首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
S. S. Schmidberger  D. Francis 《Lithos》1999,48(1-4):195-216
The recently discovered Nikos kimberlite on Somerset Island, in the Canadian Arctic, hosts an unusually well preserved suite of mantle xenoliths dominated by garnet–peridotite (lherzolite, harzburgite, dunite) showing coarse and porphyroclastic textures, with minor garnet–pyroxenite. The whole rock and mineral data for 54 Nikos xenoliths indicate a highly refractory underlying mantle with high olivine forsterite contents (ave. Fo=92.3) and moderate to high olivine abundances (ave. 80 wt.%). These characteristics are similar to those reported for peridotites from the Archean Kaapvaal and Siberian cratons (ave. olivine Fo=92.5), but are clearly distinct from the trend defined by oceanic peridotites and mantle xenoliths in alkaline basalts and kimberlites from post-Archean continental terranes (ave. olivine Fo=91.0). The Nikos xenoliths yield pressures and temperatures of last equilibration between 20 and 55 kb and 650 and 1300°C, and a number of the peridotite nodules appear to have equilibrated in the diamond stability field. The pressure and temperature data define a conductive paleogeotherm corresponding to a surface heat flow of 44 mW/m2. Paleogeotherms based on xenolith data from the central Slave province of the Canadian craton require a lower surface heat flow (40 mW/m2) indicating a cooler geothermal regime than that beneath the Canadian Arctic. A large number of kimberlite-hosted peridotites from the Kaapvaal craton in South Africa and parts of the Siberian craton are characterized by high orthopyroxene contents (ave. Kaapvaal 32 wt.%, Siberia 20 wt.%). The calculated modal mineral assemblages for the Nikos peridotites show moderate to low contents of orthopyroxene (ave. 12 wt.%), indicating that the orthopyroxene-rich mineralogy characteristic of the Kaapvaal and Siberian cratons is not a feature of the cratonic upper mantle beneath Somerset Island.  相似文献   

2.
Spinel peridotite xenoliths associated with the Rio Grande Rift axis (Potrillo and Elephant Butte volcanic fields) and the western rift shoulder (Adams Diggings) have been investigated to correlate pre-eruptive pressure and temperature conditions with xenolith deformation textures and rift location. Temperatures of xenolith equilibration at the rift shoulder are 100–250°C cooler for a given pressure than the temperatures at the rift axis. Undeformed xenoliths (protogranular texture) are derived from higher temperature and higher pressure conditions than deformed xenoliths (porphyroclastic and equigranular textures) in the rift axis. Exsolution lamellae in pyroxenes, small decreases in Al contents of orthopyroxenes from core to rim, and small differences in porphyroclastic orthopyroxene compositions versus neoblastic orthopyroxene compositions indicate high temperatures followed by cooling and a larger cooling interval in deformed rocks than in undeformed rocks. These features, along with thermal histories based on calcium zoning in olivine rims, indicate that the upper mantle under Adams Diggings and Elephant Butte has undergone cooling from an initial high temperature state followed by a late heating event, and the upper mantle under Potrillo has undergone cooling, reheating, and late heating events.  相似文献   

3.
Reaction zones around minerals in mantle xenoliths have been reported from many localities worldwide. Interpretations of the origins of these textures fall into two groups: mantle metasomatic reaction or reaction during transport of the xenoliths to the surface. A suite of harzburgitic mantle xenoliths from Sal, Cape Verde show clear evidence of reaction during transport. The reactions resulted in the formation of olivine–clinopyroxene and Si- and alkali-rich glass reaction zones around orthopyroxene and sieve-textured clinopyroxene and sieve textured spinel, both of which are associated with a Si- and alkali-rich glass similar to that in the orthopyroxene reaction zones. Reaction occurred at pressures less than the mantle equilibration pressure and at temperatures close to the liquidus temperature of the host magma. In addition, there is a clear spatial relation of reaction with the host lava: reaction is most intense near the lava/xenolith contact. The residence time of the xenoliths in the host magma, determined from Fe–Mg interdiffusion profiles in olivine, was approximately 4 years. Our results cannot be reconciled with a recent model for the evolution of the mantle below the Cape Verde Archipelago involving mantle metasomatism by kimberlitic melt. We contend that alkali-rich glasses in the Sal xenoliths are not remnants of a kimberlitic melt, but rather they are the result of reaction between the host lava or a similar magma and xenolith minerals, in particular orthopyroxene. The formation of a Si- and alkali-rich glass by host magma–orthopyroxene reaction appears to be a necessary precursor to formation of sieve textured spinel and clinopyroxene.  相似文献   

4.
东南沿海地区古近纪大陆岩石圈地幔特征及成因   总被引:3,自引:0,他引:3  
东南沿海地区新生代玄武岩中的橄榄岩包体来自岩石圈地幔 ,上地幔橄榄岩包体的岩石学及地球化学特征都记录了地幔演化的历史。普宁橄榄岩包体斜方辉石含量与太古宙克拉通地幔类似 ,但在矿物学、REE、痕量元素和Sr Nd同位素上又与太古宙岩石圈地幔不同。橄榄岩包体的岩相学、矿物学、REE、痕量元素特征都提供了含H2 O富Si流体交代橄榄岩的证据 ,这种流体可能主要是洋壳物质局部熔融而成。流体交代使橄榄岩富Si,同时富Sr、Pb和强不相容元素等大洋岩石圈物质。这表明普宁大陆岩石圈地幔既保留太古宙岩石圈地幔的特征 ,又具有大洋俯冲地幔的特征 ,它是古老岩石圈地幔向大洋岩石圈地幔转换的一部分 ,这种转换可能是大洋岩石圈与大陆岩石圈地幔相互作用的结果。  相似文献   

5.
江苏盘石山二辉橄榄岩包体的Nd、Sr、Pb同位素特征   总被引:7,自引:4,他引:7  
陈道公  王银喜 《地球化学》1994,23(3):245-253
对盘石一带的6个二辉橄榄岩包体,3个单斜辉石的Nd、Sr同位素,4个全岩、7个单斜辉石和1个斜方辉石的铅同位素进行了测定。结果表明,它们在亏损的岩石圈中经历了长时间的演化,其Rb-Sr、Sm-Nd、Pb-Pb同位素体系的相关性可能反映了不同时期的地幔过程。位于陆下岩石圈地幔中上部位的包体比下部岩石圈地幔具有相对亏损和不均一的同位素特征。  相似文献   

6.
青藏高原岩浆岩成因研究:成果与展望   总被引:9,自引:5,他引:4  
莫宣学 《地质通报》2009,28(12):1693-1703
青藏高原是国际地学界公认的大陆动力学研究的天然实验室。岩浆是地球各层圈之间物质和能量交换的重要载体。岩浆岩及其所携带的深源岩石包体被当作探究地球深部的“探针”和“窗口”,同时也是板块运动与大地构造事件的记录。主要讨论青藏高原岩浆岩成因(特别是岩浆成因)研究的成就与存在的问题。首先阐述了关于青藏高原岩浆岩成因研究的基本思路。然后重点回顾了青藏高原岩浆岩成因研究的成果,包括冈底斯同碰撞花岗岩类的成因、钾质—超钾质火山岩的成因、埃达克质火成岩的成因、强过铝质花岗岩的成因、印度洋/特提斯地幔地球化学域的成因、与地幔柱活动有关的岩浆岩的成因,以及对“地球深部岩石的直接标本”的研究。最后提出了对今后青藏高原岩浆岩成因研究的展望。  相似文献   

7.
The Plio-Quaternary Ayutla and Tapalpa volcanic fields in thevolcanic front of the western Mexican Volcanic Belt (WMVB) containa wide variety of alkaline volcanic rocks, rather than onlycalc-alkaline rocks as found in many continental arcs. Thereare three principal rock series in this region: an intraplatealkaline series (alkali basalts and hawaiites), a potassic series(lamprophyres and trachylavas), and a calc-alkaline series.Phlogopite-clinopyroxenite and hornblende-gabbro cumulate xenolithsfrom an augite minette lava flow have orthocumulate textures.The phlogopite-clinopyroxenite xenoliths also contain apatiteand titanomagnetite and probably formed by accumulation of mineralsfractionated from an augite minette more primitive than thehost. The intraplate alkaline series is probably generated bydecompression melting of asthenospheric mantle as a result ofcorner flow in the mantle wedge beneath the arc. Alkaline magmasmay be common in the WMVB as a result of prior metasomatism(during Tertiary Sierra Madre Occidental magmatism) of the Mexicansub-arc mantle. Generation of the more evolved andesites anddacites of the calc-alkaline series is due to either combinedassimilation and fractional crystallization (AFC) or magma mixing.The preponderance of alkaline and hydrous lavas in this regiondemonstrates that these lava types are the norm, rather thanthe exception in western Mexico, and occur in regions that arenot necessarily associated with active rifting. KEY WORDS: arc basalt; subduction; alkali basalt; minette; hawaiite; metasomatism  相似文献   

8.
对产于莒南晚中生代玄武岩中的镁铁质麻粒岩和橄榄岩包体矿物进行了傅里叶变换红外光谱(FTIR)分析.结果显示,麻粒岩矿物和全岩中水含量分别为:单斜辉石300×10-6~1 180×10-6,斜方辉石80×10-6~169×10-6,斜长石717×10-6~1 239×10-6,全岩525×10-6~855×10-6;橄榄岩矿物和全岩中水含量分别为:单斜辉石466×10- 6~746×10-6,斜方辉石187×10-6~304×10-6,橄榄石6×10-6~15×10-6,全岩81×10-6~245×10-6.从单矿物看,麻粒岩和橄榄岩之间水含量的差距不是很明显,但麻粒岩的全岩水含量明显高于橄榄岩,表明大陆深部岩石圈的水含量在垂向上具有不均一性.  相似文献   

9.
橄榄岩-熔体的相互作用:岩石圈地幔组成转变的重要方式   总被引:33,自引:2,他引:31  
张宏福 《地学前缘》2006,13(2):65-75
橄榄岩-熔体/岩浆的相互作用常被用来解释蛇绿岩套橄榄岩、造山带橄榄岩、超镁铁质侵入杂岩体、地幔橄榄岩捕虏体中某些具有不平衡结构和矿物组成的岩石的形成过程。橄榄岩-熔体的反应主要有两种方式,即消耗橄榄石(和单斜辉石)生成斜方辉石或消耗斜方辉石生成橄榄石(和单斜辉石)。反应的结果不仅造成矿物百分含量的变化,而且造成矿物组成的变化;后者更重要但未引起足够的重视。华北东部中生代玄武质岩石中具有环带状结构的橄榄石和辉石捕虏晶,特别是具有环带状结构的地幔橄榄岩捕虏体的发现,暗示这种橄榄岩-熔体的相互作用在华北东南部中生代岩石圈地幔中很可能普遍存在,为岩石圈地幔组成转变和快速富集的重要方式。这是全球首例由橄榄岩-熔体相互反应造成的岩石圈地幔大规模的组成变化。反应熔体来源途径主要有地壳来源和软流圈地幔来源。来源不同的熔体与橄榄岩的反应造成的组成变化完全不同。  相似文献   

10.
Using the experimental data on Fe–Mg exchange between orthopyroxene and biotite of Fonarev & Konilov (1986), an orthopyroxene–biotite geothermometer is developed. The thermometer is corrected for mixing of Ti and Al in octahedral sites in biotite and also for non-ideal mixing of Fe and Mg in orthopyroxene. The thermometer is applied to several amphibolite–granulite transition facies and granulite facies rocks and also to mantle xenoliths. It yields consistent results in rocks of widely varying bulk composition, and highly magnesian mantle xenoliths. This thermometer removes the difficulty of estimating temperature in garnet-free rocks in high-grade terrains and also provides independent estimates of temperature in garnet-bearing assemblages.  相似文献   

11.
宋衍茹  叶凯  续海金 《岩石学报》2009,25(1):147-158
苏鲁超高压变质地体中发现了大量包裹在超高压(UHP)变质片麻岩和混合岩中的造山带石榴橄榄岩。根据它们的野外产出特征和全岩地球化学成分,其中一部分石榴橄榄岩的原岩来自于亏损地幔,后来被卷入俯冲陆壳并经受过俯冲陆壳产生的熔/流体的交代。但是,对这些岩石早期的亏损过程尚缺乏清晰的认识。本文报道了东海芝麻坊石榴子石二辉橄榄岩早期变质演化的新证据。根据详细的变质反应结构观察和矿物成分研究,芝麻坊石榴子石二辉橄榄岩在经历高压低温俯冲带型超高压变质之前经历了至少两期变质演化。其原岩矿物组合由石榴子石变斑晶的高Ca-Cr核部及其中包裹的高Mg单斜辉石、高Al-Cr斜方辉石和高Mg-Ni橄榄石所记录;指示芝麻坊石榴子石二辉橄榄岩的原岩为高温-高压的富集石榴子石二辉橄榄岩。第二期矿物组合为包裹在低Cr变斑晶石榴子石幔部和细粒新生石榴子石核部的大量富Al铬铁矿和高Mg低Ni橄榄石以及少量高Mg斜方辉石。该期组合未发现单斜辉石,表明岩石随后被转变为高温低压的难熔尖晶石方辉橄榄岩或尖晶石纯橄岩。芝麻坊石榴子石二辉橄榄岩的早期变质演化记录了它们被卷入大陆板片俯冲带之前的地幔楔上升对流过程。笔者认为芝麻坊石榴子石二辉橄榄岩的原岩来源于早期俯冲大洋板片之上的深部高温富集地幔楔,洋壳俯冲过程中的地幔楔对流导致其上升到弧后或岛弧之下的地幔楔浅部,减压部分熔融使原本富集的石榴子石二辉橄榄岩转化为难熔的尖晶石方辉橄榄岩或尖晶石纯橄岩。  相似文献   

12.
Mafic and ultramafic xenoliths in a basaltic cone at The Anakies in south-eastern Australia are geochemically equivalent to continental basaltic magmas and cumulates. The xenolith microstructures range from recognizably meta-igneous for intrusive rocks to granoblastic for garnet pyroxenites. Contact relationships between different rock types within some xenoliths suggest a complex petrogenesis of multiple intrusive, metamorphic and metasomatic events at the crust/mantle boundary during the evolution of south-eastern Australia. Unaltered spinel lher-zolite, typical of the uppermost eastern Australian mantle, is interleaved with or veined by the metamorphosed intrusive rocks of basaltic composition. Geothermobarometry calculations by a variety of methods show a concordance of equilibration temperatures ranging from 880°C to 980°C and pressures of 12 to 18 kbar (1200-1800 mPa). These physical conditions span the gabbro to granulite to eclogite transition boundaries. The water-vapour pressure during equilibration is estimated to be about 0.5% of the load pressure, using amphibole breakdown data. Large fluid inclusions of pure CO2 are abundant in the mineral phases in the xenoliths, and it is suggested that flux of CO2 from the mantle has been an important heat source and fluid medium during metamorphism of the mafic and ultramafic protoliths at the lower crust/upper mantle boundary. The calculated pressures and temperatures suggest that the south-eastern Australian crust has sustained a high geothermal gradient. In addition, the nature of the mineral assemblages and the contact relationships of granulitic rock with spinel lherzolite, characteristic of mantle material, suggest that the Moho is not a discrete feature in this region, but is represented by a transition zone approximately 20 km thick. These inferences are in agreement with geophysical data (including seismic, heat-flow and electrical resistivity data) determined for south-eastern Australia. Underplating at the crust/mantle boundary by continental basaltic magmas may be an important alternative or additional mechanism to the conventional andesite model for crustal accretion.  相似文献   

13.
P. Armienti  S. Tarquini 《Lithos》2002,65(3-4):273-285
Olivine crystal size distributions (CSDs) have been measured in three suites of spinel- and garnet-bearing harzburgites and lherzolites found as xenoliths in alkaline basalts from Canary Islands, Africa; Victoria Land, Antarctica; and Pali Aike, South America. The xenoliths derive from lithospheric mantle, from depths ranging from 80 to 20 km. Their textures vary from coarse to porphyroclastic and mosaic–porphyroclastic up to cataclastic. Data have been collected by processing digital images acquired optically from standard petrographic thin sections. The acquisition method is based on a high-resolution colour scanner that allows image capturing of a whole thin section. Image processing was performed using the VISILOG 5.2 package, resolving crystals larger than about 150 μm and applying stereological corrections based on the Schwartz–Saltykov algorithm. Taking account of truncation effects due to resolution limits and thin section size, all samples show scale invariance of crystal size distributions over almost three orders of magnitude (0.2–25 mm). Power law relations show fractal dimensions varying between 2.4 and 3.8, a range of values observed for distributions of fragment sizes in a variety of other geological contexts.

A fragmentation model can reproduce the fractal dimensions around 2.6, which correspond to well-equilibrated granoblastic textures. Fractal dimensions >3 are typical of porphyroclastic and cataclastic samples. Slight bends in some linear arrays suggest selective tectonic crushing of crystals with size larger than 1 mm. The scale invariance shown by lithospheric mantle xenoliths in a variety of tectonic settings forms distant geographic regions, which indicate that this is a common characteristic of the upper mantle and should be taken into account in rheological models and evaluation of metasomatic models.  相似文献   


14.
The Tertiary volcanic rocks of the central and the eastern parts of the Oman Mountains consist mainly of basanites with abundant upper mantle ultramafic xenoliths. The lavas are alkaline (42–43 wt.% SiO2; 3.5–5.5 wt.% Na2O + K2O). They include primitive (11–14 wt.% MgO) features with strong OIB-like geochemical signatures. Trace element and Sr–Nd isotope data for the basanites suggest mixing of melts derived from variable degrees of melting of both garnet- and spinel lherzolite-facies mantle source. The associated xenolith suite consists mainly of spinel and Cr-bearing diopside wehrlite, lherzolite and dunite with predominantly granuloblastic textures. No significant difference in chemistry was found between the basanites and xenoliths from the central and eastern Oman Mountains, which indicate a similar mantle source. Calculated oxygen fugacity indicates equilibration of the xenoliths at − 0.43 to − 2.2 log units above the fayalite–magnetite–quartz (FMQ) buffer. Mantle xenolith equilibration temperatures range from 910–1045 + 50 °C at weakly constrained pressures between 13 and 21 kbar. Xenolith data and geophysical studies indicate that the Moho is located at a depth of  40 km. A geotherm substantially hotter (90 mW m− 2) than the crust–mantle boundary (45 mW m− 2) is indicated and probably relates to tectonothermal events associated with the local and regional Tertiary magmatism. The petrogenesis of the Omani Tertiary basanites is explained by partial melting of an asthenospheric mantle protolith during an extension phase predating opening of the Gulf of Aden and plume-related alkaline volcanic rocks.  相似文献   

15.
Mantle xenoliths in alkali basalt at three locations in South Korea—Boun, the Gansung area, and Baegryung Island—are spinel lherzolites composed of olivine, orthopyroxene, clinopyroxene, and spinel. The xenoliths generally display triple junctions between grains, kink-banding in olivine and pyroxenes, and protogranular and equigranular textures, with no preferred crystal orientation. Anhedral brown spinels occur interstitially. Minerals in lherzolites from each of the three localities are compositionally homogeneous. Olivine compositions have Fo89.0 to Fo90.2, low CaO (.03 to 0.12 wt%), and NiO of 0.34 to 0.40 wt%; the orthopyroxene is enstatite with En89.0 to En90.0 Al2O3 of 4 to 5 wt%; the clinopyroxene is diopside with En47.2 to En49.1 and Al2O3 of 7.42 to 7.64 wt% from Boun and 4.70 to 4.91 wt% from Baegryung. Spinel chemistry shows a distinct negative trend, with increasing Al corresponding with decreasing Cr, and Mg# and Cr# of 75.1 to 81.9 and 8.5 to 12.6, respectively.

Temperatures and pressures of equilibration for these mantle xenoliths were estimated using various pyroxene geothermometers (Wood and Banno, 1973; Wells, 1977; Mercier, 1980; Sachtleben and Seck, 1981; Bertrand and Mercier, 1985; Brey and Köhler, 1990) and the Al-solubility geobarometer (Mercier, 1980; Lane and Ganguly, 1980). Temperature estimates from the recipes of Mercier (1980) and Sachtleben and Seck (1981) are compatible. The equilibrium temperatures of these xenoliths, taken as the average obtained from these two methods, lie between 970 and 1020° C, and equilibrium pressures derived from Mercier (1980) fall within the range of 12 to 19 kbar (i.e., 42 to 63 km). These temperatures and pressures are reinforced by considerations of the Al-isopleths in the MAS system (Lane and Ganguly, 1980), as adjusted for the Fe effect on Al solubility in orthopyroxene (Lee and Ganguly, 1988).

The equilibrium temperatures and pressures of xenoliths, as considered in P/T space, belong to the oceanic geotherm, based upon the various mantle geotherms presented by Mercier (1980). This geotherm is completely different from continental geotherms, e.g., from South Africa (Lesotho) and southern India. Mineral compositions of spinel-lherzolites in South Korea and eastern China are primitive; paleogeotherms of both are quite similar, but degrees of depletion of the upper mantle could vary locally. This is demonstrated by eastern China, which has various depleted xenoliths caused by different degrees of partial melting.  相似文献   

16.
Laboratory experiments on natural, hydrous basalts at 1–4 GPa constrain the composition of “unadulterated” partial melts of eclogitized oceanic crust within downgoing lithospheric slabs in subduction zones. We complement the “slab melting” experiments with another set of experiments in which these same “adakite” melts are allowed to infiltrate and react with an overlying layer of peridotite, simulating melt:rock reaction at the slab–mantle wedge interface. In subduction zones, the effects of reaction between slab-derived, adakite melts and peridotitic mantle conceivably range from hybridization of the melt, to modal or cryptic metasomatism of the sub-arc mantle, depending upon the “effective” melt:rock ratio. In experiments at 3.8 GPa, assimilation of either fertile or depleted peridotite by slab melts at a melt:rock ratio 2:1 produces Mg-rich, high-silica liquids in reactions which form pyrope-rich garnet and low-Mg# orthopyroxene, and fully consume olivine. Analysis of both the pristine and hybridized slab melts for a range of trace elements indicates that, although abundances of most trace elements in the melt increase during assimilation (because melt is consumed), trace element ratios remain relatively constant. In their compositional range, the experimental liquids closely resemble adakite lavas in island-arc and continental margin settings, and adakite veins and melt inclusions in metasomatized peridotite xenoliths from the sub-arc mantle. At slightly lower melt:rock ratios (1:1), slab melts are fully consumed, along with peridotitic olivine, in modal metasomatic reactions that form sodic amphibole and high-Mg# orthopyroxene.  相似文献   

17.
WITT  G.; SECK  H. A. 《Journal of Petrology》1987,28(3):475-493
Mantle xenoliths from the West Eifel, West Germany revealingdistinct disequilibrium textures were formed by strong sheardeformation from coarse grained, high temperature spinel peridotites.Foliated structures are caused by the roughly parallel alignmentof elongated orthopyToxenc porphyroclasts up to 8 ? 2 mm insize and streched patches of clinopyroxene and spinel in a matrixof recrystallized olivine, orthopyroxene, clinopyroxene, andspinel. Bulk chemical disequilibrium finds its expression in a highdegree of chemical heterogeneity which is most evident in orthopyroxene.In orthopyroxene porphyroclasts, unmixed lamellae of clinopyroxeneand chromium-aluminium spinel are confined to the grain cores,because concentration gradients of Al, Cr, and Ca existed atthe time of their exsolution. Orthopyroxene neoblasts also revealdiffusion controlled concentration gradients of Al, Cr, andCa, which decrease from core to rim. The temperature historydetermining the orthopyroxene chemistries was derived from Al-solubilitiesin orthopyroxene using an empirical geothermometer. From thetextural relationships, in conjunction with the temperaturehistory, it is inferred that the shear process causing the deformationof the porphyroclastic xenoliths was associated with a temperaturedecrease from at least 1100 to about 800?C. The observed linkage of deformation and cooling in the xenolithsis related to the diapiric uplift of hot mantle material intoa cooler uppermost mantle beneath the West Eifel. It rules outa deformation due to secular mantle flow or movements along‘cold’ shear zones.  相似文献   

18.
19.
Mantle xenoliths brought to the surface by kimberlite magmas along the south-western margin of the Kaapvaal craton in South Africa can be subdivided into eclogites sensu stricto, kyanite eclogites and orthopyroxene eclogites, all containing omphacite, and garnet clinopyroxenites and garnet websterites characterised by diopside. Texturally, chemically (major elements) and thermally, we observe an evolution from garnet websterites (TEG = 742–781 °C) towards garnet clinopyroxenites (TEG = 715–830 °C) and to eclogites (TEG = 707–1056 °C, mean value of 913 °C). Pressures calculated for orthopyroxene-bearing samples suggest upper mantle conditions of equilibration (P = 16–33 kb for the garnet websterites, 18 kb for a garnet clinopyroxenite and 23 kb for an opx-bearing eclogite). The overall geochemical similarity between the two groups of xenoliths (omphacite-bearing and diopside-bearing) as well as the similar trace element patterns of clinopyroxenes and garnet suggest a common origin for these rocks. Recently acquired oxygen isotope data on garnet (δ18Ognt = 5.25–6.78 ‰ for eclogites, δ18Ognt = 5.24–7.03 ‰ for garnet clinopyroxenites) yield values ranging from typical mantle values to other interpreted as resulting from low-temperature alteration or precursors sea-floor basalts and associated rocks. These rocks could then represent former magmatic oceanic rocks that crystallised from a same parental magma as plagioclase free diopside-bearing and plagioclase-bearing crustal rocks. During subduction, these oceanic rock protoliths equilibrated at mantle depth, with the plagioclase-bearing rocks converting to omphacite and garnet-bearing lithologies (eclogites sensu largo), whereas the plagioclase-free diopside-bearing rocks converted to diopside and garnet-bearing lithologies (garnet websterites and garnet clinopyroxenites).  相似文献   

20.
A late-stage rift-related tholeiite-alkalic suite of igneous intrusions cut the Deccan Traps lavas at the western Indian continental margin. The suite comprises intrusives that can be grouped into ten lithotypes on the basis of their mutual relationships. Tholeiitic types predate the alkaline rocks and greatly predominate, however, the alkaline members exhibit more diversity in mineralogy and chemistry, and are amongst the rare magmatic rocks from the Deccan that host both mantle and lower crustal xenoliths. The mineralogy of most rock types is dominated by clinopyroxene. The diversity of the alkaline rocks could be mainly accounted for by fractional crystallization and mixing between evolved and primitive melts under varying P-T conditions. Sodic and potassic lamprophyres are amongst the most primitive samples with high Mg #, FeO/MgO < 1, high Cr and also with relatively high Ba, Sr, Zr and Nb. They are the most deeply derived magmas within the Deccan Traps as is evident from the mantle and lower crustal xenoliths entrained by them. They possibly represent low degree melts of incompatible element-enriched mantle source rocks. The nephelinites are strongly porphyritic and despite their high Mg #s can be regarded as evolved magmas that have been responsible for the formation of the tephriphonolite daughter. The nephelinites have undergone contamination by lower crustal granulites. The composite intrusions of microdiorites with their complexly zoned mineralogy dominated by plagioclase and amphiboles/micas represent hybrid rocks that have resulted from mixing between tholeiitic and trachytic melts partly at depth and partly at shallow crustal levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号