首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Deep and high-resolution radio observations of the Hubble Deep Field and flanking fields have shown the presence of two distant edge-darkened FR I radio galaxies, allowing for the first time an estimate of their high-redshift space density. If it is assumed that the space density of FR I radio galaxies at     is similar to that found in the local Universe, then the chance of finding two FR I radio galaxies at these high radio powers in such a small area of sky is < 1 per cent. This suggests that these objects were significantly more abundant at     than at present, effectively ruling out the possibility that FR I radio sources undergo no cosmological evolution. We suggest that FR I and FR II radio galaxies should not be treated as intrinsically distinct classes of objects, but that the cosmological evolution is simply a function of radio power with FR I and FR II radio galaxies of similar radio powers undergoing similar cosmological evolutions. Since low-power radio galaxies have mainly FR I morphologies and high-power radio galaxies have mainly FR II morphologies, this results in a generally stronger cosmological evolution for the FR IIs than the FR Is. We believe that additional support from the V / V max test for evolving and non-evolving population of FR IIs and FR Is respectively is irrelevant, since this test is sensitive over very different redshift ranges for the two classes.  相似文献   

6.
7.
8.
9.
Over the last few years X-ray observations of broad-line radio galaxies (BLRGs) by ASCA , RXTE and BeppoSAX have shown that these objects seem to exhibit weaker X-ray reflection features (such as the iron K α line) than radio-quiet Seyferts. This has lead to speculation that the optically thick accretion disc in radio-loud active galactic nuclei (AGN) may be truncated to an optically thin flow in the inner regions of the source. Here, we propose that the weak reflection features are a result of reprocessing in an ionized accretion disc. This would alleviate the need for a change in accretion geometry in these sources. Calculations of reflection spectra from an ionized disc for situations expected in radio-loud AGN (high accretion rate, moderate-to-high black hole mass) predict weak reprocessing features. This idea was tested by fitting the ASCA spectrum of the bright BLRG 3C 120 with the constant density ionized disc models of Ross & Fabian. A good fit was found with an ionization parameter of   ξ ∼4000 erg cm s-1  and the reflection fraction fixed at unity. If observations of BLRGs by XMM-Newton show evidence for ionized reflection then this would support the idea that a high accretion rate is likely required to launch powerful radio jets.  相似文献   

10.
We present a calculation of the blazar contribution to the extragalactic diffuse γ -ray background (EGRB) in the EGRET energy range. Our model is based on inverse-Compton scattering as the dominant γ -ray production process in the jets of flat spectrum radio quasars (FSRQs) and BL Lac objects, and on the unification scheme of radio-loud AGN. According to this picture, blazars represent the beamed fraction of the Fanaroff–Riley radio galaxies (FR galaxies).
The observed log  N –log  S distribution and redshift distribution of both FSRQs and BL Lacs constrain our model. Depending slightly on the evolutionary behaviour of blazars, we find that unresolved AGN underproduce the intensity of the extragalactic background radiation. With our model only 20–40 per cent of the extragalactic background emission can be explained by unresolved blazars if we integrate to a maximum redshift of Z max=3. For Z max=5, blazars could account for 40–80 per cent of the EGRB. Roughly 70–90 per cent of the AGN contribution to the EGRB would result from BL Lacs. While the systematic uncertainties in our estimate for the FSRQ contribution appear small, in the case of BL Lacs our model parameters are not consistent with the results from studies in other wavelength regimes, and therefore may have larger systematic uncertainties. Thus we end up with two possibilities, depending on whether we underpredict or overpredict the BL Lac contribution: either unresolved AGN cannot account for the entire EGRB, or unresolved BL Lacs produce the observed background.
We predict a significant flattening of the γ -ray log  N –log  S function in the next two decades of flux below the EGRET threshold.  相似文献   

11.
Molecular line emission is a useful tool for probing the highly obscured inner kpc of starburst galaxies and buried AGNs. Molecular line ratios serve as diagnostic tools of the physical conditions of the gas—but also of its chemical properties. Both provide important clues to the type and evolutionary stage of the nuclear activity. While CO emission remains the main tracer for molecular distribution and dynamics, molecules such as HCN, HNC, HCO+, CN and HC3N are useful for probing the properties of the denser (n≳104 cm−3), star-forming gas. Here I discuss current views on how line emission from these species can be interpreted in luminous galaxies. HNC, HCO+ and CN are all species that can be associated both with photon dominated regions (PDRs) in starbursts—as well as X-ray dominated regions (XDRs) associated with AGN activity. HC3N line emission may identify galaxies where the starburst is in the early stage of its evolution.  相似文献   

12.
13.
14.
15.
16.
《New Astronomy Reviews》2002,46(2-7):365-379
Relationships between jet physics and the evolutionary phases of radio galaxies are discussed. This includes the connection between the properties of relativistic jets and the Fanaroff–Riley classes of radio galaxies and the interaction of jets with the interstellar medium in Gigahertz Peak Spectrum and Compact Steep Spectrum Radio Sources. Jets in Seyfert galaxies are compared with those in classical radio galaxies and recent work suggesting that there are major differences between the two types of jets is summarized. The proposed major differences are principally that Seyfert jets are thermally dominated with subrelativistic speeds whereas Radio Galaxy jets are relativistic electron/positron flows. Hence, the production of jets in Seyferts and radio galaxies are fundamentally different.  相似文献   

17.
18.
Associated with one of the most important forms of active galactic nucleus (AGN) feedback, and showing a strong preference for giant elliptical host galaxies, radio AGN (\(L_{1.4\,\mathrm{GHz}} > 10^{24}\) W \(\hbox {Hz}^{-1}\)) are a key sub-class of the overall AGN population. Recently their study has benefitted dramatically from the availability of high-quality data covering the X-ray to far-IR wavelength range obtained with the current generation of ground- and space-based telescope facilities. Reflecting this progress, here I review our current state of understanding of the population of radio AGN at low and intermediate redshifts (\(z < 0.7\)), concentrating on their nuclear AGN and host galaxy properties, and covering three interlocking themes: the classification of radio AGN and its interpretation; the triggering and fuelling of the jet and AGN activity; and the evolution of the host galaxies. I show that much of the observed diversity in the AGN properties of radio AGN can be explained in terms of a combination of orientation/anisotropy, mass accretion rate, and variability effects. The detailed morphologies of the host galaxies are consistent with the triggering of strong-line radio galaxies (SLRG) in galaxy mergers. However, the star formation properties and cool ISM contents suggest that the triggering mergers are relatively minor in terms of their gas masses in most cases, and would not lead to major growth of the supermassive black holes and stellar bulges; therefore, apart from a minority (<20 %) that show evidence for higher star formation rates and more massive cool ISM reservoirs, the SLRG represent late-time re-triggering of activity in mature giant elliptical galaxies. In contrast, the host and environmental properties of weak-line radio galaxies (WLRG) with Fanaroff–Riley class I radio morphologies are consistent with more gradual fuelling of the activity via gas accretion at low rates onto the supermassive black holes.  相似文献   

19.
We have discovered an obscured active galaxy at redshift z  = 1.246 identified with the ROSAT X-ray source RX J1011.2+5545. We report on multiwavelength observations of this source and discuss its X-ray, optical and radio properties. This is the first X-ray-selected, obscured active galaxy at high redshift to be shown to be radio-loud, with a radio counterpart exhibiting a classical double-lobe morphology.  相似文献   

20.
We have recently shown that X-ray observations of the population of 'low-excitation' radio galaxies, which includes most low-power, Fanaroff–Riley class I sources as well as some more powerful Fanaroff–Riley class II objects, are consistent with a model in which the active nuclei of these objects are not radiatively efficient at any waveband. In another recent paper, Allen et al. have shown that Bondi accretion of the hot, X-ray emitting phase of the intergalactic medium (IGM) is sufficient to power the jets of several nearby, low-power radio galaxies at the centres of clusters. In this paper, we combine these ideas and suggest that accretion of the hot phase of the IGM is sufficient to power all low-excitation radio sources, while high-excitation sources are powered by accretion of cold gas that is in general unrelated to the hot IGM. This model explains a number of properties of the radio-loud active galaxy population, and has important implications for the energy input of radio-loud active galactic nuclei into the hot phase of the IGM: the energy supply of powerful high-excitation sources does not have a direct connection to the hot phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号