首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
梅冥相  张瑞  李屹尧  接雷 《岩石学报》2017,33(4):1073-1093
华北地台东北缘的芙蓉统,大致为长山组和凤山组所组成,可以进一步划分为3个三级沉积层序;层序划分主要基于沉积相序列的旋回性所代表的沉积趋势,较深水的陆棚相钙质泥岩和深缓坡相条带状泥晶灰岩和泥灰岩组成的凝缩作用序列、与高水位体系域和强迫型海退体系域的中至浅缓坡相碳酸盐岩组成的总体向上变浅序列,是这些三级沉积层序的基本构成,从而形成了较为典型的淹没不整合型层序。那些典型的叠层石生物丘,类似于微生物礁,主要发育在长山组和凤山组下部构成的三级层序的强迫型海退体系域之中,代表了缓坡型台地中相对海平面下降阶段的沉积记录。这些叠层石生物丘中的叠层石,泥晶和微亮晶是其基本构成,最为特征的是发育着一些典型的钙化蓝细菌化石,表明了这些寒武纪芙蓉世的叠层石生长于蓝细菌主导的微生物席的钙化作用之中。最为重要的是,在构成叠层石生物丘的粗糙纹层柱状和穹窿状叠层石中,较为普遍地发育着"石松藻(Lithocodium)";这种谜一样的钙化蓝细菌化石,与其他的钙化蓝细菌化石一起,表明了寒武纪叠层石形成过程中复杂的微生物沉淀作用,成为窥视叠层石生长和石化过程中重要的微生物作用信号。就像其名称所蕴含着的高级绿藻中的松藻(Codium)的涵义一样,"石松藻(Lithocodium)"状的钙化蓝细菌,多描述于中生代的微生物碳酸盐岩中,而且还常常被解释为结壳状有孔虫或"海绵骨针的网状物",其生物亲和性还存在着剧烈的争论。因此,华北地台东北缘寒武系芙蓉统中的叠层石生物丘,特殊的层序地层位置代表了较为典型的强迫型海退沉积记录,特别的钙化微生物构成代表着叠层石生长和石化过程中复杂的微生物作用信号,成为深入了解"寒武纪-早奥陶世微生物碳酸盐岩复苏期"和"显生宙早期第一幕蓝细菌钙化作用事件"中的微生物造礁和成丘作用的典型实例。  相似文献   

2.
The Oligocene represents a key interval during which coralline algae became dominant on carbonate ramps and luxuriant coral reefs emerged on a global scale. So far, few studies have considered the impact that these early reefs had on ramp development. Consequently, this study aimed at presenting a high‐resolution analysis of the Attard Member of the Lower Coralline Limestone Formation (Late Oligocene, Malta) in order to decipher the internal and external factors controlling the architecture of a typical Late Oligocene platform. Excellent exposures of the Lower Coralline Limestone Formation occurring along continuous outcrops adjacent to the Victoria Lines Fault reveal in detail the three‐dimensional distribution of the reef‐associated facies. A total of four sedimentary facies have been recognized and are grouped into two depositional environments that correspond to the inner and middle carbonate ramp. The inner ramp was characterized by a very high‐energy, shallow‐water setting, influenced by tide and wave processes. This setting passed downslope into an inner‐ramp depositional environment which was colonized by seagrass and interfingered with adjacent areas containing scattered corals. The middle ramp lithofacies were deposited in the oligophotic zone, the sediments being generated from combined in situ production and sediments swept from the shallower inner ramp by currents. Compositional characteristics and facies distributions of the Attard ramp are more similar to the Miocene ramps than to those of the Eocene. An important factor controlling this similarity may be the expansion of the seagrass colonization within the euphotic zone. This expansion may have commenced in the Late Oligocene and was associated with a concomitant reduction in the aerial extent of the larger benthonic foraminifera facies. Stacking‐pattern analysis shows that the depositional units (parasequences) at the study section are arranged into transgressive–regressive facies cycles. This cyclicity is superimposed on the overall regressive phase recorded by the Attard succession. Furthermore, a minor highstand (correlated with the Ru4/Ch1 sequence) and subsequent minor lowstand (Ch2 sequence) have been recognized. The biota assemblages of the Attard Member suggest that carbonate sedimentation took place in subtropical waters and oligotrophic to slightly mesotrophic conditions. The apparent low capacity of corals to form wave‐resistant reef structures is considered to have been a significant factor affecting substrate stability at this time. The resulting lack of resistant mid‐ramp reef frameworks left this zone exposed to wave and storm activity, thereby encouraging the widespread development of coralline algal associations dominated by rhodoliths.  相似文献   

3.
《Sedimentology》2018,65(3):851-876
The Sarah Formation is a glaciogenic sedimentary unit deposited along the Gondwana margin during the latest Ordovician ice age and represents a major hydrocarbon reservoir in northern Saudi Arabia. Large‐scale glacial palaeo‐valleys cut into the Qasim Formation and were infilled by the Sarah Formation. Post‐glacial transgression in the earliest Silurian resulted in the deposition of the Qusaiba Shale Member and associated organic‐rich basal source rocks, which cap the Sarah Formation infilled palaeo‐valleys. This unique setting makes the Sarah Formation an important emerging exploration target in Saudi Arabia. This study focuses on the facies and depositional architecture in seismic‐scale outcrops of the Sarah Formation in north‐western Saudi Arabia. The Rahal Dhab palaeo‐valley provides a 100 km long dip‐oriented cross‐section which has been covered by 24 vertical sections, sedimentary architectural analyses at metre to kilometre scale and by three cored shallow boreholes. In the Rahal Dhab palaeo‐valley, the Sarah Formation was deposited in a proglacial setting that ranged from marginal marine to offshore prodelta and is made up of three units: (i) the Sarah Sandstone; (ii) the Sarah Shale; and (iii) the Uqlah Member. This study shows the relationships between these three units and architectural controls on reservoir quality in this system. This paper contributes to the regional understanding of the Sarah Formation, and the new depositional model of the Rahal Dhab palaeo‐valley provides an outcrop‐reservoir analogue for hydrocarbon exploration in adjacent areas.  相似文献   

4.
The Early Cretaceous Fahliyan Formation (middle part of the Khami Group), is one of the important reservoir rocks in the Zagros Fold-Thrust Belt. The Zagros Fold-Thrust Belt is located on the boundary between the Arabian and Eurasian lithospheric plates and formed from collision between Eurasia and advancing Arabia during the Cenozoic. In this study area, the Fahliyan Formation with a thickness of 325 m, consists of carbonate rocks (limestone and dolomite). This formation overlies the Late Jurassic Surmeh Formation unconformably and underlies the Early Cretaceous Gadvan Formation conformably at Gadvan Anticline. The formation was investigated by a detailed petrographic analysis to clarify the depositional facies, sedimentary environments and diagenetic features in the Gadvan Anticline. Petrographic studies led to recognition of the 12 microfacies that were deposited in four facies belts: tidal flat, lagoon, and shoal in inner ramp and shallow open marine in mid-ramp environments. The absence of turbidite deposits, reefal facies, and gradual facies changes show that the Fahliyan Formation was deposited on a carbonate ramp. Calcareous algae and benthic foraminifera are abundant in the shallow marine carbonates of the Fahliyan Formation. The diagenetic settings favored productioning a variety of features which include cements from early to late marine cements, micritization, dolomitization, compaction features, dissolution fabric, and pores. The diagenetic sequence can be roughly divided into three stages: (1) eugenic stage: marine diagenetic environment, (2) mesogenic stage: burial environment, and (3) telogenic stage: meteoric diagenetic environment.  相似文献   

5.
《Sedimentology》2018,65(5):1558-1589
Most of the present knowledge of shallow‐marine, mixed carbonate–siliciclastic systems relies on examples from the carbonate‐dominated end of the carbonate–siliciclastic spectrum. This contribution provides a detailed reconstruction of a siliciclastic‐dominated mixed system (Pilmatué Member of the Agrio Formation, Neuquén Basin, Argentina) that explores the variability of depositional models and resulting stratigraphic units within these systems. The Pilmatué Member regressive system comprises a storm‐dominated, shoreface to basinal setting with three subparallel zones: a distal mixed zone, a middle siliciclastic zone and a proximal mixed zone. In the latter, a significant proportion of ooids and bioclasts were mixed with terrigenous sediment, supplied mostly via along‐shore currents. Storm‐generated flows were the primary processes exporting fine sand and mud to the middle zone, but were ineffective to remove coarser sediment. The distal zone received low volumes of siliciclastic mud, which mixed with planktonic‐derived carbonate material. Successive events of shoreline progradation and retrogradation of the Pilmatué system generated up to 17 parasequences, which are bounded by shell beds associated with transgressive surfaces. The facies distribution and resulting genetic units of this siliciclastic‐dominated mixed system are markedly different to the ones observed in present and ancient carbonate‐dominated mixed systems, but they show strong similarities with the products of storm‐dominated, pure siliciclastic shoreface–shelf systems. Basin‐scale depositional controls, such as arid climatic conditions and shallow epeiric seas might aid in the development of mixed systems across the full spectrum (i.e. from carbonate‐dominated to siliciclastic‐dominated end members), but the interplay of processes supplying sand to the system, as well as processes transporting sediment across the marine environment, are key controls in shaping the tridimensional facies distribution and the genetic units of siliciclastic‐dominated mixed systems. Thus, the identification of different combinations of basin‐scale factors and depositional processes is key for a better prediction of conventional and unconventional reservoirs within mixed, carbonate–siliciclastic successions worldwide.  相似文献   

6.
Abstract Barremian and Aptian shallow‐water carbonate facies (uppermost Lekhwair, Kharaib and Shuaiba Formations) are described from outcrops in northern Oman. Based on facies analysis and bedding pattern, three orders of depositional sequences are defined (third to fifth order) and correlated between sections. Over the course of three third‐order sequences, covering the Barremian to Lower Aptian, a third‐order depositional pattern is documented that consists of a succession of three distinct faunal assemblages: discoidal orbitolinids and calcareous algae were deposited during early transgression; microbialites and microencrusters dominate the late transgressive to early highstand facies; and a rudist‐ and miliolid‐dominated facies is typical of the highstand. This ecological succession was controlled largely by palaeoenvironmental changes, such as trophic level and clay influx, rather than sedimentological factors controlled by variations in accommodation space. Orbitolinid beds and carbonates formed by microbialites and microencrusters seem to be the shallow‐water carbonate response to global changes affecting Late Barremian to Aptian palaeoclimate and palaeoceanography.  相似文献   

7.
Carbonate buildups in the Flinders Ranges of mid-Early Cambrian age grew during a period of high archaeocyath diversity and are of two types: (1) low-energy, archaeocyath-sponge-spicule mud mounds, and (2) high-energy, archaeocyath-calcimicrobe (calcified microbial microfossil) bioherms. Mud mounds are composed of red carbonate mudstone and sparse to abundant archaeocyath floatstone, have a fenestral fabric, display distinct stromatactis, contain abundant sponge spicules and form structures up to 150m wide and 80 m thick. Bioherms are either red or dark grey limestone and occur as isolated small structures 2–20 m in size surrounded by cross-bedded calcarenites and calcirudites or as complexes of mounds and carbonate sands several hundreds of metres across. Red bioherms comprise masses of white Epiphyton with scattered archaeocyaths and intervening areas of archaeocyath-rich lime mudstone. Grey bioherms are complex intergrowths of archaeocyaths, encrusting dark grey Renalcis and thick rinds of fibrous calcite cement. The bioherms were prone to synsedimentary fracturing and exhibit large irregular cavities, up to 1.5 m across, lined with fibrous calcite. The buildups are isolated or in contiguous vertical succession. Mud mounds occur alone in low-energy, frequently nodular, limestone facies. Individual bioherms and bioherm complexes occur in high-energy on-shelf and shelf-margin facies. The two types also form large-scale, shallowing-upward sequences composed of basal (deep water) mud mounds grading upward into archaeocyath-calcimicrobe bioherm complexes and bioherms in cross-bedded carbonate sands. The uppermost sequence is capped by ooid grainstone and/ or fenestral to stromatolitic mudstone. The calcimicrobe and metazoan associations form the two major biotic elements which were to dominate reefs throughout much of subsequent Phanerozoic time.  相似文献   

8.
To understand the depositional processes and environmental changes during the initial flooding of the North China Platform, this study focuses on the Lower to Middle Cambrian Zhushadong and Mantou formations in Shandong Province, China. The succession in the Jinan and Laiwu areas comprises mixed carbonate and siliciclastic deposits composed of limestone, dolostone, stromatolite, thrombolite, purple and grey mudstone, and sandstone. A detailed sedimentary facies analysis of seven well‐exposed sections suggests that five facies associations are the result of an intercalation of carbonate and siliciclastic depositional environments, including local alluvial fans, shallowing‐upward carbonate–siliciclastic peritidal cycles, oolite dominant shoals, shoreface and lagoonal environments. These facies associations successively show a transition from an initially inundated tide‐dominated carbonate platform to a wave‐dominated shallow marine environment. In particular, the peritidal sediments were deposited during a large number of depositional cycles. These sediments consist of lime mudstone, dolomite, stromatolite and purple and grey mudstones. These shallowing‐upward cycles generally resulted from carbonate production in response to an increase of accommodation during rising sea‐level. The carbonate production was, however, interrupted by frequent siliciclastic input from the adjacent emergent archipelago. The depositional cycles thus formed under the influence of both autogenetic changes, including sediment supply from the archipelago, and allogenic control of relative sea‐level rise in the carbonate factory. A low‐relief archipelago with an active tidal regime allowed the development of tide‐dominated siliciclastic and carbonate environments on the vast platform. Siliciclastic input to these tidal environments terminated when most of the archipelago became submerged due to a rapid rise in sea‐level. This study provides insights on how a vast Cambrian carbonate platform maintained synchronous sedimentation under a tidal regime, forming distinct cycles of mixed carbonates and siliciclastics as the system kept up with rising relative sea‐level during the early stage of basin development in the North China Platform.  相似文献   

9.
赵新伟  曾伟 《中国地质》2016,(3):921-935
层序地层学是地层学研究中的第三次革命,其强调年代地层框架内的沉积相关系和地层结构。河北路通沟剖面寒武系地层连续,层序界面清楚而独特,沉积现象丰富,是进行华北地台寒武系层序地层划分的典型地点之一。该剖面岩相类型以泥晶灰岩、鮞粒灰岩及白云岩为主,发育潮坪相、颗粒滩相、缓坡相及陆棚相等沉积相。在新的年代地层框架下,依据沉积相的垂向叠加样式及其反映的长周期旋回特征,将路通沟剖面寒武系划分为9个三级层序,以第三统徐庄组组成的三级层序(TST+CS+HST)为界,整个沉积序列从混积潮坪相沉积变为缓坡型碳酸盐岩沉积,层序也从以"TST+HST"为主的沉积序列转变为以"CS+HST"为特征的淹没不整合型层序序列。芙蓉统中众多的叠层石生物丘暗示:寒武系末期贫乏骨骼的风暴海洋中微生物碳酸盐岩随后生动物辐射也在增加的特殊沉积现象。基于沉积相叠置方式及旋回特征对路通沟剖面寒武系的层序地层研究,将为探索华北地台东北部广泛分布的寒武系地层的层序划分提供一个典型的实例,为今后大范围的追索和对比提供更多的思考途径。  相似文献   

10.
Existing facies models for Devonian reef systems can be divided into high‐energy and low‐energy types. A number of assumptions have been made in the development of these models and, in some cases, criteria that distinguish important aspects of the models are poorly defined. The Upper Devonian Alexandra Reef System contains a variety of reef fabrics from different depositional environments and is ideal for studying the range of environments in which stromatoporoids thrived and the facies from these different environments. A wide variety of stromatoporoid growth forms including laminar, tabular, anastamosing laminar and tabular, domal, bulbous, dendroid, expanding conical, concave‐up whorled‐laminar, concave‐up massive tabular and platy‐multicolumnar are present in the Alexandra Reef System. The whorled‐laminar and massive tabular concave‐up growth forms are virtually undocumented from other Devonian reefs but were common in the reef front of the Alexandra, where they thrived in a low‐energy environment around and below fair‐weather wave base. In contrast, high‐energy parts of the reef margin were dominated by bioclastic rubble deposits with narrow ribbon‐like discontinuous bodies of laminar stromatoporoid framestone. In the lagoon, laminar stromatoporoids formed steep‐sided sediment‐dominated bioherms in response to sea‐level rise and flooding. Relying mostly on the different reef facies in the Alexandra system, a new classification scheme for Devonian reef fabrics has been developed. Devonian reef fabrics can be classified as being: (i) sediment‐laden metazoan dominated; (ii) metazoan–microbial dominated (boundstone); (iii) metazoan dominated (framestone); or (iv) metazoan–marine cement dominated. Distinction of these fabrics carries important sedimentary and palaeoecological implications for reconstructing the depositional environment. With examples from the Alexandra Formation, it is demonstrated that reef facies accumulated in a range of depositional environments and that the simple observation of massive stromatoporoids with or without microbial deposits does not automatically imply a high‐energy reef margin, as otherwise portrayed in a number of the existing facies models for these systems.  相似文献   

11.
The Late Ordovician glacio-fluvial Sarah Formation is an important tight gas reservoir target in Saudi Arabia. This study uses statistical methods to characterize the petrophysical heterogeneity of the paleovalleys of the Sarah Formation that crop out in central Saudi Arabia. Four paleovalleys were studied: Bukayriyah, Hanadir, Sarah, and Khanasir Sarah. Several lithofacies were identified in each that vary in texture, porosity, permeability, and facies abundance that reflect periods of ice advance and retreat. The heterogeneity analysis is based on three statistical measures, namely, the coefficient of variation, the Dykstra-Parsons coefficient, and the Lorenz coefficient. The coefficient of variation values is in the 0.62–1.94 range, indicating an extremely heterogeneous distribution. The Dykstra-Parsons coefficient values are in the 0.56–0.88 range, suggesting very high to extremely high heterogeneity in the reservoirs. The Lorenz coefficient correlates well with the Dykstra-Parsons coefficient for paleovalleys of the Sarah Formation. The heterogeneity parameters studied here indicate that the outcrops of Sarah Formation paleovalleys represent heterogeneous to very heterogeneous reservoirs, which may be attributed to complex depositional and diagenetic variations that have affected the porosity and permeability distribution.  相似文献   

12.
A thick Maastrichtian‐Ypresian succession, dominated by marine siliciclastic and carbonate deposits of the regionally recognized Nile Valley and Garra El‐Arbain facies associations, is exposed along the eastern escarpment face of Kharga Oasis, located in the Western Desert of Egypt. The main objectives of the present study are: (i) to establish a detailed biostratigraphic framework; (ii) to interpret the depositional environments; and (iii) to propose a sequence stratigraphic framework in order to constrain the palaeogeographic evolution of the Kharga sub‐basin during the Maastrichtian‐Ypresian time interval. The biostratigraphic analysis suggests the occurrence of 10 planktonic zones; two in the Early Maastrichtian (CF8b and CF7), four in the Palaeocene (P2, P3, P4c and P5) and four in the Early Eocene (E1, E2, E3 and E4). Recorded zonal boundaries and biostratigraphic zones generally match with those proposed elsewhere in the region. The stratigraphic succession comprises seven third‐order depositional sequences which are bounded by unconformities and their correlative conformities which can be correlated within and outside Egypt. These depositional sequences are interpreted as the result of eustatic sea‐level changes coupled with local tectonic activities. Each sequence contains a lower retrogradational parasequence set bounded above by a marine‐flooding surface and an upper progradational parasequence set bounded above by a sequence boundary. Parasequences within parasequence sets are stacked in landward‐stepping and seaward‐stepping patterns indicative of transgressive and highstand systems tracts, respectively. Lowstand systems tracts were not developed in the studied sections, presumably due to the low‐relief ramp setting. The irregular palaeotopography of the Dakhla Basin, which was caused by north‐east to south‐west trending submerged palaeo‐highs and lows, together with the eustatic sea‐level fluctuations, controlled the development and location of the two facies associations in the Kharga Oasis, the Nile Valley (open marine) and Garra El‐Arbain (marginal marine).  相似文献   

13.
四川省广安市桂兴镇响水村下三叠统飞仙关组地质剖面,位于华蓥山背斜的西翼,其古地理位置位于早三叠世川东碳酸盐台地西侧。对该剖面的详细研究,有利于恢复飞仙关期川东碳酸盐台地西侧的沉积演化过程。响水剖面飞仙关组一段属于半局限浅海陆棚和开阔台地含泥灰岩沉积。飞仙关组二段下部为碳酸盐台地西缘斜坡相及开阔台地相;其上部为较稳定的开阔台地沉积。飞仙关组三段是碳酸盐台缘鲕滩和开阔台地沉积。飞仙关组四段属于典型的混积台地潮坪沉积。川东碳酸盐台地西侧飞仙关组由两个向上变浅的沉积旋回组成,第2个沉积旋回是碳酸盐台地向西增生和鲕滩发育的主要时期。  相似文献   

14.
Application of sedimentological, geochemical and discriminant analysis techniques to the engineering geological investigation of damsites assists in understanding the variation of rock types, stratal correlation, porosity, folding and faulting, through studying the history of depositional and diagenetic environments.

Factor analysis (Rao & Naqvi, 1977) resulted in the proposal of a tidal depositional model consisting of subtidal, shoal, bar, intertidal and supratidal carbonate environments, and channels and dune‐and‐flat terrigenous environments. Discriminant analysis has now been employed to extend the paleo‐environmental model laterally. Samples (142) from four new drill holes were examined, and the data compared with the earlier data by a discriminant analysis technique. The results confirm our pre‐existing model of a prograding tidal complex.

Regional correlation of depositional environments of strata shows an anticlinal structure. Faulting in the sequence is indicated by secondary dolomitisation, breccia‐tion and stfatal discontinuities. The secondary dolomites replaced both limestones and sandstones in the sequence. The amount of porosity is related to depositional facies and dolomitisation. It is possible to understand the hydrologic regime with the aid of regional structure, depositional and diagenetic facies, and porosity.

Because this factor and discriminant analysis technique intensively uses information from each length of drill core, the possibility exists of more confident interpretation of new data from less extensive drilling, with consequent saving in cost.  相似文献   

15.
The Upper Carboniferous—Lower Permian(Upper Pennsylvanian-Asselian) Tobra Formation is exposed in the Salt and Trans Indus ranges of Pakistan.The formation exhibits an alluvial plain(alluvial fan-piedmont alluvial plain) facies association in the Salt Range and Khisor Range.In addition,a stream flow facies association is restricted to the eastern Salt Range.The alluvial plain facies association is comprised of clast-supported massive conglomerate(Gmc),diamictite(Dm)facies,and massive sandstone(Sm) Hthofacies whereas the stream flow-dominated alluvial plain facies association includes fine-grained sandstone and siltstone(Fss),fining upwards pebbly sandstone(Sf),and massive mudstone(Fm) Hthofacies.The lack of glacial signatures(particularly glacial grooves and striatums) in the deposits in the Tobra Formation,which are,in contrast,present in their timeequivalent and palaeogeographically nearby strata of the Arabian peninsula,e.g.the AI Khlata Formation of Oman and Unayzah B member of the Saudi Arabia,suggests a pro-to periglacial,i.e.glaciofluvial depositional setting for the Tobra Formation.The sedimentology of the Tobra Formation attests that the Salt Range,Pakistan,occupied a palaeogeographic position just beyond the maximum glacial extent during Upper Pennsylvanian-Asselian time.  相似文献   

16.
Mishrif组碳酸盐岩储层是波斯湾盆地最主要的储集层之一,储层岩石类型主要为礁滩相生物礁灰岩、生屑灰岩和含生屑泥灰岩,储集空间主要为粒间(溶)孔、晶间(溶)孔、铸模孔、表生期组构选择性溶蚀孔洞和基质微孔。储层多呈层状展布,横向上连续,边界受沉积相带约束; 纵向上发育多套致密隔夹层,呈强非均质性。储层发育与保存主要受沉积作用、成岩作用和构造作用影响。碳酸盐岩缓坡背景下发育的生物礁和生屑滩空间分布受盆地基底古构造格局控制,是优质储层分布相带。相对海平面升降旋回控制相带迁移和成岩作用差异,导致优质孔渗层与致密隔夹层交互发育。构造圈闭发育与油气充注时间的耦合有效抑制压实作用和胶结作用对储层的破坏,是储层得以保存的有利因素。  相似文献   

17.
鄂尔多斯盆地东部下二叠统山西组山2段岩石类型主要为石英砂岩、岩屑质石英砂岩和岩屑砂岩,储集层经历了压实、压溶、硅质胶结、碳酸盐胶结交代、高岭石胶结、杂基蚀变以及溶蚀等多种成岩作用。在成岩作用研究的基础上,通过大量的岩心观察和薄片鉴定,结合阴极发光、探针分析等方法,将研究区划分出7种单因素成岩相,即:强压实、压溶-石英次生加大、蚀变高岭石、沉淀高岭石、杂基充填、碳酸盐胶结交代、不稳定组分溶蚀成岩相,在此基础上对其进行平面叠加,确定了利于储集层发育的优势成岩相。其中压溶-石英次生加大与杂基、假杂基溶蚀作用的综合作用(叠加和改造)决定了山西组山2段有利的成岩相带,在陕141井区、榆37井区、子洲-清涧地区山西组山2段形成了天然气优质储集层。  相似文献   

18.
The primary goals of seismic interpretation and quantification are to understand and define reservoir architecture and the distribution of petrophysical properties. Since seismic interpretation is associated with major uncertainties, outcrop analogues are used to support and improve the resulting conceptual models. In this study, the Miocene carbonates of Cerro de la Molata (Las Negras, south‐east Spain) have been selected as an outcrop analogue. The heterogeneous carbonate rocks of the Cerro de la Molata Platform were formed by a variety of carbonate‐producing factories, resulting in various platform morphologies and a wide range of physical properties. Based on textural (thin sections) and petrophysical (porosity, density, carbonate content and acoustic properties) analyses of the sediments, eleven individual facies types were determined. The data were used to produce synthetic seismic profiles of the outcrop. The profiles demonstrate that the spatial distribution of the facies and the linked petrophysical properties are of key importance in the appearance of the synthetic seismic sections. They reveal that carbonate factory and facies‐specific reflection patterns are determined by porosity contrasts, diagenetic modifications and the input of non‐carbonate sediment. The reflectors of the seismograms created with high‐frequency wavelets are coherent with the spatial distribution of the predefined facies within the depositional sequences. The synthetic seismograms resulting from convolution with lower frequency wavelets do not show these details – the major reflectors coincide with: (i) the boundary between the volcanic basement and the overlying carbonates; (ii) the platform geometries related to changes in carbonate factories, thus sequence boundaries; and (iii) diagenetic zones. Changes in seismic response related to diagenesis, switching carbonate producers and linked platform geometries are important findings that need to be considered when interpreting seismic data sets.  相似文献   

19.
Existing facies models of tide‐dominated deltas largely omit fine‐grained, mud‐rich successions. Sedimentary facies and sequence stratigraphic analysis of the exceptionally well‐preserved Late Eocene Dir Abu Lifa Member (Western Desert, Egypt) aims to bridge this gap. The succession was deposited in a structurally controlled, shallow, macrotidal embayment and deposition was supplemented by fluvial processes but lacked wave influence. The succession contains two stacked, progradational parasequence sets bounded by regionally extensive flooding surfaces. Within this succession two main genetic elements are identified: non‐channelized tidal bars and tidal channels. Non‐channelized tidal bars comprise coarsening‐upward sandbodies, including large, downcurrent‐dipping accretion surfaces, sometimes capped by palaeosols indicating emergence. Tidal channels are preserved as single‐storey and multilateral bodies filled by: (i) laterally migrating, elongate tidal bars (inclined heterolithic strata, 5 to 25 m thick); (ii) forward‐facing lobate bars (sigmoidal heterolithic strata, up to 10 m thick); (iii) side bars displaying oblique to vertical accretion (4 to 7 m thick); or (iv) vertically‐accreting mud (1 to 4 m thick). Palaeocurrent data show that channels were swept by bidirectional tidal currents and typically were mutually evasive. Along‐strike variability defines a similar large‐scale architecture in both parasequence sets: a deeply scoured channel belt characterized by widespread inclined heterolithic strata is eroded from the parasequence‐set top, and flanked by stacked, non‐channelized tidal bars and smaller channelized bodies. The tide‐dominated delta is characterized by: (i) the regressive stratigraphic context; (ii) net‐progradational stratigraphic architecture within the succession; (iii) the absence of upward deepening trends and tidal ravinement surfaces; and (iv) architectural relations that demonstrate contemporaneous tidal distributary channel infill and tidal bar accretion at the delta front. The detailed facies analysis of this fine‐grained, tide‐dominated deltaic succession expands the range of depositional models available for the evaluation of ancient tidal successions, which are currently biased towards transgressive, valley‐confined estuarine and coarser grained deltaic depositional systems.  相似文献   

20.
The relationship between diagenetic chlorite rims and depositional facies in deltaic strata of the Lower Cretaceous Missisauga Formation was investigated using a combination of electron microprobe, bulk geochemistry and X‐ray diffraction data. The succession studied comprises several stacked parasequences. The delta progradational facies association includes: (i) fluvial or distributary channel sandstones (some with tidal influence); (ii) thick‐bedded delta‐front graded beds of sandstone interpreted as resulting from fluvial hyperpycnal flow during floods and storms; and (iii) more distal muddier delta‐front and prodeltaic facies. The transgressive facies association includes lag conglomerate, siderite‐cemented muddy sandstone and mudstone, and bioclastic sandy limestone. Chlorite rims are absent in the fluvial facies and best developed in thick sandstones lacking mudstone baffles. Good quality chlorite rims are well correlated with Ti in bulk geochemistry. Ti is a proxy for Fe availability, principally from the breakdown of abundant detrital ilmenite (FeTiO3). Under conditions of sea floor diagenesis, the abrupt decrease in sedimentation rate at transgressive surfaces caused progressive shallowing of the sulphate‐depletion level and of the overlying Eh‐controlled diagenetic zones, resulting in conditions suitable for diagenetic formation of berthierine to migrate upwards through the packet of reservoir sandstones. This early diagenetic berthierine suppressed silica cementation and later recrystallized to chlorite. Thick euhedral outer chlorite rims were precipitated from formation water in sandstone lacking muddy baffles on this chlorite substrate and inhibited late carbonate cementation. This study thus shows that the preservation of porosity by chlorite rims is a two‐stage process. Rapidly deposited delta‐front turbidite facies create early diagenetic conditions that eventually lead to the formation of chlorite rims, but the best quality chlorite rims are restricted to sandstones with high permeability during burial diagenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号