首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The drainage network of a sixth-order tropical river basin, viz. Ithikkara river basin, was extracted from different sources such as Survey of India topographic maps (1: 50,000; TOPO) and digital elevation data of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) (30 m) and Shuttle Radar Topography Mapping Mission (SRTM) (90 m). Basin morphometric attributes were estimated to evaluate the accuracy of the digital elevation model (DEM)-derived drainage networks for hydrologic applications as well as terrain characterization. The stream networks derived from ASTER and SRTM DEMs show significant agreement (with slight overestimation of lower order streams) with that of TOPO. The study suggests that SRTM (despite the coarser spatial resolution) provides better results, in drainage delineation and basin morphometry, compared to ASTER. Further, the variability of basin morphometry among the data sources might be attributed to spatial variation of elevation, raster grid size and vertical accuracy of the DEMs as well as incapability of the surface hydrologic analysis functions in the GIS platform.  相似文献   

2.
在基于LRIS-3D系统建立高分辨率DEM基础上,以黄土高原丘陵沟壑区桥沟小流域为对象,利用GIS工具,以三维激光扫描系统扫描数据为基础数据,研究基于DEM的数字地形特征和水文特征的提取与分析方法。研究结果表明:与普通DEM相比,高分辨率DEM提取研究区平均坡度变小、坡度标准差变大,总体地形向平坦转化,坡面曲率增大,沟壑密度增大,更详细地描述了地表特征。对流域水文过程分析、特别是对流域汇流的参数确定及汇流模型的建立有积极作用。  相似文献   

3.
A coupled 1D-2D hydrodynamic model, MIKE FLOOD was used to simulate the flood inundation extent and flooding depth in the delta region of Mahanadi River basin in India. Initially, the 1D model MIKE 11 was calibrated using river water level and discharge data of various gauging sites for the monsoon period (June to October) of the year 2002. Subsequently, the calibrated set up was validated using both discharge and water level data for the same period of the year 2001. The performance of calibration and validation results of MIKE 11 were evaluated using different performance indices. A bathymetry of the study area with a spatial resolution of 90m was prepared from SRTM DEM and provided as an input to the 2D model, MIKE 21. MIKE 11 and MIKE 21 models were then coupled using lateral links to form the MIKE FLOOD model set up for simulating the two dimensional flood inundations in the study area. Flood inundation is simulated for the year 2001 and the maximum flood inundation extent simulated by the model was compared with the corresponding actual inundated area obtained from IRS-1D WiFS image.  相似文献   

4.
Digital Elevation Model (DEM) is a quantitative representation of terrain and is important for Earth science and hydrological applications. DEM can be generated using photogrammetry, interferometry, ground and laser surveying and other techniques. Some of the DEMs such as ASTER, SRTM, and GTOPO 30 are freely available open source products. Each DEM contains intrinsic errors due to primary data acquisition technology and processing methodology in relation with a particular terrain and land cover type. The accuracy of these datasets is often unknown and is non-uniform within each dataset. In this study we evaluate open source DEMs (ASTER and SRTM) and their derived attributes using high postings Cartosat DEM and Survey of India (SOI) height information. It was found that representation of terrain characteristics is affected in the coarse postings DEM. The overall vertical accuracy shows RMS error of 12.62 m and 17.76 m for ASTER and SRTM DEM respectively, when compared with Cartosat DEM. The slope and drainage network delineation are also violated. The terrain morphology strongly influences the DEM accuracy. These results can be highly useful for researchers using such products in various modeling exercises.  相似文献   

5.
Glaciers have a high impact in the socio-economic sectors including water supply, energy production, flood and avalanches. A high precision digital elevation model (DEM) is required to monitor glaciers and to study various glacier processes. The present study deals with the qualitative and quantitative evaluation of the DEM generated from the bistatic TanDEM-X data by comparing it with GPS, Ice, Cloud, and land Elevation Satellite (ICESat) data and standard global DEMs such as Shuttle Radar Topography Mission (SRTM) and Advanced Space-borne Thermal Emission and Reflection Radiometer Global DEM (ASTER GDEM). The study area consists of highly undulating glaciated terrain in western Himalaya, India. The results reveal that TanDEM-X is slightly better than SRTM both qualitatively and quantitatively, whereas ASTER GDEM showing maximum discrepancy among the three DEMs. The Root Mean Square Error (RMSE) of the TanDEM-X DEM with respect to GPS is 3.5 m at lower relief and 11.9 m at glaciated terrain, against 6.7 and 12.5 m for SRTM and 9.3 and 19.8 m for ASTER GDEM, respectively, for the same sites. On an average, for the whole study area, the RMSE of TanDEM-X is 7.9 m, SRTM is 9.3 m and ASTER GDM is 14.2 m. The RMSE of TanDEM-X, SRTM and ASTER GDEM with respect to ICESat are 16.3, 19.9 and 101.1 m, respectively. It is evident from the analysis that though SRTM is closer to TanDEM-X in terms of accuracy in the mountainous terrain, however, TanDEM-X will be more useful for studying glacier dynamics and topography.  相似文献   

6.
不同DEM数据源的艾比湖流域仿真水系对比   总被引:1,自引:0,他引:1  
任岩  张飞  王娟  张月  李瑞 《测绘科学》2018,(3):35-44,57
针对干旱半干旱地区内陆河流域在仿真水系模拟方面研究较少和数据适用性的问题,该文提出利用SRTM3-DEM和ASTER-GDEM两种数据源对艾比湖流域进行仿真水系模拟和精度对比的研究。采用ArcGIS Hydrology模型分别对两种DEM进行水系模拟,通过多次设置参数和阈值,实现了不同水平分辨率和不同阈值河网水系的对比分析;然后利用Google Map河流数据和实测水系数据进行精度验证,同时采用"套河差"算法研究水系的差异。结果表明:SRTM3-DEM模拟的河网水系与实际水系更接近,吻合精度较高;DEM的坡度和水平分辨率对模拟水系的影响不大,但DEM的垂直精度对模拟水系的吻合精度起控制作用。本研究为艾比湖流域在水文方面的研究提供了一定的参照和依据。  相似文献   

7.
DEM数据被广泛应用于多个领域,但生产过程中数据空洞的出现严重制约了其适用性。因此,对DEM数据空洞修复的研究至关重要。本文选择太原市4个不同地貌条件下的河谷、盆地、丘陵和山地试验区作为空洞区,利用ASTER GDEM数据和直接镶嵌法、反距离加权插值法及三角洲表面镶嵌法对AW3D30 DEM数据进行修复,对不同方法的修复效果进行对比分析。研究结果表明:在盆地区域,反距离加权插值法修复效果最好,三角洲表面镶嵌法次之,直接镶嵌法最弱;在起伏度稍大的河谷、丘陵和山地区域,三角洲表面镶嵌法的修复效果最好,空洞区域内部的纹理特征明显,空洞边缘区域过渡平滑,而反距离加权插值法最弱。  相似文献   

8.
A digital elevation model (DEM) is a source of immense three dimensional data revealing topographic characteristics of any region. The performance of a DEM can be described by accuracy and the morphologic conformity. Both depend upon the quality of data set, the used production technique and the roughness of the terrain. The global DEM of ASTER (Advanced Space-borne Thermal Emission and Reflection Radiometer) was released to public utilization as free of charge on June 2009. It covers virtually overall the globe using 1 arc-second posting interval. Especially easy availability renders ASTER Global DEM (GDEM) one of the most popular and considerable global topographic data for scientific applications. From this point of view, the performance of ASTER GDEM has to be estimated for different kinds of topographies. Accordingly, six test fields from Spain (Barcelona) and Turkey (Istanbul and Zonguldak) have been preferred depending upon the terrain inclination. Thus, the advantages and disadvantages of the DEM product have been proved by means of a group of advanced performance analysis. The analyses indicate that the performance of ASTER GDEM is quite satisfying at urban areas because of flat topography. On the other hand, terrain slope has negative effect on the results. Especially steep, mountainous, forestry topographic formations and the regions which have sudden changes at the altitude have lower accuracy.  相似文献   

9.
A raster and vector GIS was created for the North Appalachian Experimental Watershed (NAEW) from legacy (1960) 1:2,400‐scale contour maps. The intent of the study was to use terrain data for the spatial modeling of soil organic carbon. It was hypothesized that DEMs derived from these data would be more accurate and therefore more useful for terrain‐based soil modeling than those from USGS 1:24,000‐scale contour data. Central tasks for this study were to digitally capture the 1:2,400‐scale maps, convert digital contour data sources to raster DEMs at multiple resolutions, and derive terrain attributes. A flexible approach was adopted, using software outside of mainstream GIS sources where scientifically or practically advantageous. Elevation contours and streamlines were converted to raster DEMs using ANUDEM. DEMs ranging in resolution from 0.5–30 m were tested for accuracy against precision carrier‐phase GPS data. The residual standard deviation was 1.68 meters for the USGS DEM and 0.36 meters for the NAEW DEM. The optimal horizontal resolution for the NAEW DEM was 5 m and for the USGS 10 m. Five and 10 m resolution DEMs from both data sources were tested for carbon prediction. Multiple terrain parameters were derived as proxies for surficial processes. Soil samples (n = 184) were collected on four zero‐order watersheds (conventional tillage, no‐till, hay and pasture). Multiple least squares regressions (m.l.s.) were used to predict mass C (kg m?2, 30 cm depth) from topographic information. Model residuals were not spatially autocorrelated. Statistically significant topographic parameters were attained most consistently from the 5 m NAEW DEM. However, topography was not a strong predictor of carbon for these watersheds, with r2 ranging from 0.23 to 0.58.  相似文献   

10.
The study evaluates and compares Digital Elevation Model (DEM) data of various grid spacing derived using high resolution Cartosat 1 stereo data for hydrologic applications. DEM is essential in modeling different environmental processes which depend on surface elevation. The accuracy of derived DEM varies with grid spacing and source. The CartoDEM is the photogrammetric DEM derived from stereo pairs. Damanganga basin lying in the Western Ghats was analysed using 11 Carto stereo pairs. The process of triangulation resulted in RMSE of 0.42. DEM was extracted at 10 m, 20 m, 30 m, 40 m, 50 m and 90 m grid spacing and compared with ASTER GDEM (30 m) and SRTM DEM (90 m). DEM accuracy was checked with Root Mean Square Error (RMSE) statistic for random points generated in different elevation zones. Extracted stream networks were compared based on Correctness Index and Figure of Merit index, calculated for all the Digital Elevation Models at varying cell sizes. In order to further evaluate the DEM’s, a simple flood simulation with no water movement and no consideration of real time precipitation data was carried out and relationship between heights of flood stage and inundation area for each Digital Elevation Model was also established.  相似文献   

11.
针对数字高程模型数据源不同会带来一定的不确定性和差异性的问题,选取德国某露天矿为实验区,以高精度DEM数据TanDEM-X为参照,对比了SRTM、AW3D30、ASTER GDEM与TanDEM-X数据的高程精度,分析了DEM数据的差异.结果表明:(1)露天矿区的开采和复垦活动明显地体现在了不同时期获取的DEM高程变化...  相似文献   

12.
为探究ASTER GDEMV3、SRTM1 DEM和AW3D30 DEM 3种开源DEM数据的高程精度,本文以高精度ICESat-2 ATLAS测高数据为参考数据,利用GIS统计分析、误差相关分析及数理统计对DEM的高程精度进行对比评价。结果表明:①AW3D30的质量最稳定;SRTM1 DEM在平原精度最高;在高原山地精度由高到低依次为AW3D30 DEM、ASTER GDEMV3、SRTM1 DEM。②DEM数据高程精度受地表覆盖影响较大,且与地形因素密切相关,在相同地表覆盖的两个研究区中DEM数据高程精度表现情况不一致,SRTM在平原地表覆盖下精度表现最好,平均误差为3.15 m,AW3D30 DEM在山地地表覆盖下精度表现最好,平均误差为7.61 m。③坡度对DEM数据的高程精度影响较大,在两个研究区3种DEM数据的高程误差均随坡度的增加而增加;坡向对DEM数据的高程精度影响较小,未发现明显的规律。  相似文献   

13.
针对洪水灾害评估的特点,将GIS技术与RS技术相结合,根据数字高程模型DEM提供的三维数据和遥感影像数据,运用GIS的空间分析功能来预测、模拟河流域洪水淹没场景,结合属性数据进行洪水灾害评估,并对此系统的实现方法进行对比评价。  相似文献   

14.
洪水灾害模拟及评估   总被引:1,自引:0,他引:1  
针对洪水灾害评估的特点,将GIS技术与RS技术相结合,根据数字高程模型DEM提供的三维数据和遥感影像数据,运用GIS的空间分析功能来预测、模拟显示红水河流域洪水淹没场景,并结合该流域水文站降雨量数据和各乡镇人口密度数据以及其他辅助数据进行洪水灾害评估。  相似文献   

15.
最佳DEM分辨率的确定及其验证分析   总被引:2,自引:0,他引:2  
在玛尔挡地区格网DEM的数据上选择实验样区,以不同分辨率情况下DEM数据对地表模拟表达的逼近程度为研究对象,最优逼近时的栅格单元大小的临界值就是所求的最佳分辨率。在分析坡度中误差法和公式法等常见方法的基础上,借鉴坡度中误差的思想,选取区域地形粗糙度K、剖面线长度SL两个定量指标来综合分析确定该地区格网DEM的最佳分辨率。在ArcGIS平台上对方法进行了实验验证,得出分别以2m和8m作为玛尔挡地区1∶10 000和1∶50 000 DEM生产时是最佳分辨率的结论。研究表明这种解决办法不仅可以克服GIS空间分析中DEM分辨率确定的盲目性和随意性,而且能确保基于DEM的各种空间分析的精度,为相关研究提供重要的参考价值。  相似文献   

16.
以洪水坝河流域为例,利用1956年的地形图和2003年的ASTER遥感影像及数字高程模型,在GIS的支持下对两期数据进行统计分析,结果表明:近47年来,洪水坝河流域冰川面积减少了14.04%,长度退缩了17.28%,储量减少了2.26%。研究认为,气温显著升高是洪水坝河流域冰川快速萎缩的主要原因。在和祁连山地区、西藏以及天山地区的冰川进行对比后,发现研究区冰川消融的速率介于三地之间,初步推测是由研究区所在区域的气候和自身属性共同作用的结果。  相似文献   

17.
Digital elevation model (DEM) data of Shuttle Radar Topography Mission (SRTM) are distributed at a horizontal resolution of 90 m (30 m only for US) for the world, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) DEM data provide 30 m horizontal resolution, while CARTOSAT-1 (IRS-P5) gives 2.6 m horizontal resolution for global coverage. SRTM and ASTER data are available freely but 2.6 m CARTOSAT-1 data are costly. Hence, through this study, we found out a horizontal accuracy for selected ground control points (GCPs) from SRTM and ASTER with respect to CARTOSAT-1 DEM to implement this result (observed from horizontal accuracy) for those areas where the 2.6-m horizontal resolution data are not available. In addition to this, the present study helps in providing a benchmark against which the future DEM products (with horizontal resolution less than CARTOSAT-1) with respect to CARTOSAT-1 DEM can be evaluated. The original SRTM image contained voids that were represented digitally as ?140; such voids were initially filled using the measured values of elevation for obtaining accurate DEM. Horizontal accuracy analysis between SRTM- and ASTER-derived DEMs with respect to CARTOSAT-1 (IRS-P5) DEM allowed a qualitative assessment of the horizontal component of the error, and the appropriable statistical measures were used to estimate their horizontal accuracies. The horizontal accuracy for ASTER and SRTM DEM with respect to CARTOSAT-1 were evaluated using the root mean square error (RMSE) and relative root mean square error (R-RMSE). The results from this study revealed that the average RMSE of 20 selected GCPs was 2.17 for SRTM and 2.817 for ASTER, which are also validated using R-RMSE test which proves that SRTM data have good horizontal accuracy than ASTER with respect to CARTOSAT-1 because the average R-RMSE of 20 GCPs was 3.7 × 10?4 and 5.3 × 10?4 for SRTM and ASTER, respectively.  相似文献   

18.
借助GIS强大的空间数据处理和3维可视化分析功能,以长江中游湖北地区为试验区,利用现有的遥感影像、数字高程模型(DEM)和地理要素的矢量数据,实现了地形的3维可视化和地表分析。解决超大数据量数字高程模型(DEM)快速显示的算法,研究了基于3维场景空间分析的理论,最后对系统的实现做了简要介绍。  相似文献   

19.
三维空间建模和可视化技术成为GIS研究的热点之一。可视化技术是当今表达和分析复杂数据的有力工具,将可视化技术引入到DEM和三维地质模型,可以实现三维地形和地质体的生成与仿真。简要介绍了OpenGL三维图形工具包及其与高级语言结合编程方法,探讨了基于多轮廓线的地质三维体的建模方法,以VC++6.0高级程序设计语言为开发平台,结合OpenGL图形库,开发了地质三维体的建模实验系统。  相似文献   

20.
Topographic corrections of synthetic aperture radar (SAR) images over hilly regions are vital for retrieval of correct backscatter values associated with natural targets. The coarse resolution external digital elevation models (DEM) available for topographic corrections of high resolution SAR images often result into degradation of spatial resolution or improper estimation of backscatter values in SAR images. Also, many a times the external DEMs do not spatially co-register well with the SAR data. The present study showcases the methodology and results of topographic correction of ALOS-PALSAR image using high resolution DEM generated from the same data. High resolution DEMs of Jaipur region, India were generated using multiple pair SAR images acquired from ALOS-PALSAR using interferometric (InSAR) techniques. The DEMs were validated using differential global positioning system measured elevation values as ground control points and were compared with photogrammetric DEM (advanced spaceborne thermal emission and reflection radiometer – ASTER) and SRTM (Shuttle Radar Topography Mission) DEM. It was observed that ALOS-PALSAR images with optimum baseline parameters produced high resolution DEM with better height accuracy. Finally, the validated DEM was used for topographic correction of ALOS-PALSAR images of the same region and were found to produce better result as compared with ASTER and SRTM-DEM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号