs单体碳同位素分析条件。结果表明:在PTV不分流进样、进样口压力40psi—60psi—70psi梯度升高、传输温度320℃、传输时间1.0min、蒸发温度55℃、蒸发时间2.5min、不分流时间1.5min条件下,PAHs的单体碳同位素结果最优。增加预柱可以提高峰强,尤其5环PAHs的峰强度提高达50%~100%。单体碳同位素分析精度(1σ)在0.5‰以内,系统性碳同位素分馏可以采用双标法校正。优化后的PTV-GC-IRMS方法可以实现低含量PAHs单体碳同位素的高精度、准确分析,扩大了同位素溯源在环境研究中的适用性。  相似文献   

16.
选择江苏徐州黄棕壤进行不同深度层位多环芳烃含量的定量分析,研究并探讨了多环芳烃在土壤深度剖面中的地球化学迁移特征。研究结果显示,多环芳烃在徐州土壤剖面中主要集中在地表0~20 cm内。其中低环多环芳烃化合物的迁移能力较强,4~6环等高环化合物相对较难迁移,主要残留于地表生态系统环境中。  相似文献   

17.
多环芳烃(PAHs)、有机氯农药(OCPs)和多氯联苯(PCBs)具有致畸、致癌、致突变效应,是优先控制的污染物。污染调查和治理对策的制定依赖于精准的分析测试数据,而标准物质是数据质量控制的重要保证,然而目前现有的相关标准物质无法满足实际需要。本文针对中国主要湖泊和河流分布特点,以及污染特征及沉积物调查现状,严格按照《国家一级标准物质技术规范》(JJF 1006—1994)和《地质分析标准物质的研制规范》(JJF 1646—2017),研制了适合中国环境监测和科学研究需求的多环芳烃、有机氯农药和多氯联苯分析沉积物标准物质4个。研制过程中,为解决有机化合物标准物质的稳定性技术难点,考察了60Co灭菌和温度对有机化合物稳定性的影响,评估了长期稳定性和短期稳定性,结果表明样品稳定性良好。针对沉积物样品基体复杂的特点,采用不同的提取和净化技术,建立合理的量值溯源链,利用传统的液相色谱法、气相色谱电子捕获器法、气相色谱-质谱法和气相色谱-同位素稀释质谱法等多种分析方法,完成了9家实验室的协作定值。定值指标包括16种多环芳烃、3种有机氯农药和3种多氯联苯,含量范围为8.0ng/g~5.7μg/g,可以满足多环芳烃、有机氯农药和多氯联苯同时分析的质量保证与质量控制的要求。该系列标准物质已被批准为国家一级标准物质(编号GBW07352~GBW07355),可用于分析方法验证、实验室质量控制、实验室分析能力考核等方面的需要。  相似文献   

18.
应用单体碳同位素组成追溯多环芳烃(PAHs)类污染物的来源越来越受关注。单体同位素分析中,利用样品预处理减少共流出和未分峰(UCM),是实现同位素比值准确分析的重要前提。已有分离净化研究较少关注环数小于3的PAHs;或需联合使用高效液相色谱(HPLC)技术,但对实验室条件要求较高。本文期望避免使用HPLC技术,仅通过简单的固相萃取法,实现16种PAHs的分离净化,满足包括低环数在内的PAHs单体碳同位素分析的要求。实验对比了氨基和硅胶两种填料的固相萃取(SPE)小柱,以及正戊烷等10种淋洗溶剂对PAHs的分离净化富集效果。结果表明:氨基小柱中有20%以上的萘和苊不能与烷烃和未分峰完全分离,硅胶SPE小柱除杂效果和分离效果优于氨基小柱。选择1000mg/6mL硅胶SPE小柱,利用6mL正戊烷淋洗UCM和烷烃,5mL正戊烷-二氯甲烷(70:30,V/V)洗脱PAHs。利用气相色谱(GC)对分离净化效果进行初步检验,气体同位素质谱(GC-IRMS)进行单体碳同位素分析。16种PAHs的回收率为79%~128%,相对标准偏差为2%~13%(1σ,n=6),单体碳同位素比值(δ13C)分析精度为0.1‰~0.75‰,大幅降低了其中UCM和共流出对PAH单体碳同位素分析的干扰,尤其减少了对低环数PAHs单体碳同位素分析的影响,而且净化过程没有造成PAHs单体碳同位素分馏,满足PAHs单体碳同位素分析的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号