共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
Lithospheric thermal structure in the Baltic shield 总被引:1,自引:0,他引:1
3.
Lithospheric thickness beneath the Dabie Shan, central eastern China from S receiver functions 总被引:7,自引:0,他引:7
P and S receiver functions obtained from a portable array of 34 broad-band stations in east central China provide a detailed image of the crust–mantle and lithosphere–asthenosphere boundaries (LAB) in the Dabie Shan and its adjacent areas. Clear S -to- P converted waves produced at the LAB show a thin lithosphere beneath the whole study area. Based on our results, the thickest lithosphere of 72 km is observed beneath the southern part of the area within the Yangtze craton, whereas beneath the North-China platform, the lithosphere is only 60 km thick. S receiver functions also reveal, in good agreement with P receiver functions, a maximum depth of the Moho beneath the Dabie Shan orogen at approximately 40 km. Furthermore, we interpret the structural difference at 32° latitude as the probable location of the mantle suture formed between the Yangtze and the Sino-Korean cratons. 相似文献
4.
5.
Upper-mantle velocity structure beneath the Siberian platform 总被引:1,自引:0,他引:1
Keith Priestley John Cipar Anatoli Egorkin Nina Pavlenkova 《Geophysical Journal International》1994,118(2):369-378
6.
David Beamish 《Geophysical Journal International》1986,84(3):619-640
Summary. In terms of lateral variations in conductivity structure, the southern Southern Uplands and Northumberland Basin are characterized by a region of attenuated vertical magnetic fields with small spatial gradients reflecting the presence of a substantial conducting zone. Five magnetotelluric data sets from the region have been analysed to provide accurate and unbiased estimates of the impedance tensor. The response data are used to investigate the deep geoelectric crustal structure of the region. Three appropriate sets of response data have been subjected to two construction algorithms for 1-D inversion. The geoelectric profiles recovered identify a deep crustal conducting zone underlying the Northumberland Basin. The zone, modelled as a layered structure, dips steeply from mid-crustal depths underneath the Northumberland Basin to lower crustal depths to the NW. The structure thus correlates, in location and geometry, with a deep crustal reflecting wedge detected offshore by a deep seismic reflection profile. 相似文献
7.
8.
9.
Variations in the crustal structure beneath western Turkey 总被引:6,自引:0,他引:6
Paul Saunders Keith Priestley & Tuncay Taymaz 《Geophysical Journal International》1998,134(2):373-389
10.
We infer the lithospheric structure in eastern Turkey using teleseismic and regional events recorded by 29 broad-band stations from the Eastern Turkey Seismic Experiment (ETSE). We combine the surface wave group velocities (Rayleigh and Love) with telesesimic receiver functions to jointly invert for the S -wave velocity structure, Moho depth and mantle-lid (lithospheric mantle) thickness. We also estimated the transverse anisotropy due to Love and Rayleigh velocity discrepancies. We found anomalously low shear wave velocities underneath the Anatolian Plateau. Average crustal thickness is 36 km in the Arabian Plate, 44 km in Anatolian Block and 48 km in the Anatolian Plateau. We observe very low shear wave velocities at the crustal portion (30–38 km) of the northeastern part of the Anatolian Plateau. The lithospheric mantle thickness is either not thick enough to resolve it or it is completely removed underneath the Anatolian Plateau. The shear velocities and anisotropy down to 100 km depth suggest that the average lithosphere–asthenosphere boundary in the Arabian Plate is about 90 and 70 km in Anatolian block. Adding the surface waves to the receiver functions is necessary to constrain the trade-off between velocity and the thickness. We find slower velocities than with the receiver function data alone. The study reveals three different lithospheric structures in eastern Turkey: the Anatolian plateau (east of Karliova Triple Junction), the Anatolian block and the northernmost portion of the Arabian plate. The boundary of lithospheric structure differences coincides with the major tectonic boundaries. 相似文献
11.
12.
Imaging of shear-wave velocity structure beneath Iberia 总被引:1,自引:0,他引:1
Jose Badal Victor Corchete G. Payo L. Pujades J. A. Canas 《Geophysical Journal International》1996,124(2):591-611
13.
We develop an approach that allows us to invert for the mantle velocity structure within a finely parametrized region as a perturbation with respect to a low-resolution, global tomographic model. We implement this technique to investigate the upper-mantle structure beneath Eurasia and present a new model of shear wave velocity, parametrized laterally using spherical splines with ∼2.9° spacing in Eurasia and ∼11.5° spacing elsewhere. The model is obtained from a combined data set of surface wave phase velocities, long-period waveforms and body-wave traveltimes. We identify many features as narrow as few hundred kilometres in diameter, such as subducting slabs in eastern Eurasia and slow-velocity anomalies beneath tectonically active regions. In contrast to regional studies in which these features have been identified, our model encompasses the structure of the entire Eurasian continent. Furthermore, including mantle- and body-wave waveforms helped us constrain structures at depths larger than 250 km, which are poorly resolved in earlier models. We find that up to +9 per cent faster-than-average anomalies within the uppermost ∼200 km of the mantle beneath cratons and some orogenic regions are separated by a sharp gradient zone from deeper, +1 to +2 per cent anomalies. We speculate that this gradient zone may represent a boundary separating the lithosphere from the continental root, which might be compositionally distinct from the overlying lithosphere and remain stable either due to its compositional buoyancy or due to higher viscosity compared with the suboceanic mantle. Our regional model of anisotropy is not significantly different from the global one. 相似文献
14.
15.
16.
17.
18.
19.
Three-dimensional seismic structure beneath the Australasian region from refracted wave observations
The earthquakes in the seismicity belt extending through Indonesia, New Guinea, Vanuatu and Fiji to the Tonga–Kermadec subduction zone recorded at the 65 portable broad-band stations deployed during the Skippy experiment from 1993–1996 provide good coverage of the lithosphere and mantle under the Australian continent, Coral Sea and Tasman Sea.
The variation in structure in the upper part of the mantle is characterized by deter-mining a suite of 1-D structures from stacked record sections utilizing clear P and S arrivals, prepared for all propagation paths lying within a 10° azimuth band. The azimuth of these bands is rotated by 20° steps with four parallel corridors for each azimuth. This gives 26 separate azimuthal corridors for which 15 independent 1-D seismic velocity structures have been derived, which show significant variation in P and S structure.
The set of 1-D structures is combined to produce a 3-D representation by projecting the velocity values along the ray path using a turning point approximation and stacking into 3-D cells (5° by 50 km in depth). Even though this procedure will tend to underestimate wave-speed perturbations, S -velocity deviations from the ak135 reference model exceed 6 per cent in the lithosphere.
In the uppermost mantle the results display complex features and very high S -wave speeds beneath the Precambrian shields with a significant low-velocity zone beneath. High velocities are also found towards the base of the transition zone, with high S -wave speeds beneath the continent and high P -wave speeds beneath the ocean. The wave-speed patterns agree well with independent surface wave studies and delay time tomography studies in the zones of common coverage. 相似文献
The variation in structure in the upper part of the mantle is characterized by deter-mining a suite of 1-D structures from stacked record sections utilizing clear P and S arrivals, prepared for all propagation paths lying within a 10° azimuth band. The azimuth of these bands is rotated by 20° steps with four parallel corridors for each azimuth. This gives 26 separate azimuthal corridors for which 15 independent 1-D seismic velocity structures have been derived, which show significant variation in P and S structure.
The set of 1-D structures is combined to produce a 3-D representation by projecting the velocity values along the ray path using a turning point approximation and stacking into 3-D cells (5° by 50 km in depth). Even though this procedure will tend to underestimate wave-speed perturbations, S -velocity deviations from the ak135 reference model exceed 6 per cent in the lithosphere.
In the uppermost mantle the results display complex features and very high S -wave speeds beneath the Precambrian shields with a significant low-velocity zone beneath. High velocities are also found towards the base of the transition zone, with high S -wave speeds beneath the continent and high P -wave speeds beneath the ocean. The wave-speed patterns agree well with independent surface wave studies and delay time tomography studies in the zones of common coverage. 相似文献