首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The research evaluated the information content of spectral reflectance (laboratory and airborne data) for the estimation of needle chlorophyll (CAB) and nitrogen (CN) concentration in Norway spruce (Picea abies L. Karst.) needles. To identify reliable predictive models different types of spectral transformations were systematically compared regarding the accuracy of prediction. The results of the cross-validated analysis showed that CAB can be well estimated from laboratory and canopy reflectance data. The best predictive model to estimate CAB was achieved from laboratory spectra using continuum-removal transformed data (R2cv = 0.83 and a relative RMSEcv of 8.1%, n = 78) and from hyperspectral HyMap data using band-depth normalised spectra (R2cv = 0.90, relative RMSEcv = 2.8%, n = 13). Concerning the nitrogen concentration, we observed somewhat weaker relations, with however still acceptable accuracies (at canopy level: R2cv = 0.57, relative RMSEcv = 4.6%). The wavebands selected in the regression models to estimate CAB were typically located in the red edge region and near the green reflectance peak. For CN, additional wavebands related to a known protein absorption feature at 2350 nm were selected. The portion of selected wavebands attributable to known absorption features strongly depends on the type of spectral transformation applied. A method called “water removal” (WR) produced for canopy spectra the largest percentage of wavebands directly or indirectly related to known absorption features. The derived chlorophyll and nitrogen maps may support the detection and the monitoring of environmental stressors and are also important inputs to many bio-geochemical process models.  相似文献   

2.
3.
Estimating forest structural attributes using multispectral remote sensing is challenging because of the saturation of multispectral indices at high canopy cover. The objective of this study was to assess the utility of hyperspectral data in estimating and mapping forest structural parameters including mean diameter-at-breast height (DBH), mean tree height and tree density of a closed canopy beech forest (Fagus sylvatica L.). Airborne HyMap images and data on forest structural attributes were collected from the Majella National Park, Italy in July 2004. The predictive performances of vegetation indices (VI) derived from all possible two-band combinations (VI(i,j) = (Ri − Rj)/(Ri + Rj), where Ri and Rj = reflectance in any two bands) were evaluated using calibration (n = 33) and test (n = 20) data sets. The potential of partial least squares (PLS) regression, a multivariate technique involving several bands was also assessed. New VIs based on the contrast between reflectance in the red-edge shoulder (756–820 nm) and the water absorption feature centred at 1200 nm (1172–1320 nm) were found to show higher correlations with the forest structural parameters than standard VIs derived from NIR and visible reflectance (i.e. the normalised difference vegetation index, NDVI). PLS regression showed a slight improvement in estimating the beech forest structural attributes (prediction errors of 27.6%, 32.6% and 46.4% for mean DBH, height and tree density, respectively) compared to VIs using linear regression models (prediction errors of 27.8%, 35.8% and 48.3% for mean DBH, height and tree density, respectively). Mean DBH was the best predicted variable among the stand parameters (calibration R2 = 0.62 for an exponential model fit and standard error of prediction = 5.12 cm, i.e. 25% of the mean). The predicted map of mean DBH revealed high heterogeneity in the beech forest structure in the study area. The spatial variability of mean DBH occurs at less than 450 m. The DBH map could be useful to forest management in many ways, e.g. thinning of coppice to promote diameter growth, to assess the effects of management on forest structure or to detect changes in the forest structure caused by anthropogenic and natural factors.  相似文献   

4.
Defoliation is a key parameter of forest health and is associated with reduced productivity and tree mortality. Assessing the health of forests requires regular observations over large areas. Satellite remote sensing provides a cost-effective alternative to traditional ground-based assessment of forest health, but assessing defoliation can be difficult due to mixed pixels where vegetation cover is low or fragmented. In this study we apply a novel spectral unmixing technique, referred to as weighted Multiple Endmember Spectral Mixture Analysis (wMESMA), to Landsat 5-TM and EO-1 Hyperion data acquired over a Eucalyptus globulus (Labill.) plantation in southern Australia. This technique combines an iterative mixture analysis cycle allowing endmembers to vary on a per pixel basis (MESMA) and a weighting algorithm that prioritizes wavebands based on their robustness against endmember variability. Spectral mixture analysis provides an estimate of the physically interpretable canopy cover, which is not necessarily correlated with defoliation in mixed-aged plantations due to natural variation in canopy cover as stands age. There is considerable variability in the degree of defoliation as well as in stand age among sites and in this study we found that results were significantly improved by the inclusion of an age correction algorithm for both the multi-spectral (R2no age correction = 0.55 vs R2age correction = 0.73 for Landsat) and hyperspectral (R2no age correction = 0.12 vs R2age correction = 0.50 for Hyperion) image data. The improved accuracy obtained from Landsat compared to the Hyperion data illustrates the potential of applying SMA techniques for analysis of multi-spectral datasets such as MODIS and SPOT-VEGETATION.  相似文献   

5.
Information about pigment and water contents provides comprehensive insights for evaluating photosynthetic potential and activity of agricultural crops. In this study, we present the concept of using spectral integral ratios (SIR) to retrieve three biochemical traits, namely chlorophyll a and b (Cab), carotenoids (Ccx), and water (Cw) content, simultaneously from hyperspectral measurements in the wavelength range 460−1100 nm. The SIR concept is based on automatic separation of respective absorption features through local peak and intercept analysis between log-transformed reflectance and convex hulls. The algorithm was tested on two synthetically established databases using a physiologically constrained look-up-table (LUT) generated by (i) the leaf optical properties model PROSPECT and (ii) the canopy radiative transfer model (RTM) PROSAIL. LUT constraints were realized based on natural Ccx-Cab relations and green peak locations identified in the leaf optical database ANGERS. Linear regression between obtained SIRs and model parameters resulted in coefficients of determination (R²) of 0.66 (i and ii) for Ccx, R2 = 0.85 (i) and 0.53 (ii) for Cab, and R2 = 0.97 (i) and 0.67 (ii) for Cw, respectively. Using the model established from the PROSPECT LUT, leaf level validation was carried out based on ANGERS data with reasonable results both in terms of goodness of fit and root mean square error (RMSE) (Ccx: R2 = 0.86, RMSE = 2.1 μg cm−2; Cab: R2 = 0.67, RMSE = 12.5 μg cm-2; Cw: R2 = 0.89, RMSE = 0.007 cm). The algorithm was applied to airborne spectrometric HyMap data acquired on 12th July 2003 in Barrax, Spain and to AVIRIS-NG data recorded on 2nd July 2018 southwest of Munich, Germany. Mapping of the SIR results as multiband images (3-segment SIR) allows for intuitive visualization of dominant absorptions with respect to the three considered biochemical variables. Barrax in situ validation using linear regression models derived from PROSAIL LUT showed satisfactory results regarding Cab (R2 = 0.84; RMSE = 9.06 μg cm-2) and canopy water content (CWC, R2 = 0.70; RMSE = 0.05 cm). Retrieved Ccx values were reasonable according to Cab-Ccx-dependence plausibility analysis. Hence, the presented SIR algorithm allows for computationally efficient and RTM supported robust retrievals of the two most important vegetation pigments as well as of water content and is ready to be applied on satellite imaging spectroscopy data available in the near future. The algorithm is publicly available as an interface supported tool within the 'Agricultural Applications' of the EnMAP-Box 3 hyperspectral remote sensing software suite.  相似文献   

6.
Leaf chlorophyll content is an important variable for agricultural remote sensing because of its close relationship to leaf nitrogen content. The triangular greenness index (TGI) was developed based on the area of a triangle surrounding the spectral features of chlorophyll with points at (670 nm, R670), (550 nm, R550), and (480 nm, R480), where Rλ is the spectral reflectance at wavelengths of 670, 550 and 480, respectively. The equation is TGI = −0.5[(670  480)(R670  R550)  (670  550)(R670  R480)]. In 1999, investigators funded by NASA's Earth Observations Commercialization and Applications Program collaborated on a nitrogen fertilization experiment with irrigated maize in Nebraska. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data and Landsat 5 Thematic Mapper (TM) data were acquired along with leaf chlorophyll meter and other data on three dates in July during late vegetative growth and early reproductive growth. TGI was consistently correlated with plot-averaged chlorophyll-meter values at the spectral resolutions of AVIRIS, Landsat TM, and digital cameras. Simulations using the Scattering by Arbitrarily Inclined Leaves (SAIL) canopy model indicate an interaction among TGI, leaf area index (LAI) and soil type at low crop LAI, whereas at high LAI and canopy closure, TGI was only affected by leaf chlorophyll content. Therefore, TGI may be the best spectral index to detect crop nitrogen requirements with low-cost digital cameras mounted on low-altitude airborne platforms.  相似文献   

7.
An approach for estimating soil moisture is presented and tested by using surface-temperature-based soil evaporation transfer coefficient (ha), a coefficient recently proposed through the equation ha = (Ts − Ta)/(Tsd − Ta), where Ts, Tsd, and Ta are land surface temperature (LST), reference soil (dry soil without evaporation) surface temperature, and air temperature respectively. Our analysis and controllable experiment indicated that ha closely related to soil moisture, and therefore, a relationship between field soil moisture and ha could be developed for soil moisture estimation. Field experiments were carried out to test the relationship between ha and soil moisture. Time series Aqua-MODIS images were acquired between 11 Sep. 2006 and 1 Nov. 2007. Then, MODIS derived ha and simultaneous measured soil moisture for different soil depths were used to establish the relations between the two variables. Results showed that there was a logarithmic relationship between soil moisture and ha (P < 0.01). These logarithmic models were further validated by introducing another ground-truth data gathered from 46 meteorological stations in Hebei Province. Good agreement was observed between the measured and estimated soil moisture with RMSE of 0.0374 cm3/cm3 and 0.0503 cm3/cm3 for surface energy balance method at two soil depths (10 cm and 20 cm), with RMSE of 0.0467 cm3/cm3 and 0.0581 cm3/cm3 for maximum temperature method at two soil depths. For vegetated surfaces, the ratio of ha and NDVI suggested to be considered. The proposed approach has a great potential for soil moisture and drought evaluation by remote sensing.  相似文献   

8.
Gross primary production (GPP) is a parameter of significant importance for carbon cycle and climate change research. Remote sensing combined with other climate and meteorological data offers a convenient tool for large scale GPP estimation. This paper presents a study of GPP estimation using three methods with in situ measurements of canopy reflectance, LAI, and the photosynthetically active radiation (PAR). First, because LAI is considered as an indicator of the factor of absorbed PAR (fAPAR), it provides reasonable estimates of GPP for all types of wheat with coefficient of determination R2 of 0.7353. The second method uses four kinds of vegetation indices (VIs) to estimate GPP because these indices are suggested to be reliable candidates in the estimation of light use efficiency (LUE). Good determination coefficients were acquired in estimating GPP with R2 ranging from the lowest of 0.7604 for NDVI to the highest of 0.8505 for EVI. A new method was proposed for the estimation of GPP following the Monteith logic, which considering GPP as a product of VI × VI × PAR. Results indicated that this method can provide the best estimates of GPP as determination coefficient R2 increased largely compared to the other two methods. EVI × EVI × PAR was demonstrated to be the most suitable for the estimation of GPP with the highest R2 of 0.9207, which was about 10% larger as compared to GPP estimated from the single EVI. These results will be helpful for the development of new models of GPP estimation with all remote sensing inputs.  相似文献   

9.
Based on in situ water sampling and field spectral measurements in Dianshan Lake, a semi-analytical three-band algorithm was used to estimate Chlorophylla (Chla) content in case II waters. The three bands selected to estimate Chla for high concentrations included 653, 691 and 748 nm. An equation, based on the difference in reciprocal reflectance between 653 and 691 nm, multiplied by reflectance at 748 nm as [Rrs−1(653) − Rrs−1 (691)] Rrs(748), explained 85.57% of variance in Chla concentration with a root mean square error (RMSE) of <6.56 mg/m3. In order to test the utility of this model with satellite data, HJ-1A Hyperspectral Imager (HSI) data were analyzed using comparable wavelengths selected from the in situ data [B67−1(656) − B80−1(716)] B87(753). This model accounted for 84.3% of Chla variation, estimating Chla concentrations with an RMSE of <4.23 mg/m3. The results illustrate that, based on the determined wavelengths, the spectrum-based model can achieve a high estimation accuracy and can be applied to hyperspectral satellite imagery especially for higher Chla concentration waters.  相似文献   

10.
In this study, digital images collected at a study site in the Canadian High Arctic were processed and classified to examine the spatial-temporal patterns of percent vegetation cover (PVC). To obtain the PVC of different plant functional groups (i.e., forbs, graminoids/sedges and mosses), field near infrared-green-blue (NGB) digital images were classified using an object-based image analysis (OBIA) approach. The PVC analyses comparing different vegetation types confirmed: (i) the polar semi-desert exhibited the lowest PVC with a large proportion of bare soil/rock cover; (ii) the mesic tundra cover consisted of approximately 60% mosses; and (iii) the wet sedge consisted almost exclusively of graminoids and sedges. As expected, the PVC and green normalized difference vegetation index (GNDVI; (RNIR  RGreen)/(RNIR + RGreen)), derived from field NGB digital images, increased during the summer growing season for each vegetation type: i.e., ∼5% (0.01) for polar semi-desert; ∼10% (0.04) for mesic tundra; and ∼12% (0.03) for wet sedge respectively. PVC derived from field images was found to be strongly correlated with WorldView-2 derived normalized difference spectral indices (NDSI; (Rx  Ry)/(Rx + Ry)), where Rx is the reflectance of the red edge (724.1 nm) or near infrared (832.9 nm and 949.3 nm) bands; Ry is the reflectance of the yellow (607.7 nm) or red (658.8 nm) bands with R2’s ranging from 0.74 to 0.81. NDSIs that incorporated the yellow band (607.7 nm) performed slightly better than the NDSIs without, indicating that this band may be more useful for investigating Arctic vegetation that often includes large proportions of senescent vegetation throughout the growing season.  相似文献   

11.
The common spectra wavebands and vegetation indices (VI) were identified for indicating leaf nitrogen accumulation (LNA), and the quantitative relationships of LNA to canopy reflectance spectra were determined in both wheat (Triticum aestivum L.) and rice (Oryza sativa L.). The 810 and 870 nm are two common spectral wavebands indicating LNA in both wheat and rice. Among all ratio vegetation indices (RVI), difference vegetation indices (DVI) and normalized difference vegetation indices (NDVI) of 16 wavebands from the MSR16 radiometer, RVI (870, 660) and RVI (810, 660) were most highly correlated to LNA in both wheat and rice. In addition, the relations between VIs and LNA gave better results than relations between single wavebands and LNA in both wheat and rice. Thus LNA in both wheat and rice could be indicated with common VIs, but separate regression equations are better for LNA monitoring.  相似文献   

12.
This paper presents a new approach to estimate spatial Sun-Induced Fluorescence (SIF) using the empirical relationship between simulated Canopy Chlorophyll Concentration (CCC) and simulated SIF. PROSAIL model [PROpriétésSPECTrales (PROSPECT) and Scattering by Arbitrarily Inclined Leaves (SAIL) models] was used to simulate CCC. CCC maps were generated through an Automated Radiative Transfer Model Operator (ARTMO) using the PROSAIL model and Sentinel-2 Multi-Spectral Imager (MSI) imagery. The Soil Canopy Observation, Photochemistry, and Energy fluxes (SCOPE) model was used to simulate SIF emitted at 740 nm (SIF740), at 760 nm (SIF760), and top of canopy (SIFTOC) (640-850 nm). The SCOPE model, configured with the specification of the Sentinel-2 sensor, simulates SIF within the spectrum range of 640-850 nm. A non-linear logarithmic relationship (R2>0.9, p < 0.05) was observed between simulated SIF and simulated CCC. Simulated CCC was linearly related to observed CCC with R2 0.88, 0.92 and 0.89 and RMSE = 0.04, 0.17 and 0.09 gm/m2 at p < 0.05 for summer, post-monsoon and early winter respectively. Whereas, the simulated CCC did not capture the full range of CCC variability for the post-monsoon season. Simulated SIF (SIF760) was well correlated with SIF from Orbiting Carbon Observatory-2 (OCO-2) satellite with R2 0.68, 0.73 and 0.73 (RMSE = <1 W/m2/sr/μm, p < 0.05) for the month of summer (April), pre-monsoon (May) and early winter season (November) respectively. Temporal SIFTOC effectively captured the seasonal variability associated with the phenology of deciduous tree species. Among various Sentinel-2 MSI derived VIs, Red Edge NDVI (RENDVI) exhibited maximum sensitivity with SIF (highest monthly average R2> 0.6, p < 0.05). The spatial SIF would serve as an useful link between airborne /satellite derived SIF and in-situ fluorescence measurements to understand multiscale SIF variability of terrestrial vegetation.  相似文献   

13.
The retrieval of canopy biophysical variables is known to be affected by confounding factors such as plant type and background reflectance. The effects of soil type and plant architecture on the retrieval of vegetation leaf area index (LAI) from hyperspectral data were assessed in this study. In situ measurements of LAI were related to reflectances in the red and near-infrared and also to five widely used spectral vegetation indices (VIs). The study confirmed that the spectral contrast between leaves and soil background determines the strength of the LAI–reflectance relationship. It was shown that within a given vegetation species, the optimum spectral regions for LAI estimation were similar across the investigated VIs, indicating that the various VIs are basically summarizing the same spectral information for a given vegetation species. Cross-validated results revealed that, narrow-band PVI was less influenced by soil background effects (0.15 ≤ RMSEcv ≤ 0.56). The results suggest that, when using remote sensing VIs for LAI estimation, not only is the choice of VI of importance but also prior knowledge of plant architecture and soil background. Hence, some kind of landscape stratification is required before using hyperspectral imagery for large-scale mapping of vegetation biophysical variables.  相似文献   

14.
Utility of Hyperspectral Data for Potato Late Blight Disease Detection   总被引:1,自引:0,他引:1  
The study was carried out to investigate the utility of hyperspectral reflectance data for potato late blight disease detection. The hyperspectral data was collected for potato crop at different level of disease infestation using hand-held spectroradiometer over the spectral range of 325–1075 nm. The data was averaged into 10-nm wide wavebands, resulting in 75 narrowbands. The reflectance curve was partitioned into five regions, viz. 400–500 nm, 520–590 nm, 620–680 nm, 770–860 nm and 920–1050 nm. The notable differences in healthy and diseased potato plants were noticed in 770–860 nm and 920–1050 nm range. Vegetation indices, namely NDVI, SR, SAVI and red edge were calculated using reflectance values. The differences between the vegetation indices for plants at different levels of disease infestation were found highly significant. The optimal hyperspectral wavebands to discriminate the healthy plants from disease infested plants were 540, 610, 620, 700, 710, 730, 780 and 1040 nm whereas upto 25% infestation could be discriminated using reflectance at 710, 720 and 750 nm.  相似文献   

15.
Thaumastocoris peregrinus (T. peregrinus) is a sap sucking insect that feeds on Eucalyptus leaves. It poses a threat to the forest industry by reducing the photosynthetic ability of the tree, resulting in stunted growth and even death of severely infested trees. Remote sensing techniques offer the potential to detect and map T. peregrinus infestations in plantation forests using current operational hyperspectral scanners. This study resampled field spectral data measured from a field spectrometer to the band settings of the Hyperion sensor in order to assess its potential in predicting T. peregrinus damage. Normalized indices based on NDVI ratios were calculated using the resampled visible and near-infrared bands of the Hyperion sensor to assess its utility in predicting T. peregrinus damage using Partial Least Squares (PLS) regression. The top 20 normalized indices were based on specific biochemical absorption features that predicted T. peregrinus damage with a mean bootstrapped R2 value of 0.63 on an independent test dataset. The top 20 indices were located in the near-infrared region between 803.3 nm and 894.9 nm. Twenty three previously published hyperspectral indices which have been used to assess stress in vegetation were also used to predict T. peregrinus damage and resulted in a mean bootstrapped R2 value of 0.59 on an independent test dataset. The datasets were combined to assess its collective strength in predicting T. peregrinus damage and significant indices were chosen based on variable importance scores (VIP) and were then entered into a PLS model. The indices chosen by VIP predicted T. peregrinus damage with a mean bootstrapped R2 value of 0.71 on an independent test dataset. A greedy backward variable selection model was further tested on the VIP selected indices in order to find the best subset of indices with the best predictive accuracy. The greedy backward variable selection model identified 3 indices and performed the best by predicting damage with an R2 value of 0.74 with the lowest RMSE of 1.30% on an independent test dataset. The best three indices identified include the anthocyanin reflectance index, carotenoid reflectance index and the normalized index calculated at 864.4 and 884.7 nm. Individual relationships between these indices and T. peregrinus damage indicate that high correlations are obtained with the inclusion of a few severely infested trees in the sample size. When the severely infested trees were removed from the study, the normalized index (864.4 and 884.7 nm) and the anthocyanin reflectance index still yielded significant correlations at the 99% confidence interval. This study indicates the significance of normalized indices and spectral indices calculated from the visible and near-infrared bands in hyperspectral data for the prediction of T. peregrinus damage.  相似文献   

16.
Estimation of forest structural parameters by field-based data collection methods is both expensive and time consuming. Satellite remote sensing is a low-cost alternative in modeling and mapping structural parameters in large forest areas. The current study investigates the potential of using WordView-2 multispectral satellite imagery for predicting forest structural parameters in a dryland plantation forest in Israel. The relationships between image texture features and the several structural parameters such as Number of Trees (NT), Basal Area (BA), Stem Volume (SV), Clark-Evans Index (CEI), Diameter Differentiation Index (DDI), Contagion Index (CI), Gini Coefficient (GC), and Standard Deviation of Diameters at Breast Heights (SDDBH) were examined using correlation analyses. These variables were obtained from 30 m × 30 m square-shaped plots. The Standard Deviation of Gray Levels (SDGL) as a first order texture feature and the second order texture variables based on Gray Level Co-occurrence Matrix (GLCM) were calculated for the pixels that corresponds to field plots. The results of the correlation analysis indicate that the forest structural parameters are significantly correlated with the image texture features. The highest correlation coefficients were calculated for the relationships between the SDDBH and the contrast of red band (r = 0.75, p < 0.01), the BA and the entropy of blue band (r = 0.73, p < 0.01), and the GC and the contrast of blue band (r = 0.71, p < 0.01). Each forest structural parameter was modeled as a function of texture measures derived from the satellite image using stepwise multi linear regression analyses. The determination coefficient (R2) and root mean square error (RMSE) values of the best fitting models, respectively, are 0.38 and 109.56 ha−1 for the NT; 0.54 and 1.79 m2 ha−1 for the BA; 0.42 and 27.18 m3 ha−1 for the SV; 0.23 and 0.16 for the CEI; 0.32 and 0.05 for the DDI; 0.25 and 0.06 for the CI; 0.50 and 0.05 for the GC; and 0.67 and 0.70 for the SDDBH. The leave-one-out cross-validation technique was applied for validation of the best-fitted models (R2 > 0.50). In conclusion, cross-validated statistics confirmed that the structural parameters including the BA, SDDBH, and GC can be predicted and mapped with a reasonable accuracy using the texture features extracted from the spectral bands of WorldView-2 image.  相似文献   

17.
Remote sensing technology is the important tool of digital earth, it can facilitate nutrient management in sustainable cropping systems. In the study, two types of radial basis function (RBF) neural network approaches, the standard radial basis function (SRBF) neural networks and the modified type of RBF, generalized regression neural networks (GRNN), were investigated in estimating the nitrogen concentrations of oilseed rape canopy using vegetation indices (VIs) and hyperspectral reflectance. Comparison analyses were performed to the spectral variables and the approaches. The Root Mean Square Error (RMSE) and determination coefficients (R2) were used to assess their predictability of nitrogen concentrations. For all spectral variables (VIs and hyperspectral reflectance), the GRNN method produced more accurate estimates of nitrogen concentrations than did the SRBF method at all ranges of nitrogen concentrations, and the better agreements between the measured and the predicted nitrogen concentration were obtained with the GRNN method. This indicated that the GRNN method is prior to the SRBF method in estimation of nitrogen concentrations. Among the VIs, the Modified Chlorophyll Absorption in Reflectance Index (MCARI), MCARI1510, and Transformed Chlorophyll Absorption in Reflectance Index are better than the others in estimating oilseed rape canopy nitrogen concentrations. Compared to the results from VIs, the hyperspectral reflectance data also gave an acceptable estimation. The study showed that nitrogen concentrations of oilseed rape canopy could be monitored using remotely sensed data and the RBF method, especially the GRNN method, is a useful explorative tool for oilseed rape nitrogen concentration monitoring when applied on hyperspectral data.  相似文献   

18.
The estimation of above ground biomass in forests is critical for carbon cycle modeling and climate change mitigation programs. Small footprint lidar provides accurate biomass estimates, but its application in tropical forests has been limited, particularly in Africa. Hyperspectral data record canopy spectral information that is potentially related to forest biomass. To assess lidar ability to retrieve biomass in an African forest and the usefulness of including hyperspectral information, we modeled biomass using small footprint lidar metrics as well as airborne hyperspectral bands and derived vegetation indexes. Partial Least Square Regression (PLSR) was adopted to cope with multiple inputs and multicollinearity issues; the Variable of Importance in the Projection was calculated to evaluate importance of individual predictors for biomass. Our findings showed that the integration of hyperspectral bands (R2 = 0.70) improved the model based on lidar alone (R2 = 0.64), this encouraging result call for additional research to clarify the possible role of hyperspectral data in tropical regions. Replacing the hyperspectral bands with vegetation indexes resulted in a smaller improvement (R2 = 0.67). Hyperspectral bands had limited predictive power (R2 = 0.36) when used alone. This analysis proves the efficiency of using PLSR with small-footprint lidar and high resolution hyperspectral data in tropical forests for biomass estimation. Results also suggest that high quality ground truth data is crucial for lidar-based AGB estimates in tropical African forests, especially if airborne lidar is used as an intermediate step of upscaling field-measured AGB to a larger area.  相似文献   

19.
This paper examines the use of canopy reflectance for different units of measurements of carotenoids estimation. Field spectral measurements were collected over cotton in different intensive field campaigns organized during the growing seasons of 2010 and 2011. Three units of measurement were evaluated carotenoids expressed as a mass per unit soil surface area (g/m2), a mass per unit leaf area (μg/cm2), and a mass per unit fresh leaf weight (mg/g), respectively. Four methods were compared to retrieve amount of carotenoids: stepwise multiple linear regression (SMLR), published spectral indices, band combination indices, and partial least square regression (PLSR). Results show that maximum sensitivity of reflectance to variation in different units of measurement of carotenoids was found in the green region at 515–550 nm, and at 715 nm and 750 nm regions in the far-red wavelengths. The predictive accuracies of Car (g/m2), Car (μg/cm2) and Car (mg/g) were tested on a validation data set and the results show that the highest R2 values between estimations and observations were 0.468 for Car (g/m2), 0.563 for Car (μg/cm2), and 0.456 for Car (mg/g), with relative root mean square error (RMSE%, RMSE/mean) of 48.72%, 22.07% and 21.07%, respectively. Compared to Car (g/m2) and Car (mg/g), the model performance indices for Car (μg/cm2) show a high degree of consistency among the R2 values and RMSE% and MAE% values. Further comparison were performed among the estimation accuracies of different unit carotenoids and among the different approaches used in the study by a paired-t-test. The results indicate that although the best estimation results for Car (μg/cm2) and Car (mg/g) were both obtained based on PLSR, they can be estimated by all four adopted methods without significant differences (P > 0.1). Whereas for Car (g/m2), the best estimation results were obtained based on published vegetation indices CIred-edge, which were significantly better than the estimation results based on SMLR (P < 0.000). In summary, the results of this study show that even the carotenoids expressed on concentration (mg/g) or content (μg/cm2) basis at leaf level can be estimated with the same prediction accuracies to the carotenoids expressed as a mass per unit surface area (g/m2) at canopy level using reflectance measurement at canopy level.  相似文献   

20.
The study evaluated the performance and suitability of AnnAGNPS model in assessing runoff, sediment loading and nutrient loading under Malaysian conditions. The watershed of River Kuala Tasik in Malaysia, a combination of two sub-watersheds, was selected as the area of study. The data for the year 2004 was used to calibrate the model and the data for the year 2005 was used for validation purposes. Several input parameters were computed using methods suggested by other researchers and studies carried out in Malaysia. The study shows that runoff was predicted well with an overall R2 value of 0.90 and E value of 0.70. Sediment loading was able to produce a moderate result of R2 = 0.66 and E = 0.49, nitrogen loading predictions were slightly better with R2 = 0.68 and E = 0.53, and phosphorus loading performance was slightly poor with an R2 = 0.63 and E = 0.33. The erosion map developed was in agreement with the erosion risk map produced by the Department of Agriculture, Malaysia. Rubber estates and urban areas were found to be the main contributors to soil erosion. The simulation results showed that AnnAGNPS has the potential to be used as a valuable tool for planning and management of watersheds under Malaysian conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号