首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Validation of HRDI MLT winds with meteor radars   总被引:1,自引:0,他引:1  
A validation study of the mesospheric and lower-thermospheric (MLT) wind velocities measured by the High-Resolution Doppler Imager (HRDI) on board the Upper-Atmosphere Research Satellite (UARS) has been carried out, comparing with observations by meteor radars located at Shigaraki, Japan and Jakarta, Indonesia. The accuracy of the HRDI winds relative to the meteor radars is obtained by a series of simultaneous wind measurements at the time of UARS overpasses. Statistical tests on the difference in the wind vectors observed by HRDI and the meteor radars are applied to determine whether the wind speed has been overestimated by HRDI (or underestimated by the MF radars) as previously noticed in HRDI vs. MF radar comparisons. The techniques employed are the conventional t-test applied to the mean values of the paired wind vector components as well as wind speeds, and two nonparametric tests suitable for testing the paired wind speed. The square-root transformation has been applied before the Mests of the wind speed in order to fit the wind-speed distribution function to the normal distribution. The overall results show little evidence of overestimation by HRDI (underestimation by meteor radars) of wind velocities in the MLT region. Some exceptions are noticed, however, at the altitudes around 88 km, where statistical differences occasionally reach a level of significance of 0.01. The validation is extended to estimate the precision of the wind velocities by both HRDI and meteor radars. In the procedure, the structure function defined by the mean square difference of the observed anomalies is applied in the vertical direction for the profile data. This method assumes the isotropy and the homogeneity of variance for the physical quantity and the homogeneity of variance for the observational errors. The estimated precision is about 6m s for the Shigaraki meteor radar, 15 m s–1 for the Jakarta meteor radar, and 20 m s–1 for HRDI at 90-km altitude. These values can be used ot confirm the statistical significance of the wind field obtained by averaging the observed winds.  相似文献   

2.
Abstract

A class of long planetary waves in a zonal channel analogous to the solitary and cnoidal waves of surface and internal gravity wave theory is discussed. On a mid-latitude β-plane, such waves exist as the result of divergence, non-uniform zonal velocity fields or bottom topography. In all cases studied the wave profile along the channel was found to satisfy the Korteweg-de Vries equation.  相似文献   

3.
In this paper, the 6.5-day planetary waves over Wuhan (30.5°N, 114.3°E) were investigated on the basis of the meteor radar measurements within 78–98 km height region during February 2002–December 2005. The observations show that 6.5-day waves have a prominent seasonal variability and have larger amplitudes at equinoxes than at solstices. We also found that intensive waves occur mostly between 84 and 98 km, and the zonal components of 6.5-day waves are a little larger than its meridional components on average. The main periods of 6.5-day waves are near 6–7 days in spring/winter season and 5–7 days (even extend to 8 days) in autumn months. However, these waves exhibit a downward progression when the amplitude is large. Robust wave events occur basically in eastward background winds. During the 4-year interval, the strongest waves were found in Apri–-May of 2003 and 2004.  相似文献   

4.
This paper reviews the theory and observations of some traveling planetary waves in the stratosphere. Two categories of waves which appear prominently in the literature are discussed: westward propagating waves of periods in the range 3–7 days (the 5-day wave) and in the range 10–20 days (the 16-day wave). Although the observations seem to indicate that these waves are waves of the Rossby type (planetary waves), the evidence is less clear regarding (1) the question of whether these waves are forced internal waves or free (resonant) external waves, and (2) the identification of the observed waves with specific theoretical waves of the Rossby type. When recent observations are compared with theory, the evidence seems to favor the notion that the 5-day and 16-day waves of longitudinal wave number 1 may be identified, respectively, with the gravest and next gravest symmetric free Rossby modes. However, the observational evidence seems to be less clear regarding the nature of the 16-day wave than the 5-day wave.  相似文献   

5.
Quasi-stationary planetary waves exhibit different seasonal behaviour in the two winter stratospheres. Whereas, in a climatological sense, wave amplitudes are large throughout northern winter, in the Southern Hemisphere there is a climatological minimum in midwinter. It is suggested here that the southern hemisphere behaviour is basically linear, the midwinter minimum arising from the opacity of the strong westerlies of southern midwinter to stationary wave propagation. On the other hand, it is further suggested that, in the northern hemisphere winter, the westerlies are prevented from becoming so strong (in a climatological sense) by the action of the waves themselves on the means state and that the penetration of large-scale waves into the midwinter northern stratosphere thus depends on a nonlinear feedback process. Preliminary tests of this hypothesis are conducted, using a highly truncated beta-plane model of the stratospheric flow.  相似文献   

6.
Long-term tendencies in horizontal neutral wind parameters in the southern polar mesosphere/lower thermosphere are presented. The wind data analyzed were obtained from meteor and MF radars situated at Molodezhnaya (45.9°E, 67.7°S), Mawson (62.9°E, 67.6°S) and Davis (78.0°E, 68.6°S). The composite dataset covers years from 1970 to 2006. A Bayesian approach in the form proposed by Wang and Zivot [2000. A Bayesian time series model of multiple structural changes in level, trend and variance. Journal of Business and Economic Statistics 8, 374–386] is used for the trend assessment. This approach allows structural breaks to be identified in the trend parameters (slope, mean or variance of residuals) or demonstrates their absence. The results of our analysis have shown persistence through such structural breaks in trends of the winter and summer prevailing winds and in meridional tidal components. It is demonstrated that the wind parameters exhibit different stable states with transitions between the states. Correlations between the southern polar MLT wind and indices of atmospheric variability (Northern annular mode, Southern annular mode, Multivariate El-Niño/Southern Oscillation Index) were then considered. The results show that statistically significant correlations exist during some periods of observations that do not exist during others.  相似文献   

7.
Planetary waves with periods between two and four days in the middle atmosphere over Antarctica are characterized using one year of data from the medium-frequency spaced antenna (MFSA) radars at Scott Base, Rothera, and Davis. In order to investigate the origin of the observed waves, the ground-based data are complemented by temperature measurements from the Earth Observing System Microwave Limb Sounder (EOS MLS) instrument on the Aura satellite as well as wind velocity data from the United Kingdom Met. Office (UKMO) stratospheric assimilation. Observed characteristics of waves with a period of approximately two days in summer are consistent with the quasi-two-day wave (QTDW) generally found after the summer solstice at low- and mid-latitudes. The Scott Base observations of the QTDW presented here are the highest-latitude ground-based observations of this wave to date. Waves with preferred periods of two and four days occur in bursts throughout the winter with maximum activity in June, July, and August. The mean of the two- and four-day wave amplitudes is relatively constant, suggesting constant wave forcing. When several waves with different periods occur at the same time, they often have similar phase velocities, supporting suggestions that they are quasi-non-dispersive. In 2005, a “warmpool” lasts from late July to late August. An alternative interpretation of this phenomenon is the presence of a structure propagating with the background wind. Consideration of the role of vertical shear (baroclinic instabilities) and horizontal shear (barotropic instabilities) of the zonal wind suggests that instabilities are likely to play a role in the forcing of the two- and four-day waves, which are near-resonant modes and thus supported by the atmosphere.  相似文献   

8.
Periods of planetary waves, especially the 10- and 16-day waves, were found in Fourier analyses of 10-year geomagnetic time series from two mid-latitude stations in the northern hemisphere. This suggests that planetary waves influence geomagnetic variations. Cross-spectral analysis of magnetic time series from seven stations located at around 50°N at the beginning of 1979, when a 16-day wave occurred in the stratosphere, also shows a 16-day oscillation. However, study of the phases does not reveal the horizontal direction of wave propagation. Furthermore, the temporal variations of the 16-day oscillation in magnetic time series are presented as dynamic spectra and the results are compared with global investigations of geopotential height data at 1 hPa (around 48 km) with respect to the 16-day wave for the same time interval. In some cases this comparison suggests a clear correlation between geomagnetic variations and planetary waves as well as a propagation of the 16-day wave up to the dynamo region (100-170 km).  相似文献   

9.
Using the temperature profiles retrieved from the Mars Climate Sounder(MCS) instrument onboard Mars Reconnaissance Orbiter(MRO) satellite between November 2006 and April 2013, we studied the seasonal and interannual variability of QuasiStationary Planetary Waves(QSPWs) in the Martian middle atmosphere. The QSPW amplitudes in the Southern Hemisphere(SH) high latitudes are significantly stronger than those in the Northern Hemisphere(NH). Seasonal variation with maximum amplitude near winter solstice of each hemisphere is clearly seen. The vertical structure of the QSPW in temperature shows double-layer feature with one peak near 50 Pa and the other peak near 1 Pa. The QSPW in geopotential height is clearly maximized in the region between two temperature peaks. The maximum amplitude of QSPW for s=1 is ~8–10 K in temperature and ~1 km in geopotential height in the SH high latitudes. The maximum amplitude at the SH high latitudes in Mars Year(MY) 31 is ~2 K stronger than those in other MYs, suggesting the clear interannual variability. We compared the satellite results with those obtained from the Mars Climate Database(MCD) simulation version 5.0; a reasonable agreement was found. The MCD simulation further suggested that the variability of dust might partially contribute to the interannual variability of QSPW amplitude.  相似文献   

10.
水平非均匀基流中行星波的传播   总被引:4,自引:0,他引:4       下载免费PDF全文
行星波传播理论虽然已有很多研究,但是大多以纬向对称基流为主,无法解释东西风带之间相互作用的事实.鉴于此,本文从理论上系统讨论了纬向对称和水平非均匀基流中定常和非定常波动的传播特征.首先,对纬向对称基流中波动传播的周期特征进行分析后发现,西风中位相东传超长波周期大于30 d,而东风中位相西传超长波的周期则小于30 d.之后,从传播的空间以及周期特征等方面系统研究了水平非均匀基流中球面波动传播理论,得到以下结论:经向基流使得定常波可以穿越东风带,在南北两半球间传播,为东西风带之间的相互作用提供了理论解释;强的经向流使得波动传播具有单向性;亚澳季风区低层纬向1波呈低频特征.  相似文献   

11.
The characteristics of high-latitude planetary waves (PWs) in the troposphere and lower stratosphere (TLS) are studied by using the data from radiosonde observations during 1998 to 2006 at three Alaskan stations in USA (Nome, 64.50°N, 165.43°W; McGrath, 62.97°N, 155.62°W; Fairbanks, 64.82°N, 147.87°W). It is found that strong PWs exist in two regions. One is around tropopause, and the other is in the polar night jet (PNJ) in winter. The PW activities are rather intermittent, and their lifetimes are no longe...  相似文献   

12.
13.
The mechanism of acceleration of the mean zonal flow by a planetary wave is explained intuitively by considering the wave drag which a corrugated bottom feels when it excites the wave. The explanation is justified by solving the problem of vertical propagation of a planetary wave packet and the second order mean motion induced around it. The discussion is slightly extended to the case of small damping, to illustrate in a compact form the fact that the mean zonal acceleration is determined by a forcing due to wave transience plus that due to wave dissipation.The mean flow induced by a steady, dissipating planetary wave is discussed, and it is shown that it depends largely on the dissipation scale-height of the wave whether the northern region is heated or cooled. For example, if the wave velocity-amplitude increases upward in spite of dissipation, the induced easterly flow increases with height and the temperature of the northern region increases relative to that in the southern region. A similar point has been made byDunkerton (1979) in connection with westerly flows induced by Kelvin waves.The Lagrangian-mean motion induced by a planetary wave is briefly discussed in connection with the mechanism of acceleration of the mean zonal flow, in the case of a slowly varying wave packet. Further, in order el elucidate the effects of wave dissipation and time dependence of wave amplitude, the results obtained for a steady, dissipating wave and for a growing baroclinic wave are mentioned.  相似文献   

14.
Global Dynamics of the MLT   总被引:3,自引:0,他引:3  
The transition between the middle atmosphere and the thermosphere is known as the MLT region (for mesosphere and lower thermosphere). This area has some characteristics that set it apart from other regions of the atmosphere. Most notably, it is the altitude region with the lowest overall temperature and has the unique characteristic that the temperature is much lower in summer than in winter. The summer-to-winter-temperature gradient is the result of adiabatic cooling and warming associated with a vigorous circulation driven primarily by gravity waves. Tides and planetary waves also contribute to the circulation and to the large dynamical variability in the MLT. The past decade has seen much progress in describing and understanding the dynamics of the MLT and the interactions of dynamics with chemistry and radiation. This review describes recent observations and numerical modeling as they relate to understanding the dynamical processes that control the MLT and its variability. Results from the Whole Atmosphere Community Climate Model (WACCM), which is a comprehensive high-top general circulation model with interactive chemistry, are used to illustrate the dynamical processes. Selected observations from the Sounding the Atmosphere with Broadband Emission Radiometry (SABER) instrument are shown for comparison. WACCM simulations of MLT dynamics have some differences with observations. These differences and other questions and discrepancies described in recent papers point to a number of ongoing uncertainties about the MLT dynamical system.  相似文献   

15.
Although the study of topographic effects on the Rossby waves in a stratified ocean has a long history, the wave property over a periodic bottom topography whose lateral scale is comparable to the wavelength is still not clear. The present paper treats this problem in a two-layer ocean with one-dimensional periodic bottom topography by a simple numerical method, in which no restriction on the wavelength and/or the horizontal scale of the topography is required. The dispersion diagram is obtained for a wavenumber range of [?π/L b , π/L b ], where L b is the periodic length of the topography. When the topographic?β?is not negligible compared to the planetary β, the Rossby wave solutions around the wavenumbers which satisfy the resonant condition among the waves and topography disappear and separate into an infinite number of discrete modes. For convenience, each mode is numbered in order of frequency. As topographic height is increased, the high frequency barotropic Rossby wave (mode 1) becomes a topographic mode which can exist even on the f plane, and the highfrequency baroclinic mode (mode 2) becomes a surface intensified mode. Behaviors of low frequency modes are somewhat complicated. When the topographic amplitude is small, the low frequency baroclinic modes tend to be bottom trapped and the low frequency barotropic modes tend to be surface intensified. As topographic amplitude further increases, the relation between the mode number and vertical structure changes. This change can be attributed to the increase of the frequency of the topographic mode with the topographic amplitude.  相似文献   

16.
17.
The accumulation of MF radar wind and hydroxyl temperature measurements at Davis from 1997 to 2005 has enabled the compilation of a climatology of long-period (period >1 day) wave activity. A time domain filtering technique that makes allowance for the differing sampling characteristics of the measurements is described and wave amplitudes are presented for 1.7–4, 4–8 and 8–16 day period bands. Product averages of the time series yield horizontal heat and momentum fluxes for the height of the hydroxyl layer (approximately 86 km). The climatology is then discussed in terms of current knowledge of planetary wave characteristics and forcing. Heat and momentum fluxes during the year of the southern hemisphere stratospheric warming (2002) are also presented.  相似文献   

18.
Abstract

A high vertical resolution model is used to examine the instability of a baroclinic zonal flow and a finite amplitude topographically forced wave. Two families of unstable modes are found, consisting of zonally propagating most unstable modes, and stationary unstable modes. The former have time scale and spatial structure similar to baroclinic synoptic disturbances, but are localized in space due to interaction with the zonally asymmetric forcing. These modes transport heat efficiently in both the zonal and meridional directions. The second family of stationary unstable modes has characteristics of modes of low frequency variability of the atmosphere. They have time scales of 10 days and longer, and are of planetary scale with an equivalent barotropic vertical structure. The horizontal structure resembles blocking flows. They are maintained by available potential energy of the basic wave, and have large zonal heat fluxes. The results for both families of modes are interpreted in terms of an interaction between forcing and baroclinic instability to create favoured regions for eddy development. Applications to baroclinic planetary waves are also considered.  相似文献   

19.
This article introduces the practical observation results of pre-earthquake electromagnetic radiations at the network of monitoring stations in Jiangsu region in resent years and discusses the electromagnetic wave precursors during the approaching period of earthquakes based on the observations of the electromagetic radiation signals before theM s 6.0 Liyang earthquake of 1979 in Jiangsu province, theM s 5.9 Heze earthquake of 1983 in Shandong province and theM s 6.2 South Yellow Sea earthquake of 1984.  相似文献   

20.
Planetary wave activity at quasi 16-, 10- and 5-day periods has been compared at various altitudes through the middle and upper atmosphere over Halley (76°S, 27°W), Antarctica, during the austral winters of 1997–1999. Observational data from the mesosphere, E-region ionosphere and F-region ionosphere have been combined with stratospheric data from the ECMWF assimilative operational analysis. Fourier and wavelet techniques have shown that the relationship between planetary wave activity at different altitudes is complex and during the winter eastward wind regime does not conform to a simple combination of vertical planetary wave propagation and critical filtering. Strong planetary wave activity in the stratosphere can coincide with a complete lack of wave activity at higher altitudes; conversely, there are also times when planetary wave activity in the mesosphere, E-region or F-region has no apparent link to activity in the stratosphere. The latitudinal activity pattern of stratospheric data tentatively suggests that when the stratospheric signatures are intense over a wide range of latitudes, propagation of planetary waves into the mesosphere is less likely than when the stratospheric activity is more latitudinally restricted. It is possible that, on at least one occasion, 16-day planetary wave activity in the mesosphere may have been ducted to high latitudes from the lower latitude stratosphere. The most consistent feature is that planetary wave activity in the mesosphere is almost always anti-correlated to planetary wave activity in the E-region even though the two are in close physical proximity. The oscillatory critical filtering of vertical gravity wave propagation by planetary waves and the re-generation of the planetary wave component at higher altitudes through subsequent critical filtering or breaking of the gravity waves may provide an explanation for some of these characteristics. Alternatively the nonlinear interaction between planetary waves and tides, indicated in the E-region data, may play a role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号