首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
As the most important source rocks in the eastern Junggar Basin, the middle Permian Pingdiquan (P2p) source rocks have attracted increasing attention after the discovery of tight oil in the Shazhang uplift. The P2p source rocks are widely distributed (up to 7546 km2) and have an elevated thickness in the eastern Junggar Basin. To explore the P2p tight oil resource in the eastern Junggar Basin, 113 core samples from 34 exploration wells were analysed geochemically and re-examined for their organic matter abundance, type and thermal maturity, hydrocarbon potential and sedimentary environment. Geochemical analysis results indicate that the P2p source rocks are fair to good source rocks dominated by Type II kerogen, presently in a low mature–mature stage, and biomarkers and trace elements indicate deposition in a terrestrial to coastal environment under oxic to dysoxic, and fresh to brackish conditions, with possible intermittent seawater influence, implying proximity to the open sea. Based on hydrocarbon expulsion modelling, hydrocarbon expulsion began at 0.87% Ro, and the peak expulsion occurred at 1.1% Ro. Hydrocarbon generation intensities in the Shazhang uplift and the Wucaiwan sag are relatively large, with values centred at 4–6.5 million t/km2 and 4–6 million t/km2, respectively, with total hydrocarbon generation and expulsion from the P2p source rocks approximately 4.56 × 109 t and 1.44 × 109 t, respectively, indicating significant tight oil exploration potential in the eastern Junggar Basin. The Shazhang uplift and the Wucaiwan sag are two hydrocarbon expulsion centres in the study area with the largest hydrocarbon expulsion intensity centred around the Shazhang uplift, exceeding 3 × 106 t/km2. We suggest that the area with high hydrocarbon expulsion intensities is a favourable target for tight oil accumulation and exploration.  相似文献   

2.
Frontier exploration in the Kuqa Depression, western China, has identified the continuous tight-sand gas accumulation in the Lower Cretaceous and Lower Jurassic as a major unconventional gas pool. However, assessment of the shale gas resource in the Kuqa Depression is new. The shale succession in the Middle–Upper Triassic comprises the Taliqike Formation (T3t), the Huangshanjie Formation (T3h) and the middle–upper Karamay Formation (T2–3k), with an average accumulated thickness of 260 m. The high-quality shale is dominated by type III kerogen with high maturity and an average original total organic carbon (TOC) of about 2.68 wt%. An improved hydrocarbon generation and expulsion model was applied to this self-contained source–reservoir system to reveal the gas generation and expulsion (intensity, efficiency and volume) characteristics of Middle–Upper Triassic source rocks. The maximum volume of shale gas in the source rocks was obtained by determining the difference between generation and expulsion volumes. The results indicate that source rocks reached the hydrocarbon expulsion threshold of 1.1% VR and the hydrocarbon generation and expulsion reached their peak at 1.0% VR and 1.28% VR, with the maximum rate of 56 mg HC/0.1% TOC and 62.8 mg HC/0.1% TOC, respectively. The volumes of gas generation and expulsion from Middle–Upper Triassic source rocks were 12.02 × 1012 m3 and 5.98 × 1012 m3, respectively, with the residual volume of 6.04 × 1012 m3, giving an average gas expulsion efficiency of 44.38% and retention efficiency of 55.62%. Based on the gas generation and expulsion characteristics, the predicted shale gas potential volume is 6.04 × 1012 m3, indicating a significant shale gas resource in the Middle–Upper Triassic in the eastern Kuqa Depression.  相似文献   

3.
Tight-sand gas in the Jurassic and shale gas within the fifth member of Xujiahe Formation(T3x5) in the Western Sichuan Basin(WSD) are currently regarded as the most prolific emerging unconventional gas plays in China. This study conducted a conventional evaluation of T3x5 source rocks in the WSD, and investigated their hydrocarbon generation and expulsion characteristics, including intensity, efficiency and amount. The results show that, the T3x5 source rocks are thick(generally 200 m), and have a high total organic content(TOC), ranging from 2.5 to 4.5 wt%. It is thus indivative of a great hydrocarbon generation potential when they underwent high thermal evolution(Ro1.2%) in the area. In addition, an improved method of hydrocarbon generation potential is applied, indicating that the source rocks reached a hydrocarbon expulsion threshold with vitrinite reflectance(Ro) reaching 1.06%, and that the comprehensive hydrocarbon expulsion efficiency is about 60%. The amount of hydrocarbon generation and expulsion from T3x5 source rocks is 3.14×1010 t and 1.86×1010 t, respectively, with a residual amount of 1.28×1010 t within them. Continuous-type tight-sand gas is predicted to have developed in the Jurassic in the Chengdu Sag of the WSD because of the good source-reservoir configuration; the Jurassic sandstone reservoirs are tight, and the gas expelled from the T3x5 source rocks migrates for very short distances vertically and horizontally. The amount of gas accumulation in the Jurassic reservoirs derived from T3x5 source rocks is up to 9.3×108 t. Geological resources of shale gas are up to 1.05×1010 t. Small differences between the amounts calculated by the volumetric method and those obtained by hydrocarbon generation potential method may be due to other gas accumulations present within interbedded sands associated with gas shales.  相似文献   

4.
The presence of shale oil in the Cretaceous Hengtongshan Formation in the Tonghua Basin, drilled by the well TD-01, has been discussed in this geological investigation for the first time. To evaluate the high-quality source rocks of Cretaceous continental shale oil, the distribution characteristics and the evolution of the ancient environment, samples of shale were systematically analyzed in terms of sedimentary facies, organic geochemistry, and organic carbon isotopic composition. The results demonstrate that a TOC value of 1.5% represents the lower-limit TOC value of the high-quality source rocks. Source rocks have an aggregate thickness of 211 m and contain abundant organic matter, with TOC values of 2.69% on average and a maximum value over 5.44%. The original hydrocarbon-generative potential value(S_1+S_2) is between 0.18 mg/g and 6.13 mg/g, and the Ro is between 0.97% and 1.40%. The thermal maturation of the source rocks is relatively mature to highly mature. The δ13C value range is between -34.75‰ and -26.53‰. The ratio of saturated hydrocarbons to aromatic hydrocarbons is 1.55 to 5.24, with an average of 2.85, which is greater than 1.6. The organic types are mainly type Ⅱ_1, followed by type Ⅰ. The organic carbon source was C_3 plants and hydrophytes. The paleoclimate of the Hengtongshan Formation can be characterized as hot and dry to humid, and these conditions were conducive to the development of high-quality source rocks. A favorable paleoenvironment and abundant organic carbon sources provide a solid hydrocarbon generation base for the formation and accumulation of oil and gas in the shale of the Tonghua Basin.  相似文献   

5.
Although tight oil has great resource potential, studies of oil charging mechanisms in tight reservoirs are relatively few. Researchers have found that a force balance exists during oil charging, but quantitative analyses of conditions critical for tight oil charging are sparse. This study developed a formula to identify effective source rocks using oil expulsion intensity as the discrimination parameter based on quantitative expression of hydrocarbon-generation overpressure and force-balance conditions. Using this formula, critical oil expulsion intensity under conditions at various burial depths can be obtained. This method was applied in the tight reservoirs of the Jimusar Sag, Junggar Basin, China. The calculated critical oil expulsion intensity range was between 122.61 × 104 t/km2 and 620.01 × 104 t/km2. The distribution range of effective oil source rocks and total expelled oil can be determined on the basis of critical oil expulsion intensity at different burial depths. This method provides a new approach to predict favourable tight oil-bearing regions.  相似文献   

6.
准噶尔盆地玛湖凹陷风城组页岩油勘探取得巨大突破,但是按照普遍认可的页岩油烃源岩评价标准,本区的烃源岩品质并不理想。为了科学评价玛湖凹陷烃源岩品质特征,本文在系统的岩心观察和有机地球化学分析的基础上,揭示烃源岩的形成环境,并按照矿物组成对烃源岩分类评价。玛湖凹陷风城组细粒岩主要沉积于正常半深湖、咸化半深湖、半咸化半深湖、含热液半深湖和滨浅湖环境中,各环境中细粒岩的有机质特征存在一定区别,其中半咸化半深湖有机质较为富集,w(TOC)均值在1%左右。进一步结合有机质类型判别图解,表明咸化半深湖和含热液半深湖有机质来源以湖泊生物为主,而其他环境中存在湖泊和陆源混合有机质来源。基于有机质生烃潜力评价和成熟度(Vre=0.74%)估算,表明目前风城组烃源岩中有机质正处于大量排烃的成熟阶段,且确定了细粒岩中的烃类为原生烃。由于不同矿物组成的烃源岩吸附能力的差异,按照陆相泥质烃源岩和碳酸盐质烃源岩开展分类评价,结果表明风城组沉积了累计厚度近250 m的的有效烃源岩,且富含以藻类体为主的有机质。  相似文献   

7.
Although it has been shown that the potential of tight‐sand gas resources is large, the research into the mechanisms of hydrocarbon charging of tight sandstone reservoirs has been relatively sparse. Researchers have found that there is a force balance during hydrocarbon charging, but discriminant models still have not been established. Based on the force balance conditions observed during gas migration from source rocks to tight sandstone reservoirs, a calculation formula was established. A formula for identifying effective source rocks was developed with the gas expulsion intensity as the discrimination parameter. The critical gas expulsion intensity under conditions of various burial depths, temperatures, and pressures can be obtained using the calculation formula. This method was applied in the Jurassic tight sandstone reservoirs of the eastern Kuqa Depression, Tarim Basin, and it was calculated that the critical expulsion intensity range from 6.05 × 108 m3/km2 to 10.07 × 108 m3/km2. The critical gas charging force first increases with depth and later decreases with greater depths. The distribution range of effective gas source rocks and total expelled gas volume can be determined based on this threshold. This method provides new insight into and method for predicting favourable tight‐sand gas‐bearing regions and estimating their resource potentials. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
以往对鄂尔多斯盆地南部地区长7油层组(简称长7)中烃源岩生烃潜力的研究主要是采用静态地球化学指标进行的,目前尚无对生烃动态特征的系统评价,因而制约了对长7烃源岩生烃潜力和页岩油资源分布有利岩性的客观认识。为此,选取长7不同类型的烃源岩样品,通过开放和封闭热模拟实验,对比分析了不同类型烃源岩的动力学参数、生烃产物、产率特征及生烃演化规律。结果表明:(1)黑色页岩活化能分布范围比暗色泥岩更为集中,且主频活化能和频率因子均低于暗色泥岩,体现了快速生烃的特性;(2)在外推到地质条件下,黑色页岩主要生烃期对应的Ro值(0.70%~0.87%)低于暗色泥岩(1.06%~1.72%),且以生油为主;(3)Ro在0.9%~1.3%范围内,黑色页岩的总烃产率高于暗色泥岩,生油量高于暗色泥岩。结合研究区两类烃源岩的地球化学资料综合分析表明,黑色页岩是研究区页岩油资源形成与分布的有利烃源岩。  相似文献   

9.
The exploration conducted in the Bohai Bay basin, eastern China has demonstrated that the abundant petroleum resources have close affinities to the hydrocarbon kitchen with rich organic matter. A number of oil-generating associations with various characteristics of organic geochemistry and assemblages of multiple reservoir facies are developed due to the multi-center sedimentation, multi-source supply and multi-cycle evolution of filling, which have resulted in the formation of multiple oil and gas accumulation zones of various layers and trap styles. Among them the Paleogene Shahejie Formation is the most important hydrocarbon accumulation combination in the Dongying sag. Heretofore, its proved reserve has reached nearly 1.8×109t, which accounts for more than 90% of the total proved reserves of the Dongying sag. Based on previous studies, more than 600 source rock samples and 186 crude oil samples of the Shahejie Formation, collected from 30 oilfields, have been treated with organic geochemical testing  相似文献   

10.
烃源岩的排烃是准确预测含油气盆地油气资源必须涉及的一个非常重要的环节,为了得到不同有机质类型烃源岩的排烃效率、排烃机理,选取不同有机质类型烃源岩进行了黄金管模拟实验,总结了不同类型烃源岩在各演化阶段产物的变化特征与排烃效率。结果表明,烃源岩类型对总生成油与残留油中轻重烃的比例影响较大,但是对排出油中轻重烃的比例影响较低,排出油中均表现为在未熟—成熟阶段以重烃为主,在高熟—过熟阶段以轻烃为主。烃源岩的类型对生排油量的影响明显,烃源岩的类型越好,生排油量越高。Ⅰ型烃源岩的生排油量最高,Ⅲ型烃源岩最低。烃源岩类型越好,排油效率越高。Ⅲ型烃源岩排油效率低,与其生成气态烃较多、显微组分中镜质组含量较高有关。   相似文献   

11.
前人在南羌塘达卓玛地区零星发现了一些地表油气显示并采集了少量的烃源岩进行分析,但勘查程度总体较低,未开展系统的生、储、盖研究。结合前人资料,通过野外石油地质调查、样品采集、室内分析、对比研究等手段,对南羌塘盆地达卓玛地区的烃源岩、储集岩、盖层等油气地质条件进行了分析,认为研究区阿堵拉组泥岩、页岩为好烃源岩,色哇组泥岩、粉砂质泥岩为差—中等烃源岩,布曲组、夏里组和索瓦组发育差烃源岩; 储集岩主要为阿堵拉组砂岩和布曲组白云岩; 盖层有泥质岩、灰岩和石膏,以Ⅰ、Ⅱ类盖层为主。野外调查中发现了大量地表油气显示,盆地经历了油气生成、运移、聚集和散失的过程,具有油气生成的物质基础和成藏的油气地质条件。建议在油气存储条件良好的达卓玛背斜布置钻井,进一步开展深部研究,力争实现该地区油气突破。  相似文献   

12.
对雅布赖盆地萨尔台凹陷侏罗系新河组有效烃源岩进行有机质下限分析,识别有效烃源岩分布范围,并分析有效烃源岩下限值与成熟度的关系。本文据烃源岩生排烃机理,通过w(TOC)与热解参数w(S1)之间的关系,确定了雅布赖盆地萨尔台凹陷新河组下段有效烃源岩w(TOC)下限值,其中盐场次凹有效烃源岩w(TOC)下限值为1.0%,小湖次凹w(TOC)下限值为0.7%,梭托次凹不具备排烃条件。利用△log R法计算新河组下段的页岩w(TOC)含量,识别并统计了单井有效烃源岩厚度,参照沉积相和地层厚度确定了有效烃源岩的分布特征,新河组下段有效烃源岩主要分布在小湖次凹中央洼槽带,累计厚度最大约600 m,盐场次凹有效烃源岩累计厚度基本小于100 m,梭托次凹不发育有效烃源岩。成熟度越大,有效烃源岩w(TOC)下限值越小  相似文献   

13.
Previous studies have postulated the contribution of present-day low-total organic carbon(TOC) marine carbonate source rocks to oil accumulations in the Tabei Uplift, Tarim Basin, China. However, not all present-day low-TOC carbonates have generated and expelled hydrocarbons; therefore, to distinguish the source rocks that have already expelled sufficient hydrocarbons from those not expelled hydrocarbons, is crucial in source rock evaluation and resource assessment in the Tabei Uplift. Mass balance can be used to identify modern low-TOC carbonates resulting from hydrocarbon expulsion. However, the process is quite complicated, requiring many parameters and coefficients and thus also a massive data source. In this paper, we provide a quick and cost effective method for identifying carbonate source rock with present-day low TOC, using widely available Rock-Eval data. First, we identify present-day low-TOC carbonate source rocks in typical wells according to the mass balance approach. Second, we build an optimal model to evaluate source rocks from the analysis of the rocks' characteristics and their influencing factors, reported as positive or negative values of a dimensionless index of Rock-Eval data(IR). Positive IR corresponds to those samples which have expelled hydrocarbons. The optimal model optimizes complicated calculations and simulation processes; thus it could be widely applicable and competitive in the evaluation of present-day low TOC carbonates. By applying the model to the Rock-Eval dataset of the Tabei Uplift, we identify present-day low-TOC carbonate source rocks and primarily evaluate the contribution equivalent of 11.87×10~9 t oil.  相似文献   

14.
近期准噶尔盆地玛湖凹陷南斜坡地区多口探井钻遇风城组厚层烃源岩,为重新认识玛湖凹陷风城组烃源岩带来了契机,搜集玛湖凹陷南部、北部5口重点探井资料,经分析取得了以下认识:(1)风城组烃源岩在玛湖凹陷内广泛发育,综合玛北、玛南地球化学参数表明其为一套Ⅱ型优质烃源岩;(2)综合现今地温、热解、生物标志物、族组分等参数,认为玛湖凹陷及其周缘地区4 350 m以深的风城组烃源岩处于成熟阶段,4 800 m以深处于高成熟演化阶段,玛湖凹陷风城组烃源岩大范围处于生油高峰期;(3)综合多个生物标志物参数,玛北地区风城组烃源岩为咸化还原沉积,玛南地区风城组二段烃源岩为咸化半还原沉积,风三段烃源岩为半咸化-半还原沉积,陆源有机质输入较多。研究区风城组沉积古环境总体表现出早中期咸化、晚期淡化,北部咸化还原程度高于南部的规律。研究结果对玛湖凹陷风城组后续致密油、页岩油勘探部署提供了理论依据。  相似文献   

15.
为了更清晰地理解优质烃源岩和优质储层的耦合关系在致密油气成藏过程中的控制作用,本文应用地化测试、恒速压汞、常规压汞、含烃流体包裹体等多种资料,对比了松辽盆地南部致密油和松辽盆地北部致密气的成藏条件。研究表明:1)优质源岩生、排烃中心基本吻合超压高值区,超压到达的边界就是致密油气富集边界。2)孔喉结构约束下的松南泉四段优质储层渗透率下限为0.10×10-3 μm2,松北沙河子组优质储层的渗透率下限为0.05×10-3 μm2。3)时间上,形成致密油气藏的前提条件是源储之间应具备"先致密后成藏"的匹配关系,这是决定其成藏机理的根本;空间上,2个研究区的"甜点区"均发育在近源、强压、高渗的优质源储叠合部位,其展布特征受控于优质源储的空间耦合关系。  相似文献   

16.
The Western Depression of the Liaohe Basin is the major exploration area of the Liaohe Oilfield, and its main source rocks consist of the third and fourth members of the Shahejie Formation (Es3 and Es4). These source rocks are widely distributed in the depression, with semi-deep lake and fan delta as the main sedimentary facies, brown oil shale and black gray-dark gray mudstone as the main rocks, and a total thickness of 270-1450 m. The kerogens are mainly of the types I and IIA, and partly of the type IIB and least of the type III. The Ro values range from 0.4%-0.8%, indicating an evolution stage from immature to mature. The maturity of Es4 source rocks is rela-tively high, reaching the early mature stage, but their distribution and thickness are lower than those of Es3. Besides, according to biomarker analysis, it is thought that the source rocks of Es3 and Es4 are characterized by mixed input, and most of the source rocks were formed in the brackish water-saline and strongly oxygen-free environment. Fur-thermore, the Qingshui, Niuxintuo and Chenjia sags are believed to possess greater potential for hydrocarbon gen-eration and expulsion, for they are source rocks with a larger thickness, have higher organic carbon contents, belong to better organic matter types and possess higher maturities.  相似文献   

17.
High maturity oil and gas are usually generated after primary oil expulsion from source rocks, especially from oil prone type I/II kerogen. However, the detailed impacts of oil expulsion, or retention in source rock on further thermal degradation of kerogen at the high maturity stage remain unknown. In the present study, we collected an Ordovician Pingliang shale sample containing type II kerogen. The kerogens, which had previously generated and expelled oil and those which had not, were prepared and pyrolyzed in a closed system, to observe oil expulsion or oil retention effects on later oil and gas generation from kerogen. The results show that oil expulsion and retention strongly impacts on further oil and gas generation in terms of both the amount and composition in the high maturity stage. Gas production will be reduced by 50% when the expulsion coefficient reaches 58%, and gas from oil-expelled kerogen (less oil retained) is much drier than that from fresh kerogen. The oil expulsion also causes n-alkanes and gas compounds to have heavier carbon isotopic compositions at high maturity stages. The enrichment of 13C in n-alkanes and gas hydrocarbons are 1‰ and 4–6‰ respectively, compared to fresh kerogen. Oil expulsion may act as open system opposite to the oil retention that influences the data pattern in crossplots of δ13C2–δ13C3 versus C2/C3, δ13C2–δ13C3 versus δ13C1 and δ13C1–δ13C2 versus ln(C1/C2), which are widely used for identification of gas from kerogen cracking or oil cracking. These results suggest that the reserve estimation and gas/source correlation in deep burial basins should consider the proportion of oil retention to oil expulsion the source rocks have experienced.  相似文献   

18.
湖相致密油资源地球化学评价技术和应用   总被引:1,自引:0,他引:1  
湖相致密油或页岩油资源量和可采性评价关键问题:一是在什么地方;二是有多少;三是有多少可采出。本文讨论了解决这3个问题的关键性地质技术和理论。湖相致密油勘探层空间分布识别的关键是高有机丰度源岩层段和含油夹层精细识别。利用源岩测井地球化学评价技术可识别出湖相地层中不同w(TOC)区间的源岩层段,利用氢指数(IH)与w(TOC)的相关性,可实现湖相源岩层非均质性精细表征。湖相致密油勘探层油的赋存形式分为两类:一是致密油勘探层中砂岩、粉砂岩和碳酸盐岩夹层中的油,呈游离态;二是富有机质源岩中的油,包括了吸附态和游离态。吸附油在目前的技术条件下难以开采,现阶段真正有工业价值的是游离油。根据实际地球化学数据可标定出源岩中游离油量和吸附油量模型,从而可计算出游离油量、吸附油量和总原地油量。致密油流动性控制了其可采性,而源岩成熟度和生烃转化率是控制烃类流动性的关键。利用湖相高丰度源岩(w(TOC)>2%)IH演化可较高精度地标定源岩的成熟度和转化率。以泌阳盆地为例展示了如何从源岩生烃模型和实际岩石热解数据预测页岩油的流动性。  相似文献   

19.
《地学前缘(英文版)》2020,11(6):1901-1913
The significance of source rocks for oil and gas accumulation has been indisputably acknowledged. Moreover, it has been gradually realized that there is difference between hydrocarbon generation capacity and hydrocarbon expulsion capacity, and this has prompted research on hydrocarbon expulsion efficiency. However, these studies dominantly highlight the results of hydrocarbon expulsion, and investigation into the corresponding process and mechanism is primarily from a macroscopic perspective. Despite its wide acceptance as the most direct hydrocarbon expulsion mode, hydrocarbon expulsion through micro-fractures is still not sufficiently understood. Therefore, this study obtains observations and performs experiments on two types of source rocks (mudstones and shales) of the Chang 7 oil group of the Yanchang Formation in Ordos Basin, China. Microscopy reveals that organic matter is non-uniformly distributed in both types of source rocks. Specifically, mudstones are characterized by a cluster-like organic matter distribution, whereas shales are characterized by a layered organic matter distribution. Thermal evolution simulation experiments demonstrate that the hydrocarbon generation process is accompanied by the emergence of micro-fractures, which are favorable for hydrocarbon expulsion. Moreover, based on the theories of rock physics and fracture mechanics, this study establishes micro-fracture development models for both types of source rocks, associated with the calculation of the fracture pressure that is needed for the initiation of fracture development. Furthermore, the relationship between the fluid pressure, fracture pressure, and micro-fracture expansion length during micro-fracture development is quantitatively explored, which helps identify the micro-fracture expansion length. The results indicate that the development of micro-fractures is commonly impacted by the morphology and distribution pattern of the organic matter as well as the mechanical properties of the source rocks. The micro-fractures in turn further affect the hydrocarbon expulsion capacity of the source rocks. The results of this study are expected to provide theoretical and practical guidance for the exploration and exploitation of tight oil and shale oil.  相似文献   

20.
The hydrocarbon secreting alga Botryococcus has been identified in organic remains of sediments ranging from Precambrian to Recent, and is believed to have been a major source material for petroleum generation throughout the geological time. In some petroleum source rocks of Lower Palaeozoic and Precambrian age, identification of the alga is only possible by electron microscopy. Transmission electron microscopy (TEM) has been used in the present study to identify microstructures of the algal remains in a range of oil shales and petroleum source rocks. It has been established that Botryococcus is the predominant alga in the Kukersite oil shale of Estonia. Similarly, the alga has been shown to be a major contributor to petroleum source rocks in Cambrian and Precambrian sedimentary basins in Australia. TEM has been applied to observations of Botryococcus in torbanites and to products from simulated maturation experiments on torbanite. A comparison with algal remains from Cambrian and Precambrian sediments ranging from undermature to overmature, enabled the distinction of organic matter in various stages of oil generation. Maturation/thermal effects on alginite have been established by reflectance and fluorescence, and compared with experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号