首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
《Astroparticle Physics》2010,33(6):286-293
In the past, there have been reports of the observation of decrease in the flux of secondary cosmic γ-rays during a total solar eclipse. We have measured the flux of secondary cosmic γ-rays during the total solar eclipse that occurred at Novosibirsk in Russia, on 1 August 2008. Highly sensitive measurements were carried out by using a detector system with built-in redundancy. The system consisted of two independent, large volume NaI(Tl) scintillator detectors for sensitive and reliable measurements. The data display significant variability in the flux of secondary γ-rays in the energy range 50–4600 keV. Just prior to the total solar eclipse a change ∼9% in the flux was observed, followed by a small but steady decrease ∼4% during the eclipse. The temporal variation in the observed flux of γ-rays were found to be nearly identical for the two detectors. The energy dependence of the variation was further studied by binning the yield in three energy ranges, namely, 100–200, 200–400 and 400–4600 keV. The nearly identical time variation observed in the two independent measurements provides confidence that the measured variation is real and not an artifact of the instrumentation. Systematic observations during the future eclipses are required to study this fascinating phenomenon which is not yet understood.  相似文献   

2.
The antiproton flux measured by PAMELA experiment might have originated from Galactic sources of cosmic rays. These antiprotons are expected to be produced in the interactions of cosmic ray protons and nuclei with cold protons. Gamma rays are also produced in similar interactions inside some of the cosmic accelerators. We consider a few nearby supernova remnants observed by Fermi LAT. Many of them are associated with molecular clouds. Gamma rays have been detected from these sources which most likely originate in decay of neutral pions produced in hadronic interactions. The observed gamma ray fluxes from these SNRs are used to find out their contributions to the observed diffuse cosmic ray antiproton flux near the earth.  相似文献   

3.
We study the impact of possible spiral-arm distributions of Galactic cosmic-ray sources on the flux of various cosmic-ray nuclei throughout our Galaxy. We investigate model cosmic-ray spectra at the nominal position of the sun and at different positions within the Galaxy. The modelling is performed using the recently introduced numerical cosmic ray propagation code Picard. Assuming non-axisymmetric cosmic-ray source distributions yields new insights on the behaviour of primary versus secondary nuclei.We find that primary cosmic rays are more strongly confined to the vicinity of the sources, while the distribution of secondary cosmic rays is much more homogeneous compared to the primaries. This leads to stronger spatial variation in secondary to primary ratios when compared to axisymmetric source distribution models. A good fit to the cosmic-ray data at Earth can be accomplished in different spiral-arm models, although leading to decisively different spatial distributions of the cosmic-ray flux. These lead to different cosmic ray anisotropies, where even reproducing the data becomes possible. Consequently, we advocate directions to seek best fit propagation parameters that take into account the higher complexity introduced by the spiral-arm structure on the cosmic-ray distribution. We specifically investigate whether the flux at Earth is representative for a large fraction of the Galaxy. The variance among possible spiral-arm models allows us to quantify the spatial variation of the cosmic-ray flux within the Galaxy in presence of non-axisymmetric source distributions.  相似文献   

4.
The Telescope Array experiment studies ultra high energy cosmic rays using a hybrid detector. Fluorescence telescopes measure the longitudinal development of the extensive air shower generated when a primary cosmic ray particle interacts with the atmosphere. Meanwhile, scintillator detectors measure the lateral distribution of secondary shower particles that hit the ground. The Middle Drum (MD) fluorescence telescope station consists of 14 telescopes from the High Resolution Fly’s Eye (HiRes) experiment, providing a direct link back to the HiRes measurements. Using the scintillator detector data in conjunction with the telescope data improves the geometrical reconstruction of the showers significantly, and hence, provides a more accurate reconstruction of the energy of the primary particle. The Middle Drum hybrid spectrum is presented and compared to that measured by the Middle Drum station in monocular mode. Further, the hybrid data establishes a link between the Middle Drum data and the surface array. A comparison between the Middle Drum hybrid energy spectrum and scintillator Surface Detector (SD) spectrum is also shown.  相似文献   

5.
“The investigation into the possible effects of cosmic rays on living organisms will also offer great interest.” – Victor F. Hess, Nobel Lecture, December 12, 1936High-energy radiation bursts are commonplace in our Universe. From nearby solar flares to distant gamma ray bursts, a variety of physical processes accelerate charged particles to a wide range of energies, which subsequently reach the Earth. Such particles contribute to a number of physical processes occurring in the Earth system. A large fraction of the energy of charged particles gets deposited in the atmosphere, ionizing it, causing changes in its chemistry and affecting the global electric circuit. Remaining secondary particles contribute to the background dose of cosmic rays on the surface and parts of the subsurface region. Life has evolved over the past ∼3 billion years in presence of this background radiation, which itself has varied considerably during the period [1], [2], [3]. As demonstrated by the Miller–Urey experiment, lightning plays a very important role in the formation of complex organic molecules, which are the building blocks of more complex structures forming life. There is growing evidence of increase in the lightning rate with increasing flux of charged particles. Is there a connection between enhanced rate of cosmic rays and the origin of life? Cosmic ray secondaries are also known to damage DNA and cause mutations, leading to cancer and other diseases. It is now possible to compute radiation doses from secondary particles, in particular muons and neutrons. Have the variations in cosmic ray flux affected the evolution of life on earth? We describe the mechanisms of cosmic rays affecting terrestrial life and review the potential implications of the variation of high-energy astrophysical radiation on the history of life on earth.  相似文献   

6.
In the present work the cosmic ray data of three different neutron monitoring stations, Deep River, Inuvik, and Tokyo, located at different geomagnetic cutoff rigidities and altitudes have been harmonically analyzed for the period 1980–95 for a comparative study of diurnal semi-diurnal and tri-diurnal anisotropies in cosmic ray intensity in connection with the change in interplanetary magnetic field Bz component and solar wind velocity on 60 quietest days. It is observed that the amplitudes of all the three harmonics increase during the period 1982–84 at all the stations during the high speed solar wind stream epoch and remain low during the declining phase of the stream. The amplitudes of the three harmonics have no obvious characteristics associated with the time variation of magnitude of the Bz component. The phases of all the three harmonics have no time variation characteristics associated with solar wind velocity and Bz. Published in Astrofizika, Vol. 49, No. 4, pp. 651–664 (August 2006).  相似文献   

7.
We discuss the possibility of observing ultra high energy cosmic ray sources in high energy gamma rays. Protons propagating away from their accelerators produce secondary electrons during interactions with cosmic microwave background photons. These electrons start an electromagnetic cascade that results in a broad band gamma ray emission. We show that in a magnetized Universe (B≳10−12 G) such emission is likely to be too extended to be detected above the diffuse background. A more promising possibility comes from the detection of synchrotron photons from the extremely energetic secondary electrons. Although this emission is produced in a rather extended region of size ∼10 Mpc, it is expected to be point-like and detectable at GeV energies if the intergalactic magnetic field is at the nanogauss level.   相似文献   

8.
《Astroparticle Physics》2009,32(1):53-60
The High Resolution Fly’s Eye (HiRes) experiment has measured the flux of ultrahigh energy cosmic rays using the stereoscopic air fluorescence technique. The HiRes experiment consists of two detectors that observe cosmic ray showers via the fluorescence light they emit. HiRes data can be analyzed in monocular mode, where each detector is treated separately, or in stereoscopic mode where they are considered together. Using the monocular mode the HiRes collaboration measured the cosmic ray spectrum and made the first observation of the Greisen–Zatsepin–Kuzmin cutoff. In this paper we present the cosmic ray spectrum measured by the stereoscopic technique. Good agreement is found with the monocular spectrum in all details.  相似文献   

9.
弥散宇宙γ射线产生于初级宇宙线的传播过程,本文利用宇宙线传播的“双漏模式”得出与实验观测谱接近的银河系弥散宇宙γ射线谱。  相似文献   

10.
McMath plage region 8818 passed over the visible solar disk on May 17–31, 1967. It was very active from its first appearance on the Eastern limb, several times producing bright optical flares and hard X-ray emission, accompanied by intense type II, type IV and centimeter radio bursts. Nevertheless, no solar particles could be detected near the earth until the evening of May 23, when three bright flares were observed in close succession at 25°–28° E. During the following build-up of the solar particle flux over 36 hours, the galactic cosmic ray flux > 1 GeV decreased gradually by about 5%. The flux of solar particles decreased in two steps on May 25, both accompanied by decreases in the equatorial geomagnetic field. These field depressions are attributed to storm plasma ejected from the parent flare of the May 23 particle event. The propagation of solar particles from May 23 on thus appears to be strongly affected by storm plasma from the parent flare of the May 23 event, without any indications of solar particles being trapped in that plasma.A later particle event early on May 28 was also associated with a bright flare in McMath region 8818, at 33° W. This event displayed a rapid build-up, with electrons arriving first, and an exponential decay. A smooth proton peak, 20 min wide, was detected on May 30 closely associated with an SSC attributed to plasma ejection from the parent flare of the May 28 event.Between the geomagnetic storms beginning on May 25 and May 30 an anomalous daily variation was observed in the cosmic ray flux >1 GeV, the time of maximum falling 7–10 hours earlier than normal. Storm time increases in the flux of galactic cosmic rays were seen on May 26 when the equatorial geomagnetic field was depressed by more than 400 . Low latitude auroras were also observed during that time.On leave from the University of Uppsala, Sweden.  相似文献   

11.
In the present work an analysis has been made of the extreme events occurring during July 2005. Specifically, a rather intense Forbush decrease was observed at different neutron monitors all over the world during 16 July 2005. An effort has been made to study the effect of this unusual event on cosmic ray intensity as well as various solar and interplanetary plasma parameters. It is noteworthy that during 11 to 18 July 2005 the solar activity ranged from low to very active. Especially low levels occurred on 11, 15, and 17 July whereas high levels took place on 14 and 16 July 2005. The Sun is observed to be active during 11 to 18 July 2005, the interplanetary magnetic field intensity lies within 15 nT, and solar wind velocity was limited to ∼500 kms-1. The geomagnetic activity during this period remains very quiet, the Kp index did not exceed 5, the disturbance storm time Dst index remains ∼-70 nT and no sudden storm commencement has been detected during this period. It is noted that for the majority of the hours, the north/south component of the interplanetary magnetic field, Bz, remains negative, and the cosmic ray intensity increases and shows good/high correlation with Bz, as the polarity of Bz tends to shift from negative to positive values, the intensity decreases and shows good/high anti-correlation with Bz. The cosmic ray intensity tends to decrease with increase of interplanetary magnetic field strength (B) and shows anti-correlation for the majority of the days. Published in Astrofizika, Vol. 51, No. 2, pp. 255–265 (May 2008).  相似文献   

12.
We investigate the problem of transition from galactic cosmic rays to extragalactic ultra-high energy cosmic rays. Using the model for extragalactic ultra-high energy cosmic rays and observed all-particle cosmic ray spectrum, we calculate the galactic spectrum of iron nuclei in the energy range 108–109 GeV. The flux and spectrum predicted at lower energies agree well with the KASCADE data. The transition from galactic to extragalactic cosmic rays is distinctly seen in spectra of protons and iron nuclei, when they are measured separately. The shape of the predicted iron spectrum agrees with the Hall diffusion.  相似文献   

13.
本文利用几种典型的银河系宇宙线分布律和星际氢分布律计算单漏模式和双漏模式中的弥散宇宙γ射线谱。结果表明,几种典型的宇宙线分布中,李惕碚的分布律优于其他作者的分布律;星际氢分子数量的取值应当比Gordon值除以1.7更小;只要适当地选择宇宙线分布和氢分布就可得到与观测γ谱相近的理论谱,宇宙线分布和氢分布均可在一定范围里选取。  相似文献   

14.
The existence of macroscopic regions with antibaryon excess in the baryon asymmetric Universe with general baryon excess is the possible consequence of practically all models of baryosynthesis. Diffusion of matter and antimatter to the border of antimatter domains defines the minimal scale of the antimatter domains surviving to the present time. A model of diffused antiworld is considered, in which the density within the surviving antimatter domains is too low to form gravitationally bound objects. The possibility to test this model by measurements of cosmic gamma ray fluxes is discussed. The expected gamma ray flux is found to be acceptable for modern cosmic gamma ray detectors and for those planned for the near future.  相似文献   

15.
The PeV gamma ray background produced in the interactions of ultra high energy cosmic rays with the ambient matter and radiations during their propagation in the Milky Way has been calculated in this paper. If the primary ultra high energy cosmic rays are produced from Galactic point sources then those point sources are also emitting PeV gamma rays. We discuss that the detection of galactocentric PeV gamma rays in the future would be a signature of the presence of EeV cosmic accelerators in the Milky Way.  相似文献   

16.
17.
Autospectra in the 2–13 month range, computed from mean monthly horizontal intensity on quiet days at Trivandrum, situated close to the dip equator, suggest an exceedingly large semi-annual modulation of the field confined to an interval of about 5 hr centred at 1000 LT. The amplitude of the semi-annual oscillation at this station, derived from power density, is greater than 19 γ at 1000 LT. Between 1900 and 0500 LT, spectral lines, corresponding to a period of six months, are not observed above the continuum. Spectral densities from observations at two other electrojet stations in India, Kodaikanal and Annamalainagar, and at Alibag, outside the electrojet, establish the existence of an appreciable enhancement of the semi-annual oscillation of the field in the equatorial electrojet belt. Similar computations of spectra using observations on all days, however, suggest a secondary component in the evening sector. This component is not enhanced in the equatorial electrojet belt. It is concluded that while in low latitudes the daytime component is largely associated with the modulation of Sq currents, in the electrojet belt it appears to be due entirely to a semi-annual modulation of the equatorial electrojet. It is also concluded that the secondary component, observed in the evening sector in low latitude and equatorial stations, is associated purely with the modulation of the ring current by disturbance. The two components of the semi-annual variation observed at the Indian stations have also been noticed at several stations between geomagnetic latitudes N54.6° and S41.8°. It is also observed that the association of the semi-annual component with geomagnetic latitude is confined to the evening-night component.  相似文献   

18.
In the present work the data of three different neutron monitoring stations, Deep River, Tokyo and Inuvik located at different geomagnetic cutoff rigidities and altitudes has been harmonically analysed for the period 1980–1993, 1980–1990 and 1981–1993 respectively to investigate for a comparative study of diurnal, semi-diurnal and tri-diurnal anisotropies in cosmic ray (CR) intensity in connection with the change in IMF Bz component and solar wind velocity on 60 quietest days. It is observed that the amplitude of first harmonic is highly anti-correlated to the solar wind velocity during the period of high-speed solar wind stream (HSSWS) epoch on quiet days for three neutron monitor stations at different geomagnetic rigidity thresholds. During quiet days the amplitude of all the three harmonics significantly deviates on the onset of HSSWS epoch, whereas the direction of the anisotropy of all the three harmonics remains time invariant at three different cut off rigidity stations. The amplitude as well as the direction of anisotropy of all the three harmonics does not have time variation characteristics associated with Bz component of IMF on geo-magnetically most quiet days.  相似文献   

19.
Nova V5116 Sgr 2005 No. 2, discovered on 2005 July 4, was observed with XMM‐Newton in March 2007, 20 months after the optical outburst. The X‐ray spectrum showed that the nova had evolved to a pure supersoft X‐ray source, indicative of residual H‐burning on top of the white dwarf. The X‐ray light‐curve shows abrupt decreases and increases of the flux by a factor 8 with a periodicity of 2.97 h, consistent with the possible orbital period of the system. The EPIC spectra are well fit with an ONe white dwarf atmosphere model, with the same temperature both in the low and the high flux periods. This rules out an intrinsic variation of the X‐ray source as the origin of the flux changes, and points to a possible partial eclipse as the origin of the variable light curve. The RGS high resolution spectra support this scenario showing a number of emission features in the low flux state, which either disappear or change into absorption features in the high flux state. A new XMM‐Newton observation in March 2009 shows the SSS had turned off and V51 16 Sgr had evolved into a weaker and harder X‐ray source (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
An experiment made with a baloon-borne large volume (16×16×24 cm3) omnidirectional plastic scintillator sensitive to high-energy -radiation is described. Two flights were carried out on 25 November, 1973 and 24 February, 1978 at high geomagnetic cut-off rigidities. For an omnidirectional detector and for energies greater than several MeV, most of the detected photons are secondary -rays produced through interactions of the charged cosmic rays with the atmosphere. To unfold the observed pulse height spectrum and obtain the incident -ray spectrum, the detector response function is calculated numerically. By using this response function a differential flux dJ/dE=(0.33±0.1)E –1.2±0.2 photons cm–2 s–1 MeV–1 averaged over all zenith angles, is estimated for the atmospheric -radiation, at 5 g cm–2, in the 10–100 MeV energy range. This result is compared with other observations made with different types of detectors and at different geomagnetic latitudes.Members of the Carrera del Investigador Cientifico y Tecnológico del Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) from Argentina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号