首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《New Astronomy Reviews》2002,46(8-10):547-552
The allsky image of 26Al radiation at 1.809 MeV with COMPTEL suggests that clusters of massive stars dominate the Galactic production of 26Al. Studies of rather well-known localized regions are most promising to further this interpretation. In the Vela region, excessive emissivity is found compared to other Galactic regions. This may be due to few prominent foreground sources, such as the Vela SNR and RX J0852.0-4622 combined; but more plausibly the star forming activity along the Vela Molecular Ridge is enhanced in general, too. In the anticenter region, the detected 26Al emission appears related to nucleosynthetic activity in the Orion OB1 association: It seems plausible that ejecta are being vented into the Eridanus bubble blown by earlier massive stars’ activity.  相似文献   

2.
A search for Hα objects in four fields with an overall area of about 0.14 square degrees in the region of NGC 6910 (the core of the known Cyg OB9 association) has led to the discovery of 64 emission stars, of which 49 are newly detected. The high surface density is indicative of a very rich T association or, possibly, of the projection of several T associations onto one another in this direction. The latter possibility is also indicated by the range of the R photometric stellar magnitudes of the emission stars, 9m.68-19m.42. A comparison with earlier observations shows that for many of the stars, the emission line intensity is variable. A P Cyg Hα line profile is recorded for the star V 1515 Cyg with an emission component equivalent width that greatly exceeds the equivalent absorption width.  相似文献   

3.
This paper summarizes and analyzes the results of radio optical, infrared, and X-ray observations of a large sector of the sky in the constellation Cygnus (19h20m-22h, =30–50°;l II=65–90°, |b II|10°). This region is associated with an extended X-ray source referred to as the Cygnus superbubble. About a quarter of the superbubble region is occupied by the extensively investigated multicomponent thermal radio source Cyg X. The region contains eight OB-associations which, when projected on the sky, duplicate the outline of the X-ray superbubble. These associations contains 110 stars of high luminosity (about 40 Wolf-Rayet and Of stars). The observations suggest that the X-ray superbubble is not a single object. Between 50 and 75% of its X-ray emission can be ascribed to discrete sources, the rest being probably due to regions of coronal gas about 100 pc in diameter, created by stellar winds and, possibly, supernova explosions in individual associations. The objects that produce the X-ray and optical radiation of the presumed superbubble are located at distances from 0.5 to 2.5 kpc from the Sun in the Carina-Cygnus spiral arm. The eastern portion of the region presumed superbubble contains the associations Cyg OB7 and Cyg OB4 and is generally less than 1 kpc distant, while the western portion contains the associations Cyg OB1, 2, 3, 8, and 9 and is 1 to 2 kpc distant.  相似文献   

4.
Inverse Compton (IC) scattering by relativistic electrons produces a major component of the diffuse emission from the Galaxy. The photon fields involved are the cosmic microwave background and the interstellar radiation field (ISRF) from stars and dust. Calculations of the inverse Compton distribution have usually assumed a smooth ISRF, but in fact a large part of the Galactic luminosity comes from the most luminous stars, which are rare. Therefore we expect the ISRF, and hence the inverse Compton emission, to be clumpy at some level, which could be detectable by instruments such as GLAST. Even individual nearby luminous stars could be detectable assuming just the normal cosmic-ray electron spectrum. We present the basic formalism required and give possible candidate stars to be detected and make predictions for GLAST. Then we apply the formalism to the OB associations and the Sun, showing that the IC emission produced is not negligible compared to the sensitivity of current or coming detectors. We estimate that the gamma-ray flux from the halo around the Sun contributes to the diffuse background emission at the few percent level.  相似文献   

5.
Abstract— Gamma rays from radioactive byproducts of cosmic nucleosynthesis are direct messengers from nuclear processes taking place in various cosmic sites, and can be measured with telescopes operated in space. Due to low detector sensitivity, up until now, only a handful of sources have been detected in that electromagnetic window. Cobalt lines from SN1987A and 44Ti lines from the Cassiopeia A (Cas A) supernova remnant offer unique constraints on the properties of the innermost regions of core collapse supernovae. Diffuse gamma‐ray lines from the decay of radioactive 26Al and the annihilation of positrons are bright enough for mapping the Milky Way in the MeV regime, and are both measured by recent spaceborne spectrometers with unprecedented precision. This constrains the sources of Al production and the state of interstellar gas in the vicinity of these sites: the total mass of 26Al produced by stellar sources throughout the Galaxy is estimated to be ~3 M per Myr, and the interstellar medium near those sources appears to be characterized by velocities of ~100 km s?1. Positron annihilation must occur in a modestly ionized, warm phase of the interstellar medium, but at present the major positron production site(s) remain unknown. The spatial distribution of the annihilation gamma‐ray emission constrains positron production sites and positron propagation in the Galaxy. 60Fe radioactivity has been clearly detected recently; the flux ratio relative to 26Al of about 15% is on the lower side of predictions from massive star and supernova nucleosynthesis models. Those views at nuclear and astrophysical processes in and around cosmic sources by space‐based gamma‐ray telescopes offer invaluable information on cosmic nucleosynthesis.  相似文献   

6.
Starforming factories in galaxies produce compact clusters and loose associations of young massive stars. Fast radiation-driven winds and supernovae input their huge kinetic power into the interstellar medium in the form of highly supersonic and superalfvenic outflows. Apart from gas heating, collisionless relaxation of fast plasma outflows results in fluctuating magnetic fields and energetic particles. The energetic particles comprise a long-lived component which may contain a sizeable fraction of the kinetic energy released by the winds and supernova ejecta and thus modify the magnetohydrodynamic flows in the systems. We present a concise review of observational data and models of nonthermal emission from starburst galaxies, superbubbles, and compact clusters of massive stars. Efficient mechanisms of particle acceleration and amplification of fluctuating magnetic fields with a wide dynamical range in starburst regions are discussed. Sources of cosmic rays, neutrinos and multi-wavelength nonthermal emission associated with starburst regions including potential galactic “PeVatrons” are reviewed in the global galactic ecology context.  相似文献   

7.
The distribution of 255 O-B9-A2, K-G stars and interstellar dust in the direction of the stellar cluster NGC 1893 is studied using V, B-V, and U-B photometric data. Sixteen groups of stars (associations) are discovered at various distances. The first group includes 9 stars of different spectral classes of later types in the sun’s neighborhood lying at a distance of 110 pc. The next 3 groups, at distances of 420, 890, and 14300 pc, are type B associations and the remaining twelve groups are OB associations. They are designated as Aur 0.11, Aur B 0.43, Aur B 0.89, Aur OB 1.4, Aur OB 2.6, AurOB 3.8, Aur OB 4.6, Aur OB 5.4, Aur OB 6.1, Aur OB 7.4, Aur OB 9.3, Aur OB11.6, Aur OB14.3, Aur OB 17.9, Aur OB 25.9, and Aur OB 31.3. For most of these stars the absorption lies within the range from 0m.45 to 5m.41. Such high absorption may be caused by circumstellar absorption as well as by the diffuse nebula IC 410. The dusty matter is distributed nonuniformly in the Aur 0.11, Aur B 0.43, and Aur B 0.89 associations. There is no dust in the space between the associations. There is essentially no dust within the groups (associations) at distances greater than 0.9 kpc. (See Table 2.) __________ Translated from Astrofizika, Vol. 50, No. 2, pp. 243–251 (May 2007).  相似文献   

8.
Abstract— A wide range of stellar nucleosynthetic sources has been analyzed to derive their contributions of short‐lived and stable nuclei to the presolar cloud. This detailed study is required to infer the most plausible source(s) of short‐lived nuclei through a critical comparison among the various stellar sources that include AGB stars, novae, supernovae II, Ia, and Wolf‐Rayet stars that evolved to supernovae Ib/c. In order to produce the canonical value of 26Al/27Al in the early solar system, almost all stellar sources except low‐mass AGB stars imply large isotopic anomalies in Ca‐Al‐rich inclusions (CAIs). This is contrary to the observed isotopic compositions of CAIs. The discrepancy could impose stringent constraints on the formation and thermal evolution of CAIs from different chondrites. Among the various stellar scenarios, the injection of short‐lived nuclei into the previously formed solar protoplanetary disc by a massive star of an ad hoc chosen high‐injection mass cut is a possible scenario. There is a possibility of the contribution of short‐lived nuclides by a 1.5–3 M AGB star as it implies the smallest shift in stable isotopes. A low‐mass AGB star of relatively low metallicity would be even a better source of short‐lived nuclei. However, this scenario would require independent gravitational collapse of the presolar cloud coupled with ambipolar diffusion of magnetic flux. Alternatively, numerous scenarios can be postulated that involve distant (≥10 pc) massive stars can contribute 60Fe to the presolar cloud and can trigger its gravitational collapse. These scenarios would require production of 26Al and 41Ca by irradiation in the early solar system. Significant production of 26Al and 60Fe can be explained if massive, rotating Wolf‐Rayet stars that evolved to supernovae Ib/c were involved.  相似文献   

9.
Based on our compiled catalogue of positions, velocities, ages, and abundances of nine chemical elements for 221 classical Cepheids, we analyze the dependences of the relative abundances of α-elements as well as rapid and slow neutron capture elements on metallicity, space velocity components, and Galactocentric distance. We have found that the relative abundances of all elements in Cepheids do not depend on velocity but increase with Galactocentric distance and decrease with increasing metallicity, just as in thin-disk dwarfs and giants. In Cepheids, however, the [α/Fe]-[Fe/H] relation lies below, while the [r/Fe]-[Fe/H] and [s/Fe]-[Fe/H] relations lie above the analogous sequences for dwarfs and giants. We hypothesize that upon reaching a nearly solar metallicity in the interstellar medium of the thin disk, the most massive stars ceased to explode as type II supernovae, which mostly enriched the interstellar medium with α-elements. As a result, an underabundance of α-elements and a slight overabundance of r-process elements, which are ejected into the interstellar medium by less massive (8–10 M ) type II supernovae, were formed in the next generations of stars. The overabundance of s-process elements in Cepheids can be explained by the fact that some of the s-elements were produced in the weak s-process in the interiors of massive stars, which may be able to eject the upper parts of their envelopes even without any explosion like asymptotic giant branch stars. And since such massive stars, exploding as type II supernovae, also enriched the interstellar medium with a considerable amount of iron atoms, the [s/Fe] ratios (along with [r/Fe]) in the next generations of stars must be higher in their absence.  相似文献   

10.
We present an overview of recent X-ray observations of Wolf-Rayet (WR) stars with XMM-Newton and Chandra. These observations are aimed at determining the differences in X-ray properties between massive WR + OB binary systems and putatively single WR stars. A new XMM spectrum of the nearby WN8 + OB binary WR 147 shows hard absorbed X-ray emission (including the Fe Kα line complex), characteristic of colliding wind shock sources. In contrast, sensitive observations of four of the closest known single WC (carbon-rich) WR stars have yielded only non-detections. These results tentatively suggest that single WC stars are X-ray quiet. The presence of a companion may thus be an essential factor in elevating the X-ray emission of WC + OB stars to detectable levels.  相似文献   

11.
We present a new unbiased search and analysis of all B stars in the solar neighbourhood (within a volume of 400 pc diameter) using the Arivel data base to track down the remains of the OB associations, which hosted the supernovae (SNe) responsible for the Local Bubble (LB) in the interstellar gas. We find after careful dereddening and by comparison with theoretical isochrones, that besides the Upper Scorpius the Upper Centaurus Lupus and Lower Centaurus Crux subgroups are the youngest stellar associations in the solar neighbourhood with ages of 20–30 Myr, in agreement with previous work. In search for the 'smoking gun' of the origin of the LB, we have traced the paths of the associations back into the past and found that they entered the present bubble region 10–15 Myr ago. We argue that the LB began to form then and estimate that 14–20 SNe have gone off since. It is shown that the implied energy input is sufficient to excavate a bubble of the presently observed size.  相似文献   

12.
Massive stars have significant influence on the evolution of the interstellar medium. Bright rims, cometary morphology of clouds, as well as their motion are some examples of the influence of massive stars on nearby molecular clouds. The cometary clouds in the Gum-Vela region are very good examples. In an attempt to understand the kinematics of the clouds in such regions we have carried out CO line observations towards bright-rimmed clouds near the OB Association Cep OB2. The radial velocities of the clouds are consistent with an expansion of the system at ≈ 4kms?1 away from the dominant O6.5V star in the association, HD206267. We find the rocket mechanism to be the most likely cause for expansion as found for both the Gum-Vela and the Rosette globules. We conclude that such expanding motions are quite common in regions near massive stars and make a brief comparison of the Cepheus system with the Gum-Vela system.  相似文献   

13.
We present the first high-spatial-resolution near-infrared (NIR) imaging of NGC604, obtained with the NICMOS camera onboard the Hubble Space Telescope (HST). These NICMOS broad-band images reveal new NIR point sources, clusters, and diffuse structures. We find an excellent spatial correlation between the 8.4 GHz radio continuum and the 2.2 μm nebular emission. Moreover, massive young stellar object candidates appear aligned with these radio peaks, reinforcing the idea that those areas are star-forming regions. Three different scaled OB associations are recognized in the NICMOS images. The brightest NIR sources in our images have properties that suggest that they are red supergiant stars, of which one was previously known. This preliminary analysis of the NICMOS images shows the complexity of the stellar content of the NGC604 nebula.  相似文献   

14.
We suggest a model to consistently describe the available experimental data on the elemental cosmic-ray energy spectra obtained in direct measurements and to make a smooth transition to the spectrum of all particles measured with extensive air showers. The model suggests the existence of three classes of cosmic-ray sources—shocks from supernova explosions that produce power-law rigidity spectra with different maximum rigidities and different spectral indices. The shocks from high-mass supernovae exploding in OB associations are assumed to be the most powerful class of sources. This class of sources accelerates cosmic rays to a maximum rigidity of 4 × 1015 V. The shocks from nonassociated supernovae exploding into a random interstellar medium are assumed to be the next class (in order of decreasing power). This class of sources accelerates cosmic rays to a maximum rigidity of 5 × 1013 V. The third, weakest class of sources is assumed to accelerate cosmic rays to a maximum rigidity of 2 × 1011 V. Nova explosions could be possible physical objects in this class.  相似文献   

15.
The distribution of 120 O-B9-A2 stars and of the interstellar dust in the direction of the star clusters NGC 2175 and NGC 2175s (the complex S252) is studied in terms of V, (B-V), and (U-B) data. Ten star groups (associations) are found at distances of 410, 720, 1000, 1500, 2200, 3100, 4000, 5200, 7000, and 8100 pc. Three of these, at distances of 410, 720, and 1000 pc, are type B associations. The remaining seven are OB associations. They are designated as Gem B 0.41, Gem B 0.72, Gem B 1.0, Gem OB 1.5, Gem OB 2.2, Gem OB 3.1, Gem OB 4.0, Gem OB 5.2, Gem OB 7.0, and Gem OB 8.1. The V absorption (AV) for stars No.2, 18, 20, 23, 24, 26, 40, 41, 47, 69, 87, 88, 90, 95, 100 and 109 is estimated to be 2m.78,4m.72, 2m.69, 3m.33, 2m.61, 2m.86, 4m.67, 6m.21, 3m.14, 3m.92, 2m.69, 3m.04, 5m.95, 5m.95, 3m.20 and 5m.66, respectively. For most of these stars the absorption lies between 0m.5 and 2m.5. This large absorption may be caused by circumstellar absorption. The dust in the associations Gem B 0.41 and Gem B 0.72 is distributed nonuniformly. There is no dust in the space between the associations. Essentially there is no dust inside those groups (associations) which lie at distances greater than 1 kpc.Translated from Astrofizika, Vol. 48, No. 1, pp. 45–57 (February 2005).  相似文献   

16.
We have searched our previously published radio surveys of the Cygnus X region for faint radio point sources that may be associated with luminous stars of the Cyg OB2 association. Five positional coincidences have been found between stars and 1420 MHz radio sources. A particularly interesting example is the Wolf-Rayet star VCLS 146, which has shown a rapid change in 1420 MHz flux density. In addition, sensitive upper limits have been derived for the emission from 14 early-type stars, which help establish the time history of their non-thermal radio emission. Two radio features have been detected which have the properties of cometary HII regions, except that they are several arcminutes in size. Their detection provides evidence of recent star formation in Cyg OB2.  相似文献   

17.
Based on our H α interferometry and 21-cm and CO observations, we analyze the structure and kinematics of the interstellar medium around the stars WR 134 and WR 135. We conclude that the HI bubble found here previously is associated with WR 135, not with WR 134. High-velocity motions of ionized gas that can be interpreted as expansion of the gas swept up by the stellar wind with a velocity up to 50–80 km s?1 are observed around both stars. The line-of-sight velocity field of the ionized hydrogen in the Cygnus arm is shown to agree with the large-scale line-of-sight velocity distribution of the CO emission.  相似文献   

18.
A list of 171 stars in the galaxy M33 is presented. The stars could be considered as candidates for unique objects, such as SS 433, S Dor, P Cyg stars and possibly new kinds of peculiar objects. All these stars have been selected on the basis of the similarity to SS 433, free from interstellar absorption: OB star with strongH emission or with HeII 4686 and CIII, NIII 4630 - 4660 emission lines; a hot star inside a supernovae remnant or radio nebula. The variability of these stars has been used as an additional criterion of the selection. It is important to carry out spectral observations of the presented stars, which will allow us to select stars with intrinsicH emission.  相似文献   

19.
Abstract— Primitive meteorites contain a few parts per million (ppm) of pristine interstellar grains that provide information on nuclear and chemical processes in stars. Their interstellar origin is proven by highly anomalous isotopic ratios, varying more than 1000-fold for elements such as C and N. Most grains isolated thus far are stable only under highly reducing conditions (C/O > 1), and apparently are “stardust” formed in stellar atmospheres. Microdiamonds, of median size ~ 10 Å, are most abundant (~ 400–1800 ppm) but least understood. They contain anomalous noble gases including Xe-HL, which shows the signature of the r- and p-processes and thus apparently is derived from supernovae. Silicon carbide, of grain size 0.2–10 μm and abundance ~ 6 ppm, shows the signature of the s-process and apparently comes mainly from red giant carbon (AGB) stars of 1–3 solar masses. Some grains appear to be ≥109 a older than the Solar System. Graphite spherules, of grain size 0.8–7 μm and abundance <2 ppm, contain highly anomalous C and noble gases, as well as large amounts of fossil 26Mg from the decay of extinct 26Al. They seem to come from at least three sources, probably AGB stars, novae, and Wolf-Rayet stars.  相似文献   

20.
Models for the chemical evolution of the galaxy are constructed in which the time evolution is imposed by the contraction rate of the galaxy and present observations of stellar metal abundances as a function of height above the galactic plane. Stars with massm?3.5m do not contribute to the metal enrichment of the interstellar gas, and we argue that the interstellar metal abundance at this epoch should be fairly insensitive to the size of the mass fraction of the galaxy that condenses into such stars. The birth rate for stars more massive than 3.5m is assumed proportional toV gal ?n , whereV gal is the contracting volume of the main body of the galaxy. If a dynamic time-scale is adopted for the contraction of the galaxy, then the assumed power-law birth rate yields suitable chemical evolution models only if observed Population II metals are synthesized in stars more massive than about 8.5m . This mass range is consistent with the predictions of current stellar-evolution theory. Provided the birth function does include stars more massive than 8.5m , the relation between the value of the parametern in the birth rate and the observed chemical evolution rate is not particularly sensitive to the specific form adopted for the initial mass spectrum, or to the proportionality constant in the birth rate. We find (i)n?1.4, in general, and (ii)n is close to 1.4 if the contraction of the galaxy to a heighth=400 pc above the plane occurs at close to the free-fall rate. These results are independent of the form of the initial mass spectrum, providedS 3 is small. HereS is the total mass fraction of the galaxy that cycles through stars during its contraction. Numerical models, with an explicit initial mass spectrum, indicate that the same restrictions on the values ofn apply approximately whenS 3 is not small. To introduce low mass stars, we allow the birth rate for stars more massive than 3.5m to level off at a time intervalt L just before the contraction of the galaxy stops, while the total birth rate remains a simple power law. We find that reasonable models are obtained witht L ?1.5×107 yr if the galaxy contracts at a dynamic rate. However, aside from these restrictions on the values ofn andt L , there is no uniquely favored model. For any suitable model, the supernova rate must be small enough so that shock waves from neighboring supernovae do not collide during the adiabatic expansion stage. Otherwise, the interstellar gas would not have time to cool, and its high temperature would tend to impede both star formation and the rapid contraction of the galaxy. The supernova rates in the numerical models given here are small enough to avoid this problem, but large enough to achieve a uniform metal abundance on a time scale short compared to the chemical-evolution time scale. At the epoch considered here, the interstellar metal abundance is approximately less than 0.4Z , and the models are assumed to apply before galactic-scale inhomogeneities, such as the galactic nucleus, become important. Therefore, the chemical mixing time scales imply that most Population II stars of the same age should have approximately the same initial metal abundance, unless the clustering of supernova explosions associated with massive Population II stars is significant. It is shown that collisions between shock waves from neighboring supernovae can produce local regions of significantly enhanced density. The peak bolometric luminosity of the galaxy during its contraction is similar to that predicted by Partridge and Peebles (1967a), but it occurs during the final stages of contraction to the disc. Numerical models give values between 13 and 34 yr?1 for the average number of supernova explosions per year during this bright phase. The X-ray luminosity of the galaxy from these supernovae may be comparable to that of Seyfert galaxies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号