共查询到7条相似文献,搜索用时 0 毫秒
1.
N. Robinson P.A. Cranwell G. Eglinton S.C. Brassell C.L. Sharp M. Gophen U. Pollingher 《Organic Geochemistry》1986,10(4-6)
Lake Kinneret, a relict lake from the Neogene, is characterised by the dominance among its phytoplankton of the dinoflagellate Peridinium cinctum. The lipid geochemistry of Lake Kinneret is discussed herein in terms of the biology, chemistry and hydrology of the lake. Lipids isolated from two sediment sections (surface and 15 cm deep), obtained from the deepest point of Lake Kinneret, include: (1) 4α-methyl-5α (H)-stanols and related derivatives characteristic of P. cinctum, the novel sterol 4a-methylgorgosterol, and peridinosterol and 4α-methylgorgostanol, not previously reported to occur in lacustrine sediments; (2) C30 and C32 alkane-1,15-diols, not previously reported to occur in contemporary lacustrine deposits, and (3) products of early diagenesis. Many similarities were observed with the more widely studied marine dinoflagellates and marine sediments with dinoflagellate input. 相似文献
2.
The internal structure and growth pattern of Tahiti reefs over the last 14 ka is reconstructed using sedimentological, morphological and palaeobiological data coupled with radiometric dates in drill cores through the modern barrier reef. Flooding of the volcaniclastic deposits or the karst surface of a Pleistocene reef started at ≈ 14 ka BP, and coral growth began shortly after inundation. The sequence in the Tahiti barrier-reef edge has formed predominantly through long-term keep-up growth controlled by stable environmental conditions, while the adjacent backreef deposits did not start to accumulate before sea-level stabilization, around 6 ka. The dominance of Porites communities and the coeval occurrence of branching gracile Lithophyllum in the lowermost part of the postglacial reef sequence (14–11 ka) suggest the prevalence of uniformly moderate- to low-energy conditions and/or growth in slightly deeper waters all over the drilled area during the early reef stages. During the last 11 ka, the reef frameworks developed in a high-energy environment, at maximum water depths of 5–6 m, and were dominated by an Acropora robusta/danai–Hydrolithon onkodes association; the local interlayering of other coralgal assemblages (dominated by tabular Acropora or domal Porites ) reflects distinct diversification stages, resulting either from the palaeotopographic control of the substrate or from slight and episodic environmental changes. 相似文献
3.
<正>Microbial mats are ecosystems that can control or induce the precipitation of calcium(Ca) carbonate on Earth through geological time.In the present study,we report on a novel accumulation of Ca,together with iron(Fe),in a microbial mat collected from a slight acidic hot spring(pH=5.9) in south China.Combining an array of approaches,including environmental scanning electron microscopy,X-ray microanalysis,transmission electron microscopy,and selected area electron diffraction,we provide ultrastructral evidence for amorphous acicular aggregates containing Ca and Fe associated with cyanobacteria precipitating in the microbial mats.Cyanobacterial photosynthesis and exopolymeric organic matrixes are considered to be responsible for the precipitation of Ca.These amorphous acicular aggregates might imply the early stage of calcification occurring in microbial mats.Ca and Fe coprecipitation indicates another potential important way of inorganic element precipitation in hot spring microbial mats.Our results provide insight into the possible mechanism of cyanobacterial calcification and microfossil preservation in slight acidic hot spring environments. 相似文献
4.
《Sedimentology》2018,65(4):1213-1245
In a modern peritidal microbial mat from Qatar, both biomediated carbonates and Mg‐rich clay minerals (palygorskite) were identified. The mat, ca 5 cm thick, shows a clear lamination reflecting different microbial communities. The initial precipitates within the top millimetres of the mat are composed of Ca–Mg–Si–Al–S amorphous nanoparticles (few tens of nanometres) that replace the ultrastructure of extracellular polymeric substances. The extracellular polymeric substances are enriched in the same cations and act as a substrate for mineral nucleation. Successively, crystallites of palygorskite fibres associated with carbonate nanocrystals develop, commonly surrounding bacterial bodies. Micron‐sized crystals of low‐Mg calcite are the most common precipitates, together with subordinate aragonite, very high‐Mg calcite/dolomite and ankerite. Pyrite nanocrystals and framboids are present in the deeper layers of the mat. Calcite crystallites form conical structures, circular to triangular/hexagonal in cross‐section, evolving to crystals with rhombohedral terminations; some crystallite bundles develop into dumb‐bell and stellate forms. Spheroidal organo‐mineral structures are also common within the mat. Nanospheres, a few tens of nanometres in diameter, occur attached to coccoid bacteria and within their cells; these are interpreted as permineralized viruses and could be significant as nuclei for crystallite‐crystal precipitation. Microspheres, 1 to 10 μm in diameter, result from intracellular permineralization within bacteria or the mineralization of the bacteria themselves. Carbonates and clay minerals are commonly aggregated to form peloids, tens of microns in size, surrounded by residual organic matter. Magnesium silicate and carbonate precipitation are likely to have been driven by pH – saturation index – redox changes within the mat, related to microenvironmental chemical changes induced by the microbes – extracellular polymeric substances – viruses and their degradation. 相似文献
5.
6.
The post-glacial environmental history of Voua de la Motte, a small pond, was studied by the lipid geochemistry of a 6 m long core. Palynological studies show that the deepest part of the core goes back to 10,000 yr BP corresponding to the time of formation of the lake following the retreat of the Rhodanian glacier. Hydrocarbons, aldehydes, linear alcohols, sterols, monocarboxylic and monohydroxy fatty acids, were determined throughout the core both in the free and bound lipid fractions, as well as in the tightly bound fraction for the carboxylic acids. There is no clear evidence of a transformation from the unbound to the bound form, except perhaps for the α-hydroxy acids.Qualitative as well as quantitative fluctuations in the distributions of these lipid classes were observed upward in the core. An attempt is made to correlate these fluctuations with the bioenvironmental and climatological evolution of the Basin on the basis of information obtained from palynology. 相似文献
7.
H. Goossens W. Irene C. Rijpstra R.R. Düren J.W. De Leeuw P.A. Schenck 《Organic Geochemistry》1986,10(4-6)
A systematic study of the lipid composition of thirteen bacterial species and three Recent sediments (methanogenic sediment, cyanobacterial mat and evaporative gypsum crust) was undertaken in an attempt to recognize bacterial organic matter in sediments. A sequential method, which distinguishes between three different modes of occurrence of lipid moieties (free, OH−- and H+-labile), was applied. The acid-labile fractions are discussed.The three main groups of bacteria, archaebacteria, gram-positive eubacteria and gram-negative eubacteria, are easily distinguished. Methanogenic and extremely halophilic archaebacteria are characterized by the presence of diphytanyl glyceryl ether and the absence of fatty acids. The gram-positive eubacteria contain primarily iso- and anteiso-branched fatty acids whereas the gram-negative bacteria and sediments are dominated by β- and α-hydroxy fatty acids. A wide variety of H+-labile hydroxy fatty acids was observed which included several, as yet unknown, structures.β-Hydroxy fatty acids in this H+-labile mode of occurrence are exclusively present in bacteria. Their distribution patterns in sediments are considered “fingerprints” of past and present bacterial populations. The specific differences in β -hydroxy fatty acid compositions observed in the different bacteria and the three sediments investigated, suggest that amide-linked β-hydroxy fatty acid patterns are useful as markers of bacterial populations and therefore of environmental conditions. 相似文献