首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 56 毫秒
1.
温度压力孔隙压力对断层泥强度及滑动性质的影响   总被引:8,自引:1,他引:8       下载免费PDF全文
在不同的压力、温度和孔隙压力下进行了含四种不同断层泥标本的强度试验。碎屑型断层泥对压力很敏感,对温度无反应,对孔隙压力的反应符合有效应力律。粘土类断层泥则对温度和孔隙压力有明显响应。这些力学性质的差别反映了具体变形机制的差别  相似文献   

2.
在非常规储层的勘探开发历程中,人们逐渐意识到当非常规储层中具有异常高的孔隙流体压力时有利于油气的保存和获得较高的单井产能,为了在非常规储层中寻找高效井、高产井,对孔隙流体压力进行定量的预测是十分有必要的.目前预测孔隙流体压力的方法主要是利用了在异常高压地层中具有低纵波速度的特性,但由于异常高压不是唯一引起纵波速度降低的原因,所以利用现有方法预测孔隙流体压力存在一定的误差.近年来随着地震勘探技术的进步,很多学者利用岩石物理实验证实孔隙流体压力与横波速度之问也有很密切的关系,因此我们从杨氏模量的定义出发结合波动方程推导了有效应力与纵、横波速度以及密度之间的关系,并引入多孔介质中的有效应力定理开发出了一种新的方法来计算非常规储层中的孔隙流体压力.利用该方法在准噶尔盆地低渗透储层的油气勘探中取得了良好的应用效果.  相似文献   

3.
介绍了在深钻井中测量岩层流体孔隙压的方法.以华北地区沉积盆地为例,分析了0~4 km深度岩层孔隙压实测值的变化规律,并结合区内1900年以来发生的MS5.0的地震,讨论了3 000 m深处异常孔隙压的区域分布与地震活动的关系.研究结果表明,深井中实测的岩层孔隙压p0并不完全等同于静水压pH,超孔隙压现象存在但不具普遍性.由油田勘探井、评价井及开发井中实测的孔隙压(p01,p02及p03)与静水压之间的关系为:① 具超孔压的地区p01>p02>pH>p03;② 孔隙压正常或偏低的地区pH>p01>p02>pH>p03.通过对本区超孔隙压现象的区域分布与MS5.0地震活动的关系分析,发现大约以纬度36~36.5为界,南部存在超孔隙压现象,即在约2 000 m深度以下,实测孔隙压明显高于静水压,且随深度增加而呈幂函数递增,其地震活动性弱;而北部实测孔隙压基本正常或偏低,孔隙压值随深度呈线性递增,其地震活动性较强.   相似文献   

4.
俞维贤  何蔚 《地震研究》1998,21(2):172-178
本文通过小江断裂带与石屏建水断裂交汇地4条主要断裂的现场考查及其断层泥中石英碎砾表面SEM特征的分析研究表明:中更新世区内存在有一个较明显的构造活动平静期;全新世以来石屏一建水断裂仍明显强烈活动。李浩寨-甸尾断裂蝇有活动但不强烈;黑依小水箐断裂和李浩寨-利民断裂,全新纪以来基本不活动。  相似文献   

5.
The San Andreas Fault (SAF) is the Pacific-North American plate boundary, yet in southern California a significant portion of the relative plate motion is accommodated by the San Jacinto Fault (SJF). Here we investigate the initiation of the SJF and its interaction with the SAF in a three-dimensional visco-elasto-plastic finite-element model. The model results show that the restraining bend of the southern SAF causes strain localization along the SJF, thus may have contributed to its initiation. Slip on the SJF tends to reduce slip rate on the SAF and enhance deformation in the Eastern California Shear Zone. The initiation of the SJF and its interaction with the SAF reflect the evolving plate boundary zone as it continuously seeks the most efficient way to accommodate the relative plate motion.  相似文献   

6.
Summary In the northern and central sections of the San Andreas Fault Zone, and along Calaveras and Hayward faults, clay gouges have been found to occur on the surface and at shallow depths.It is consistent with the available geochemical data that such gouges can exist at depths down to 10 km. If extensive gouge materials exist in a fault zone then their properties will determine, to a large extent, the behavior of the fault. From known properties of clays in the presence of water we can infer that, in such cases, the tectonic stress and the stress drops for earthquakes will be low and substantial creep will take place before earthquakes.  相似文献   

7.
With transmission electron microscopy (TEM) we observed nanometer-sized pores in four ultracataclastic and fractured core samples recovered from different depths of the main bore hole of the San Andreas Fault Observatory at Depth (SAFOD). Cutting of foils with a focused ion beam technique (FIB) allowed identifying porosity down to the nm scale. Between 40 and 50% of all pores could be identified as in-situ pores without any damage related to sample preparation. The total porosity estimated from TEM micrographs (1–5%) is comparable to the connected fault rock porosity (2.8–6.7%) estimated by pressure-induced injection of mercury. Permeability estimates for cataclastic fault rocks are 10? 21–10? 19 m2 and 10? 17 m2 for the fractured fault rock. Porosity and permeability are independent of sample depth. TEM images reveal that the porosity is intimately linked to fault rock composition and associated with deformation. The TEM-estimated porosity of the samples increases with increasing clay content. The highest porosity was estimated in the vicinity of an active fault trace. The largest pores with an equivalent radius > 200 nm occur around large quartz and feldspar grains or grain-fragments while the smallest pores (equivalent radius < 50 nm) are typically observed in the extremely fine-grained matrix (grain size < 1 μm). Based on pore morphology we distinguish different pore types varying with fault rock fabric and alteration. The pores were probably filled with formation water and/or hydrothermal fluids at elevated pore fluid pressure, preventing pore collapse. The pore geometry derived from TEM observations and BET (Brunauer, Emmett and Teller) gas adsorption/desorption hysteresis curves indicates pore blocking effects in the fine-grained matrix. Observations of isolated pores in TEM micrographs and high pore body to pore throat ratios inferred from mercury injection suggest elevated pore fluid pressure in the low permeability cataclasites, reducing shear strength of the fault.  相似文献   

8.
9.
美国加州大学伯克利分校科学家的最新研究表明,地震活动断层区地下震动的增加可能标志着断层闭锁区应力的增加,这很可能增加大地震发生的可能性。  相似文献   

10.
Fluids residing in interconnected porosity networks have a significant weakening effect on the rheology of rocks and can strongly influence deformation along fault zones. The magnetotelluric (MT) technique is sensitive to interconnected fluid networks and can image these zones on crustal and upper mantle scales. MT images have revealed several prominent electrical conductivity anomalies at the San Andreas Fault which have been attributed to the presence of saline fluids within such networks and which have been associated with tectonic processes. These models suggest that ongoing fluid release in the upper mantle and lower crust is closely related to the mechanical state of the crust. Where fluids are drained into the brittle crust, and where these fluids are kept at high pressures, fault creep is supported. Fluid fluxes from deeper levels, in combination with meteoric and crustal metamorphic fluid inflow, and in response to fault creep, leads to high-conductivity zones developing as fault zone conductors in the brittle portion of crust. In turn, the absence of crustal fluid pathways may be characteristic for mechanically locked segments of the fault. Here, MT models suggest that fluids are trapped at depth and kept at high pressures. We speculate that fluids may infiltrate neighboring rocks and in their wake induce non-volcanic tremor.  相似文献   

11.
In this article, we review our previous research for spatial and temporal characterizations of the San Andreas Fault (SAF) at Parkfield, using the fault-zone trapped wave (FZTW) since the middle 1980s. Parkfield, California has been taken as a scientific seismic experimental site in the USA since the 1970s, and the SAF is the target fault to investigate earthquake physics and forecasting. More than ten types of field experiments (including seismic, geophysical, geochemical, geodetic and so on) have been carried out at this experimental site since then. In the fall of 2003, a pair of scientific wells were drilled at the San Andreas Fault Observatory at Depth (SAFOD) site; the main-hole (MH) passed a ~200-m-wide low-velocity zone (LVZ) with highly fractured rocks of the SAF at a depth of ~3.2 km below the wellhead on the ground level (Hickman et al., 2005; Zoback, 2007; Lockner et al., 2011). Borehole seismographs were installed in the SAFOD MH in 2004, which were located within the LVZ of the fault at ~3-km depth to probe the internal structure and physical properties of the SAF. On September 282004, a M6 earthquake occurred ~15 km southeast of the town of Parkfield. The data recorded in the field experiments before and after the 2004 M6 earthquake provided a unique opportunity to monitor the co-mainshock damage and post-seismic heal of the SAF associated with this strong earthquake. This retrospective review of the results from a sequence of our previous experiments at the Parkfield SAF, California, will be valuable for other researchers who are carrying out seismic experiments at the active faults to develop the community seismic wave velocity models, the fault models and the earthquake forecasting models in global seismogenic regions.  相似文献   

12.
Correlation of three well-resolved paleoseismic records, including the Pitman Canyon site with its emerging record, presents a new possibility to understand fault segmentation. To be a useful concept, fault segment boundaries must be relatively stationary over multiple seismic cycles and must appear frequently in limiting the rupture extent of earthquakes; thus, sites on the same segment should share more paleoseismic events than those on different segments. A conclusive event correlation between sites is difficult or impossible due to dating uncertainties. However, often the data are adequate to preclude correlation and thus provide firm limits on rupture extent for those events. Thus clear non-correlations provide more information about segmentation than do unprovable potential correlations.The southern end of the most recent rupture in 1857, between Wrightwood and Pitman Canyon, is often used to define a segment boundary. However, there is an absence of significant non-correlation between the previous five Pitman Canyon events and the Wrightwood events. While both Pallett Creek and Wrightwood ruptured in 1857, only two of the previous five Wrightwood events can correlate with Pallett Creek events, which may or may not indicate that they actually do. These paleoseismic records do not support the existence of a segment boundary between Wrightwood and Pitman Canyon as defined by the 1857 rupture extent, suggesting a reevaluation of southern San Andreas Fault segmentation, and using historic ruptures to define segments in general.  相似文献   

13.
—We report the analysis of over 16 years of fault creep and seismicity data from part of the creeping section of the San Andreas fault to examine and assess the temporal association between creep events and subsequent earthquakes. The goal is to make a long-term evaluation of creep events as a potential earthquake precursor. We constructed a catalog of creep events from available digital creepmeter data and compared it to a declustered seismicity catalog for the area between San Juan Bautista and San Benito, California, for 1980 to 1996. For magnitude thresholds of 3.8 and above and time windows of 5 to 10 days, we find relatively high success rates (40% to 55% 'hits') but also very high false alarm rates (generally above 90%). These success rates are statistically significant (0.0007 < P < 0.04). We also tested the actual creep event catalog against two different types of synthetic seismicity catalogs, and found that creep events are followed closely in time by earthquakes from the real catalog far more frequently than the average for the synthetic catalogs, generally by more than two standard deviations. We find no identifiable spatial pattern between the creep events and earthquakes that are hit or missed. We conclude that there is a significant temporal correlation between creep events and subsequent small to moderate earthquakes, however that additional information (such as from other potential precursory phenomena) is required to reduce the false alarm rate to an acceptable level.  相似文献   

14.
Summary The San Andreas fault can be divided into locked and free sections. On the locked sections accumulated slip is released in great earthquakes. On the free sections slip is occurring continuously either aseismically or during smaller earthquakes. Stress drops during earthquakes can be estimated from the ratio of short to long period amplitudes and from surface strain. Surface heat flow may provide an upper bound on the absolute stress. The failure or yield stress must reach a maximum at some depth on the fault. This maximum may occur in the near-surface brittle zone or deeper in the plastic zone of the fault. The historic distribution of seismic activity provides information on the stress level. The accumulation of strain and stress on the fault can be predicted using elastic theory. It is necessary, however, to include the viscous coupling of the lithosphere to the asthenosphere in order to fully model the problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号