首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
The real‐time distribution of alert messages from satellites that detect gamma‐ray bursts are of key importance to neutrino telescopes.We describe how the distribution network of these alert messages is used by the ANTARES neutrino telescope, and the resulting increase in detection efficiency for neutrinos from gamma‐ray bursts. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We present the observations of cosmic gamma-ray bursts (GRBs) with the main detector of the SIGMA telescope onboard the Granat Observatory from January 1990 through September 1994. The observations were carried out in the energy range 35–1300 keV. We detected 36 GRBs and 31 high-energy solar flares during this period. No GRB fell within the main field of view; they were all recorded by the “secondary optics” of the telescope. The SIGMA telescope recorded relatively bright bursts with peak fluxes of 10?6–10?4 erg s?1 cm?2 in the 100–500-keV energy band. Stable detector background allows the long-term variability of GRB sources on a time scale of ~1000 s to be studied. The results of our search for early afterglows of GRBs are presented. The flux averaged over all bursts in the interval 100–800 s after the main event is 0.36±0.14 counts s?(35–300 keV), suggesting that there is soft gamma-ray emission on this time scale after a considerable number of GRBs.  相似文献   

4.
We review models of cosmological gamma-ray bursts (GRBs). The statistical and -ray transparency issues are summarized. Neutron-star and black-hole merger scenarios are described and estimates of merger rates are summarized. We review the simple fireball models for GRBs and the recent work on non-simple fireballs. Alternative cosmological models, including models where GRBs are analogs of active galactic nuclei and where they are produced by high-field, short period pulsars, are also mentioned. The value of neutrino astronomy to solve the GRB puzzle is briefly reviewed.  相似文献   

5.
Building on the technological success of the IceCube neutrino telescope, we outline a prospective low-energy extension that utilizes the clear ice of the South Pole. Aiming at a 10 Mton effective volume and a 10 MeV threshold, the detector would provide sufficient sensitivity to detect neutrino bursts from core-collapse supernovae (SNe) in nearby galaxies. The detector geometry and required density of instrumentation are discussed along with the requirements to control the various sources of background, such as solar neutrinos. In particular, the suppression of spallation events induced by atmospheric muons poses a challenge that will need to be addressed. Assuming this background can be controlled, we find that the resulting detector will be able to detect SNe from beyond 10 Mpc, delivering between 10 and 41 regular core-collapse SN detections per decade. It would further allow to study more speculative phenomena, such as optically dark (failed) SNe, where the collapse proceeds directly to a black hole, at a detection rate similar to that of regular SNe. We find that the biggest technological challenge lies in the required number of large area photo-sensors, with simultaneous strict limits on the allowed noise rates. If both can be realized, the detector concept we present will reach the required sensitivity with a comparatively small construction effort and hence offers a route to future routine observations of SNe with neutrinos.  相似文献   

6.
Data obtained by the on-board X-ray telescope of the Swift satellite show that a shallow decay component is present in the light curve of the early X-ray afterglows of some γ-ray bursts (GRBs), but not in others. The physical mechanism of this component is debatable. We have made a comparative study on the observational characteristics of the two kinds of GRBs for a sample of 29 GRBs. Our results demonstrate that the two kinds of GRBs have no significant difference in the burst duration, γ-ray flux, spectral index, hardness ratio and peak energy. However, a significant difference exists in the early X-ray afterglows of the bursts: the bursts with a shallow decay component tend to have a softer and fainter X-ray afterglow than those without a shallow decay component. The efficiency of the γ-ray radiation is also very different for the two kinds of bursts: it is obviously higher for the bursts with a shallow decay component than those without. These results seem to suggest that the progenitors and central engines of the two kinds of GRBs are similar, and that the appearance of the shallow decay component is probably due to the surrounding medium.  相似文献   

7.
Of great importance in distinguishing between models for gamma-ray bursts (GRBs) is the experimental determination of the highest energy gamma rays associated with bursts. The EGRET detection of a 15 GeV gamma ray indicates that the spectra of at least some bursts extend well beyond the several MeV limit of the BATSE detectors (Hurleyet al., 1994). The low expected flux means that the collecting area of the present generation of satellite-based detectors is too small to detect gamma rays much above this energy efficiently, and such searches are currently undertaken with ground based detectors. In this paper searches made for very high energy GRBs with a southern hemisphere air shower particle array are described.  相似文献   

8.
We calculated the expected neutrino signal in Borexino from a typical Type II supernova at a distance of 10 kpc. A burst of around 110 events would appear in Borexino within a time interval of about 10 s. Most of these events would come from the reaction channel , while about 30 events would be induced by the interaction of the supernova neutrino flux on 12C in the liquid scintillator. Borexino can clearly distinguish between the neutral-current excitations 12C(ν,ν)12C* (15.11 MeV) and the charged-current reactions 12C(νe,e)12N and , via their distinctive event signatures. The ratio of the charged-current to neutral-current neutrino event rates and their time profiles with respect to each other can provide a handle on supernova and non-standard neutrino physics (mass and flavor oscillations).  相似文献   

9.
We analyzed the data obtained by the SPI telescope onboard the INTEGRAL observatory to search for short transient events with a duration from 1 ms to a few tens of seconds. An algorithm for identifying gamma-ray events against the background of a large number of charged particle interactions with the detector has been developed. The classification of events was made. Apart from the events associated with cosmic gamma-ray bursts (GRBs) confirmed by other space experiments and the activity of known soft gamma repeaters (for example, SGR 1806-20), previously unreported GRBs have been found. GRB candidates and short gamma-ray events probably associated with the activity of known SGRs and AXPs have been selected. The spectral evolution of 28 bright GRBs from the catalog has been studied extensively. A new method for investigating the spectral evolution is proposed. The energy dependence of the spectral lag for bursts with a simple structure of their light curves and for individual pulses of multipulse events is shown to be described by a logarithmic function, lagAlog(E). It has been established that the parameter A depends on the pulse duration, with the dependence being universal for all of the investigated GRBs. No negative spectral lags have been detected for bursts with a simple structure of their light curves.  相似文献   

10.
We reconsider the possibility that gamma-ray bursts (GRBs) are the sources of the ultra-high energy cosmic rays (UHECRs) within the internal shock model, assuming a pure proton composition of the UHECRs. For the first time, we combine the information from gamma-rays, cosmic rays, prompt neutrinos, and cosmogenic neutrinos quantitatively in a joint cosmic ray production and propagation model, and we show that the information on the cosmic energy budget can be obtained as a consequence. In addition to the neutron model, we consider alternative scenarios for the cosmic ray escape from the GRBs, i.e., that cosmic rays can leak from the sources. We find that the dip model, which describes the ankle in UHECR observations by the pair production dip, is strongly disfavored in combination with the internal shock model because (a) unrealistically high baryonic loadings (energy in protons versus energy in electrons/gamma-rays) are needed for the individual GRBs and (b) the prompt neutrino flux easily overshoots the corresponding neutrino bound. On the other hand, GRBs may account for the UHECRs in the ankle transition model if cosmic rays leak out from the source at the highest energies. In that case, we demonstrate that future neutrino observations can efficiently test most of the parameter space – unless the baryonic loading is much larger than previously anticipated.  相似文献   

11.
Neutrino production of radio Cherenkov signals in the Moon is the object of radio telescope observations. Depending on the energy range and detection parameters, the dominant contribution to the neutrino signal may come from interactions of the neutrino on the Moon facing the telescope, rather than neutrinos that have traversed a portion of the Moon. Using the approximate analytic expression of the effective lunar aperture from a recent paper by Gayley, Mutel and Jaeger, we evaluate the background from cosmic ray interactions in the lunar regolith. We also consider the modifications to the effective lunar aperture from generic non-standard model neutrino interactions. A background to neutrino signals are radio Cherenkov signals from cosmic ray interactions. For cosmogenic neutrino fluxes, neutrino signals will be difficult to observe because of low neutrino flux at the high energy end and large cosmic ray background in the lower energy range considered here. We show that lunar radio detection of neutrino interactions is best suited to constrain or measure neutrinos from astrophysical sources and probe non-standard neutrino-nucleon interactions such as microscopic black hole production.  相似文献   

12.
Neutrino energy spectra have been calculated based on the recently measured energy spectra of Galactic very high energy γ-ray sources. Based on these neutrino spectra the expected event rates in the ANTARES neutrino telescope and KM3NeT, a future neutrino telescope in the Mediterranean Sea with an instrumented volume of one km3, have been calculated. For the brightest γ-ray sources we find event rates of the order of one neutrino per year. Although the neutrino event rates are comparable to the background from atmospheric neutrinos the detection of individual sources seems possible.  相似文献   

13.
It is shown, that account of selection effects, possibly connected with the triggering conditions of Gamma-Ray Bursts (GRBs) registration lead to deviations from the 3/2 law in the uniformly distributed sample of GRBs. Formulas are suggested that give a good fit for the observed samples of GRBs by KONUS and BATSE experiments. Geminga is suggested as an attractive source for bursts monitoring observations in the optical, X-ray and soft gamma region.  相似文献   

14.
Based on data from the Baksan underground scintillation telescope (BUST) for the period 2001–2004, we searched for cosmic gamma-ray bursts (GRBs) at primary photon energies of 0.5 TeV or higher. We obtained constraints on the rate of bursts with durations of 1–10 s for fluences within the range 4.6 × 10−3-1.8 × 10−2 erg cm−2 in the declination band 30° ≤ δ ≤ 80°. We searched for ultrahigh-energy gamma rays from GRBs detected on spacecraft during and within ±2 h of the burst. No statistically significant excesses above the background of random coincidences were found. The derived constraints on the ultrahigh-energy gamma-ray fluence during GRBs lie within the range 4.6 × 10−3-3.7 × 10−2 erg cm−2.  相似文献   

15.
A method for a time-dependent search for flaring astrophysical sources which can be potentially detected by large neutrino experiments is presented. The method uses a time-clustering algorithm combined with an unbinned likelihood procedure. By including in the likelihood function a signal term which describes the contribution of many small clusters of signal-like events, this method provides an effective way for looking for weak neutrino flares over different time-scales. The method is sensitive to an overall excess of events distributed over several flares which are not individually detectable. For standard cases (one flare) the discovery potential of the method is worse than a standard time-dependent point source analysis with unknown duration of the flare by a factor depending on the signal-to-background level. However, for flares sufficiently shorter than the total observation period, the method is more sensitive than a time-integrated analysis.  相似文献   

16.
《Astroparticle Physics》2012,35(8):530-536
The ANTARES telescope has the capability to detect neutrinos produced in astrophysical transient sources. Potential sources include gamma-ray bursts, core collapse supernovae, and flaring active galactic nuclei. To enhance the sensitivity of ANTARES to such sources, a new detection method based on coincident observations of neutrinos and optical signals has been developed. A fast online muon track reconstruction is used to trigger a network of small automatic optical telescopes. Such alerts are generated for special events, such as two or more neutrinos, coincident in time and direction, or single neutrinos of very high energy.  相似文献   

17.
Gamma-ray burst analyses at neutrino telescopes are typically based on diffuse or stacked (i.e., aggregated) neutrino fluxes, because the number of events expected from a single burst is small. The interpretation of aggregated flux limits implies new systematics not present for a single burst, such as by the integration over parameter distributions (diffuse fluxes), or by the low statistics in small burst samples (stacked fluxes). We simulate parameter distributions with a Monte Carlo method computing the spectra burst by burst, as compared to a conventional Monte Carlo integration. With this approach, we can predict the behavior of the flux in the diffuse limit as well as in low statistics stacking samples, such as used in recent IceCube data analyses. We also include the flavor composition at the detector (ratio between muon tracks and cascades) into our considerations. We demonstrate that the spectral features, such as a characteristic multi-peak structure coming from photohadronic interactions, flavor mixing, and magnetic field effects, are typically present even in diffuse neutrino fluxes if only the redshift distribution of the sources is considered, with z ? 1 dominating the neutrino flux. On the other hand, we show that variations of the Lorentz boost can only be interpreted in a model-dependent way, and can be used as a model discriminator. For example, we illustrate that the observation of spectral features in aggregated fluxes will disfavor the commonly used assumption that bursts with small Lorentz factors dominate the neutrino flux, whereas it will be consistent with the hypothesis that the bursts have similar properties in the comoving frame.  相似文献   

18.
It is believed that orphan afterglow searches can help to measure the beaming angle in gamma-ray bursts (GRBs). Great expectations have been put on this method. We point out that the method is in fact not as simple as we originally expected. As a result of the baryon-rich environment that is common to almost all popular progenitor models, there should be many failed gamma-ray bursts, i.e. fireballs with Lorentz factor much less than  100–1000  , but still much larger than unity. In fact, the number of failed gamma-ray bursts may even be much larger than that of successful bursts. Owing to the existence of these failed gamma-ray bursts, there should be many orphan afterglows even if GRBs are due to isotropic fireballs, then the simple discovery of orphan afterglows never means that GRBs are collimated. Unfortunately, to distinguish between a failed-GRB orphan and a jetted but off-axis GRB orphan is not an easy task. The major problem is that the trigger time is unknown. Some possible solutions to the problem are suggested.  相似文献   

19.
The Spin-X wide-field X-ray monitor of the Spectrum-X-Gamma astrophysical observatory, which is based on the principle of a coded-aperture telescope, is designed to detect and localize cosmic gammaray-burst (GRB) sources; to survey large areas of the sky in search of new transients; and to carry out long-term observations of bright Galactic sources, including X-ray bursters. The monitor consists of two noncoaxial identical modules, Spin-X1 and Spin-X2, which together cover 6.8% of the sky. The high-apogee, four-day orbit of the Spectrum-XG satellite allows the instrument to be in observing mode more than 50% of the time. Having simulated the rate of GRB detection by Spin-X, we show that extrapolating BATSE 50–300-keV average data on the number of GRBs, their duration, and their mean energy spectrum to the X-ray energy band leads to disagreement with the observed detection rate of GRBs in the X-ray band. The number of GRBs that can be detected and localized with an accuracy r≤3′ (3σ) (the error-circle radius) by Spin-X is estimated to be ten bursts per year. We present data on the Spin-X sensitivity achievable during long-term observations of persistent and transient sources and on its sensitivity to X-ray bursts from Galactic sources in the 2–30-keV energy band.  相似文献   

20.
We searched for a sidereal modulation in the rate of neutrinos produced by the NuMI beam and observed by the MINOS far detector. The detection of such harmonic signals could be a signature of neutrino–antineutrino mixing due to Lorentz and CPT violation as described by the Standard-Model Extension framework. We found no evidence for these sidereal signals and we placed limits on the coefficients in this theory describing the effect. This is the first report of limits on these neutrino–antineutrino mixing coefficients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号