首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
冠层反射光谱对植被理化参数的全局敏感性分析   总被引:1,自引:0,他引:1  
植被理化参数与许多有关植物物质能量交换的生态过程密切相关,定量分析植被反射光谱对理化参数的敏感性是遥感反演理化参数含量的前提。本文采用EFAST(Extended Fourier Amplitude Sensitivity Test)全局敏感性分析方法,利用PROSAIL辐射传输模型分析了冠层疏密程度对叶片生化组分含量、冠层结构以及土壤背景等多种参数敏感性的影响,并对植被理化参数反演所需先验知识的精度问题进行了初步探讨。研究表明:(1)对于较为稠密的冠层,可见光波段的冠层反射率主要受叶绿素含量的影响,近红外和中红外波段的冠层反射率主要受干物质量和含水量的影响;(2)对于稀疏的冠层,LAI是影响400—2500 nm波段范围内冠层反射率的最重要参数,土壤湿度次之,叶片生化参数对冠层反射率的敏感性较低;(3)在已知稀疏冠层LAI的情况下进一步确定土壤的干湿状态,可显著提高冠层反射率对叶绿素含量的敏感度,有助于稀疏冠层叶绿素含量的反演。  相似文献   

2.
叶片光谱是估算植被生化参数的重要依据。然而,遥感影像获取的光谱为像元及冠层光谱,因此,在进行植被生化参数的遥感定量估算时,需将冠层光谱转化到叶片尺度。根据几何光学模型原理,推导出植被冠层光谱和叶片光谱的尺度转换函数,将冠层光谱转换到叶片尺度。首先,采用叶片光谱模拟模型PROSPECT模拟出叶片水平的光谱;其次,在几何光学模型4-scale模型中,通过改变叶片光谱和叶面积指数(leaf area index,LAI),模拟出不同叶片特征下的冠层光谱。最后,通过LAI建立两个查找表,一个是传感器观测到树冠光照面和背景光照面概率的查找表,另一个是多次散射因子M的查找表,从而实现冠层光谱和叶片光谱的转化。结果表明,利用4-scale模型能实现冠层光谱与叶片光谱的尺度转换,此方法有很好的适用性。  相似文献   

3.
针对三江平原洪河湿地保护区内主要特征植被冠层的叶绿素含量,采用PROSAIL模型从物理角度进行反演。首先将叶面积指数、叶片结构参数、等价水厚度、叶绿素实测含量等一些植被理化参数的实测值输入模型得到模拟光谱数据,然后与实测光谱数据对比验证其准确性。在模型中,通过固定其他参量不变,取叶绿素含量为唯一值时,考察在不同叶面积指数下叶绿素含量对冠层反射率的影响。结果显示,植被冠层叶绿素含量的敏感波段为555nm和720nm。基于PROSAIL模型的叶绿素反演方法较传统的统计模型相比是较好且稳健的方法。  相似文献   

4.
在叶片和冠层两个尺度上,分析了栎树叶片氮碳两种生化组分含量与其反射率特性的统计关系;采用逐步回归法,分别利用地面光谱和航空高光谱曲线对叶片和冠层尺度进行了反演,选择进入回归方程的波段分别为719 nm、1 854 nm/1 861 nm、359 nm和767.9 nm/1 319.0 nm。研究表明,叶片尺度由于受到干扰较小,反演结果明显优于冠层尺度;冠层尺度的反演受大气水汽、冠层结构、植被下垫面等诸多因素影响较大,因此在进行冠层尺度生化组分反演时,必须充分考虑上述因素的影响。  相似文献   

5.
将植物叶片光谱模型PROSPECT、植被冠层光谱模型SAIL与大气辐射传输模型6S进行耦合,模拟不同参数条件下植被星上光谱信息在400~ 900 nm谱段的变化,并分析从地表植物叶片光谱、冠层光谱到卫星入瞳处光谱的过程中,植物叶片的叶肉结构参数、叶绿素含量、干重、叶片含水量和植物冠层的叶面积指数(LAI)、太阳天顶角、气溶胶光学厚度、地表邻近效应以及混合像元等参数对植物光谱的影响.研究结果表明,由大气引起的误差要远大于由植物本身的各种生化参数引起的误差;在叶片尺度上引起反射率发生变化的主要因素是叶绿素含量和叶肉结构参数,含水量的影响非常小,可以忽略;在冠层尺度上引起光谱发生变化的因素主要有LAI和叶片倾角.  相似文献   

6.
设计与建立苹果冠层/叶片高光谱数据库,实现苹果冠层/叶片高光谱数据的获取、整理、存储与应用分析,可以为苹果养分含量的高光谱遥感反演提供数据服务和支持。利用ASD Field Spec 3地物光谱仪采集的苹果冠层/叶片高光谱数据,在Microsoft Visual Studio 2010开发环境下,基于C#语言与SQLServer 2008关系型数据库,采用C/S开发模式,设计与建立了苹果冠层/叶片高光谱数据库系统,完成了对高光谱数据批量录入、存储、导出与数据处理多项功能。  相似文献   

7.
以位于三峡库区的龙门河森林自然保护区为研究区,综合利用线性光谱混合模型和几何光学模型,基于高光谱遥感数据提取森林结构参数是本文研究的重点。在研究区地面调查数据的基础上,通过高光谱数据和混合光谱分解法,获得反演几何光学模型所需的四分量参数,根据背景光照分量与森林植被冠层各参数间的关系,反演得到森林冠层郁闭度及平均冠幅的定量分布图,并利用37个野外实测样本进行结果验证。  相似文献   

8.
基于PROSPECT+SAIL模型的遥感叶面积指数反演   总被引:4,自引:1,他引:4  
以PROSPECT+SAIL模型为基础,从物理机理角度反演植被叶面积指数(LAI)。首先,通过FLAASH模型进行大气校正,使得图像像元值表达植被冠层反射率; 然后,根据LOPEX 93数据库和JHU光谱数据库选择植物生化参数和光谱数据,以PROSPECT模型模拟出的植物叶片反射率和透射率作为SAIL模型的输入参数,得到植被冠层反射率,将结果与遥感影像的植被冠层反射率对应,回归出植被LAI; 最后,以地面实测数据对遥感反演数据进行验证,并分析了误差的可能来源。  相似文献   

9.
施润和  庄大方  牛铮 《遥感学报》2007,11(5):626-631
叶片作为植物冠层的基本组成元素,其自身的光学特性直接影响着遥感所能获得的植物冠层反射光谱。从原理上讲,叶片的光学特性不仅取决于其内部生化组分含量的多少,还与其物理结构密切相关。因此对叶片内部物理结构进行估算有助于分离其对叶片光谱的影响,从而提高叶片生化信息反演的精度。在基于叶片内部辐射传输过程的PROSPECT模型中,叶片内部结构用一个假想的叶肉结构参数N来描述。PROSPECT模型模拟光谱发现,N对叶片反射率和透过率均影响显著,且影响范围涵盖400—2500nm的全部波段。本文利用水稻叶片实测光谱和生化数据尝试了3种N的估算方法,包括两种经验方法和一种模型反演方法,并对其进行比较。结果表明,由于两种经验方法都基于N和表观叶面积(SLA)之间的非线性经验公式,因此两者具有内在的数学关系。运用模型反演方法估算的N可在实测水稻光谱和模型模拟光谱间得到最小RMSE,且其在数值上小于两种经验方法的估算值。以N为因变量,叶片光谱反射率为自变量,运用逐步线性回归分析建立了N的光谱估算模型,550nm,816nm,1210nm和1722nm四个波段被选入模型,回归效果较好,为N的估算提供了一种新的经验方法。  相似文献   

10.
为削弱混合像元对植被参数反演的影响,提出了基于混合像元分解理论反演路域植被等量水厚度的方法。利用PRO4SAIL模型正演获得的高光谱窄波段数据,模拟Landsat 8遥感影像宽波段植被冠层光谱数据,并进行等量水厚度的敏感植被指数的筛选;对覆盖研究区域的Landsat 8遥感影像进行线性混合像元分解,获取更加精确的植被冠层光谱反射率;同时,利用支持向量机构建等量水厚度估测模型,实现对路域植被等量水厚度的遥感反演。研究结果表明,利用混合像元分解后得到的植被冠层光谱参与模型反演得到的路域植被等量水厚度更加符合实际情况,为遥感影像反演植被参数提供了有效数据。  相似文献   

11.
基于Hyperion影像的水稻冠层生化参量反演   总被引:5,自引:0,他引:5  
采用小区实验与大田应用相结合的方法, 依据扬州实验小区地面实测拔节期、抽穗期及灌浆期的水稻叶片、冠层光谱及氮和叶绿素含量, 采用光谱吸收特征和植被指数分析方法, 得到估算水稻氮和叶绿素含量的最佳光谱特征参数; 结合覆盖江苏姜堰地区大田的Hyperion高光谱遥感影像, 建立反演水稻冠层氮和叶绿素含量的模型, 对研究区大田水稻冠层氮和叶绿素含量进行了反演及制图。结果表明: 经波深中心归一化方法分析, 发现以670nm为中心的光谱吸收特征面积与水稻氮含量呈显著相关性; 基于反转归一化光谱, 结合560nm和670nm两个波段, 建立的植被指数NDVI560_670能很好地反演水稻叶绿素含量。  相似文献   

12.
对目前提出的光谱指数用以提取叶片叶绿素含量的适应性进行了分析和评价。通过分析,解释了为什么研究者得出这些指数与他们的观测样本叶绿素含量有显著的相关的结论以及为什么某个研究者提出的某个指数和叶绿素含量间的关系用于其他样本时会失效。此外,改进了一个农作物冠层叶绿素含量的提取模型,通过独立实测数据验证,效果较好,认为是可以用于其他地区农作物叶绿素含量提取的模型。  相似文献   

13.
高光谱反演水稻叶面积指数的主成分分析法   总被引:1,自引:0,他引:1  
为了通过水稻冠层反射光谱来提取水稻叶面积指数信息,尝试利用辐射传输模型PROSPECT+SAIL来模拟水稻冠层反射光谱, 比较了各植被指数中叶面积指数(LAI)和叶绿素浓度的相关性。在观察光谱曲线后发现,红边位置光谱可以较好地区分LAI和叶绿素 浓度二者引起光谱变化的差异。由此提出对700 nm~750 nm区间内的反射光谱做主成分变换,并利用第2主成分与LAI建立反演模型( 即主成分分析法),取得了较好效果,表明在植被指数趋近于饱和以至于无法区分二者相关性时,主成分分析法可以作为一种简单 而有效提取水稻叶面积指数信息的补充手段。  相似文献   

14.
Leaf to canopy upscaling approach affects the estimation of canopy traits   总被引:1,自引:0,他引:1  
In remote sensing applications, leaf traits are often upscaled to canopy level using sunlit leaf samples collected from the upper canopy. The implicit assumption is that the top of canopy foliage material dominates canopy reflectance and the variability in leaf traits across the canopy is very small. However, the effect of different approaches of upscaling leaf traits to canopy level on model performance and estimation accuracy remains poorly understood. This is especially important in short or sparse canopies where foliage material from the lower canopy potentially contributes to the canopy reflectance. The principal aim of this study is to examine the effect of different approaches when upscaling leaf traits to canopy level on model performance and estimation accuracy using spectral measurements (in-situ canopy hyperspectral and simulated Sentinel-2 data) in short woody vegetation. To achieve this, we measured foliar nitrogen (N), leaf mass per area (LMA), foliar chlorophyll and carbon together with leaf area index (LAI) at three vertical canopy layers (lower, middle and upper) along the plant stem in a controlled laboratory environment. We then upscaled the leaf traits to canopy level by multiplying leaf traits by LAI based on different combinations of the three canopy layers. Concurrently, in-situ canopy reflectance was measured using an ASD FieldSpec-3 Pro FR spectrometer, and the canopy traits were related to in-situ spectral measurements using partial least square regression (PLSR). The PLSR models were cross-validated based on repeated k-fold, and the normalized root mean square errors (nRMSEcv) obtained from each upscaling approach were compared using one-way analysis of variance (ANOVA) followed by Tukey’s post hoc test. Results of the study showed that leaf-to-canopy upscaling approaches that consider the contribution of leaf traits from the exposed upper canopy layer together with the shaded middle canopy layer yield significantly (p < 0.05) lower error (nRMSEcv < 0.2 for canopy N, LMA and carbon) as well as high explained variance (R2 > 0.71) for both in-situ hyperspectral and simulated Sentinel-2 data. The widely-used upscaling approach that considers only leaf traits from the upper illuminated canopy layer yielded a relatively high error (nRMSEcv>0.2) and lower explained variance (R2 < 0.71) for canopy N, LMA and carbon. In contrast, canopy chlorophyll upscaled based on leaf samples collected from the upper canopy and total canopy LAI exhibited a more accurate relationship with spectral measurements compared with other upscaling approaches. Results of this study demonstrate that leaf to canopy upscaling approaches have a profound effect on canopy traits estimation for both in-situ hyperspectral measurements and simulated Sentinel-2 data in short woody vegetation. These findings have implications for field sampling protocols of leaf traits measurement as well as upscaling leaf traits to canopy level especially in short and less foliated vegetation where leaves from the lower canopy contribute to the canopy reflectance.  相似文献   

15.
农作物冠层光谱分析及反演技术综述   总被引:1,自引:0,他引:1  
农作物的冠层光谱反射率与作物的氮含量、叶绿素含量及叶面积指数等参数之间具有很强的相关性,通过对作物冠层光谱进行分析可反演出作物的生物物理参数,并应用在长势分析、产量预测、病虫害预警等领域。本文首先阐述了作物冠层反射率采集方法,对地面、机载及遥感卫星3个采集层面的优缺点进行了对比;其次给出了植被指数构建原理及常用植被指数,分析了物理模型反演法和统计反演法的复杂度和性能;最后提出了农作物冠层光谱分析及反演技术的下一步发展方向及面临的挑战。  相似文献   

16.
针对PRO-4SAIL辐射传输模型耦合BP神经网络反演叶绿素时存在过拟合、预测精度低的问题,本文以研究区内实测的高光谱数据和模拟光谱数据为数据源,在模拟样本数据构成的训练集中添加部分实测样本数据,构建BP神经网络叶绿素反演模型,然后利用剩余的实测数据进行模型验证与精度评定。结果表明:向训练集中加入少量实测数据,可以解决叶绿素反演模型过拟合的问题,叶绿素含量的预测精度得到提升,实现准确的反演路域植被信息,为路域环境植被环境遥感监测评价提供一定的技术支持。  相似文献   

17.
The current development of satellite technology particularly in the sensors like POLDER and MISR, has emphasized more on directional reflectance measurements (i.e. spectral reflectance of the target measured from different view zenith and azimuth angles) of the earth surface features mainly the vegetation for retrieval of biophysical parameters at regional scale using radiative transfer models. This approach being physical process based and uses directional reflectance measurement has been found to better and more reliable compared to the conventional statistical approach used till date and takes care of anisotropic nature (i.e. reflectance from the target is different if measured from different view angles) of the target. Keeping this in view a field experiment was conducted in mustard crop to evaluate the radiative transfer model for biophysical parameter retrieval through its inversion with the objectives set as (i) to relate canopy biophysical parameters and geometry to its bidirectional reflectance, (ii) to evaluate a canopy reflectance model to best represent the radiative transfer within the canopy for its inversion and (iii) to retrieve crop biophysical parameters through inversion of the model. Two varieties of the mustard crop (Brassica juncea L) were grown with two nitrogen treatments. The bidirectional reflectance data obtained at 5 nm interval for a range of 400–1100 nm were integrated to IRS LISS–II sensor’s four band values using Newton Cotes Integration technique. Biophysical parameters like leaf area index, leaf chlorophyll content, leaf length, plant height and average leaf inclination angle, biomass etc were estimated synchronizing with the bi-directional reflectance measurements. Radiative transfer model PROSAIL model was validated and its inversion was done to retrieve LAI and ALA. Look Up Table (LUT) of Bidirectional reflectance distribution function (BRDF) was prepared simulating through PROSAIL model varying only LAI (0.2 interval from 1.2 to 5.4 ) and ALA (5° interval from 40° to 55°) parameters and inversion was done using a merit function and numerical optimization technique given by Press et al. (1986). The derived LAI and ALA values from inversion were well matched with observed one with RMSE 0.521 and 5.57, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号