首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Selectivity of various types of salt-resistant plants for K over Na   总被引:2,自引:0,他引:2  
Selectivity by whole plants for K+ over Na+ in three types (salt excluding, salt secreting and salt diluting) of salt-resistant plants was investigated. An estimating formula of Selective Absorption (SA) capacity of root systems was derived; the Selective Transport (ST n) capacities between K+ and Na+ by various parts of the three types of plants were compared. The results showed that the SA value of salt-excluding plants were higher than that of salt-secreting and salt-diluting plants, the ST1 (root:stem) value was much higher, indicating that both the capacity of selective absorption and the capacity of selective transport by root systems were strong. In salt-secreting plants, the SA value lay between salt-diluting and salt-excluding plants, while the ST1 value was the lowest, indicating that the majority of Na+ uptake by root systems was transported up to their aerial parts and then the surplus salt was secreted in salt glands. In salt-diluting plants, the SA value was the lowest, indicating that the majority of Na+ taken up by the root systems entered into plant body perhaps to satisfy the requirements for osmotic adjustment and growth, and the ST1 value lay between salt-secreting and salt-excluding plants. These data strongly indicate that the SA and ST1 values reflect the K+ and Na+ selectivity characteristics of salt-resistant plants. Therefore, the various types of salt-resistant plants would be classified by using the values of SA and ST1. We suggest that this provides a way for distinguishing various types of salt-resistant plants. Comparing the ST n values of the six species in our paper, we concluded that the selectivity of transporting K+ over Na+ into the actively photosynthesizing organs and particularly into the developing ears is extremely high. Our conclusion is in accordance with previous results that demonstrate that the capacities of selective transport by different parts of the plant for K+ over Na+ are best quantified by ST n values. The necessity, feasibility and wide-ranging applicability of the formulas for estimating SA and ST n values have been discussed in detail.  相似文献   

4.
Nonstructural carbohydrates(NSC) and nitrogen metabolism strongly influence growth and development in plants. The biosynthesis of cellulose and lignin(structural carbohydrates, SC) depends largely on the supply of NSC. We desire to examine which hypothesis, carbon limitation or growth limitation, best fits the alpine plant response between NSC, SC, carbon(C), nitrogen(N) and altitude. We compared the foliar concentrations of carbohydrates, C and N between the leaves of Picea crassifolia(lower-elevation tree-line species) and Sabina przewalskii(high-elevation tree-line species) in their response to changing elevation. Our site was located in the mid-northern area of Qilian Mountains, China. We found that foliar soluble sugar(SG) concentrations were significantly higher in P. crassifolia than in S. przewalskii at the 2,700–3,400 m level. Foliar NSC levels in P. crassifolia increased at the 2,700–3,100 m level, indicating that growth was limited gradually resulting in a surplus of NSC(to conform to GLH), subsequently decreasing at the 3,100–3,400 m level, the assimilation declined leading to C deficit(to conform to CLH). SC(SC metabolism disorders at 3,100–3,400 m), C, N and starch were significantly lower in P. crassifolia than in S. przewalskii. Conversely, foliar SG concentration shows a fall-rise trend with increasing elevation for S. przewalskii. SC concentration in S. przewalskii leaves decreased with an increase of elevation and has a significantly positive correlation to N concentration marking the assimilation of plants. Therefore, the high-elevation tree-line species(S. przewalskii) utilize or store more foliar SG leading to a decrease of SG concentration for survival and growth/regrowth in an adverse environment, higher total C, N, SC, starch contents and lower NSC level. Also, their change trends along the elevational gradient in leaves of S. przewalskii indicate better assimilation strategies for SG use under environmental stress compared to P. crassifolia. This indicates that foliar C metabolism along the elevation follows the principle of the growth-limitation hypothesis(GLH) or carbon limitation hypothesis(CLH), which depends on the acclimation of different alpine life-forms to the environment.  相似文献   

5.
This paper presents data on the germination traits of five perennials (Allium polyrrhizum, Agropyron cristatum, Arenaria meyeri, Artemisia frigida and Artemisia santolinifolia) widespread in the mountain steppes of southern Mongolia. Germination and seed viability were assessed at three alternate temperatures (8/4 °C, 20/10 °C, 32/20 °C), three levels of osmotic stress (deionized water; −0.5 MPa, −1 MPa Mannitol solution), and under conditions of alternate light/darkness versus complete darkness. The results of a factorial ANOVA with treatments and species as main effects showed that all five species germinated best at higher temperatures, with only Agropyron cristatum showing some seed mortality. Osmotic stress reduced seed viability and total germination in all five species. Darkness had no influence on viability, but positively affected seed germination of Allium polyrrhizum and Agropyron cristatum. We therefore conclude that, in the field, germination of all five species is mainly controlled by ambient temperatures and water availability, both of which drop towards the end of summer when dispersal takes place and effectively delay seedling recruitment until the next vegetation period.  相似文献   

6.
Horizontal and vertical zones of influence for root systems of four Mojave Desert shrubs were characterized using 32P as a nutrient tracer. Larrea tridentata's horizontal zone of influence was sparse near the plant's stem base, with a maximum probability of accessing 32P (Pmax) of 41%. However, its horizontal zone of influence extended beyond 5 m, and the distance from the stem base at which the probability of accessing 32P was half Pmax (L503 m) was significantly greater than the other three shrubs. Ambrosia dumosa's zone of influence was dense near the plant's stem base (Pmax78%), but was rare at distances >2 m (L501 m). Zones of influence for Lycium andersonii and Lycium pallidum were intermediate between those of L. tridentata and A. dumosa. For vertical zones of influence, L. tridentata was more likely to obtain 32P from 5 m soil depths than A. dumosa, but L. pallidum was not significantly different from either A. dumosa or L. tridentata. Horizontal zones of influence did not change with treatments that altered soil water and nitrogen availability, but vertical zones of influence increased with a flood irrigation treatment that increased water availability to 5 m soil depth. These differences among species likely reflect compromises between their shoot growth strategies and their need to acquire spatially and temporally limited soil resources, especially through competitive interactions.  相似文献   

7.
Terrestrial gastropods, especially those dwelling in dry habitats such as the Mediterranean, are highly susceptible to dehydration. In this study, the use of refuges by Iberus gualtieranus gualtieranus and Sphincterochila candidissima is compared. These two species belong to families with different distribution ranges, but they live in sympatry on a mountain in southern Spain with a dry Mediterranean climate. I. g. gualtieranus used mainly rock crevices as refuges, consistently throughout the year. S. candidissima hibernated beneath humus during autumn and winter (I. g. gualtieranus did not hibernate). In spring, S. candidissima seemed active, while I. g. gualtieranus was already aestivating. In summer, S. candidissima aestivated on vegetation, while I. gualtieranus aestivated deep within crevices. These differences in the use of refuges may be explained on the basis of the need for more protection by I. g. gualtieranus because of its morphology, which is less suited to the dry habitat, but has evolved to enable this species to exploit karstic crevices as refuges more efficiently. These results illustrate that behaviour and morphology interact allowing both species to coexist in sympatry in an arid environment using different adaptive strategies.  相似文献   

8.
As an approach to understand how diurnal and seasonal plant water potentials (Ψ) are related to soil water-content and evaporative demand components, the responses of six thornscrub shrubs species (Havardia pallens, Acacia rigidula, Eysenhardtia texana, Diospyros texana, Randia rhagocarpa, and Bernardia myricaefolia) of the north-eastern region of Mexico to drought stress were investigated during the course of 1 year. All study species showed the typical diurnal pattern of variation in Ψ. That is, Ψ decreased gradually from predawn (Ψpd) maximal values to reach minima at midday (Ψmd) and began to recover in the late afternoon. On a diurnal basis and with adequate soil water-content (>0.20 kg kg−1), diurnal Ψ values differed among shrub species and were negatively and significantly (p<0.001) correlated with air temperature (r=−0.741 to −0.883) and vapor pressure deficit (r=−0.750 to −0.817); in contrast, a positive and significant (p<0.001) relationship was found to exist with relative humidity (r=0.758–0.842). On a seasonal basis, during the wettest period (soil water-content>0.20 kg kg−1), higher Ψpd (−0.10 MPa) and Ψmd (−1.16 MPa) values were observed in R. rhagocarpa, whereas lower figures (−0.26 and −2.73 MPa, respectively) were detected in A. rigidula. On the other hand, during the driest period (soil water-content<0.15 kg kg−1), Ψpd and Ψmd values were below −7.3 MPa; i.e. when shrubs species faced severe water deficit. Soil water-content at different soil layers, monthly mean relative humidity and monthly precipitation were significantly correlated with both Ψpd (r=0.538–0.953; p<0.01) and Ψmd (r=0.431–0.906; p<0.05). Average soil water-content in the 0–50 cm soil depth profile explained between 70% and 87% of the variation in Ψpd. Results have shown that when gravimetric soil water-content values were above 0.15 kg kg−1, Ψpd values were high and constant; below this threshold value, Ψ declined gradually. Among all shrub species, A. rigidula appeared to be the most drought tolerant of the six species since during dry periods it tends to sustain significantly higher Ψpd in relation to B. myricaefolia. The remaining species showed an intermediate pattern. It is concluded that the ability of shrub species to cope with drought stress depends on the pattern of water uptake and the extent to control water loss through the transpirational flux.  相似文献   

9.
Light may be an important limiting resource that influences community structure of chenopod shrublands. As part of a larger study that aimed to determine the factors that influence chenopod community structure, the focus of this study was the influence of plant canopy on the growth and establishment of smaller plants. We therefore measured the height and cover of three chenopods (Enchylaena tomentosa, Maireana brevifolia and Maireana georgei) when growing within and outside of the canopy of Atriplex bunburyana under field conditions. All three chenopods had lower cover and E. tomentosa was taller when growing within the canopy of A. bunburyana in comparison to those growing outside of the canopy. The chenopods were then grown under three artificial shade regimes. Plant height, cover, biomass, relative leaf area and photosynthetic surface area measurements showed that each species responded differently to shade. E. tomentosa biomass was facilitated by shade. This was inferred by an increase in total plant biomass. M. brevifolia, in contrast, tolerated shade by increasing above-ground biomass allocation. M. georgei was adversely affected by the shade regimes: root biomass decreased in response to shade. Competition for light is, therefore, likely to influence chenopod community structure of semi-arid and arid environments.  相似文献   

10.
Salinity-induced growth and some metabolic changes in three Salsola species   总被引:2,自引:0,他引:2  
Three Salsola species, Salsola dendroides Pall., S. richteri (Moq.) Karel ex Litw. and S. orientalis S.C. Gmel., were compared for their salt tolerance, inorganic ionic accumulation and their biomass production in saline conditions. Seeds were grown on sterilized quartz under five salinity levels in a factorial experimental design, with four replications, in greenhouse conditions.With salinity, Na+ accumulation increased while K+ accumulation decreased. All three species showed positive shoot growth for low levels of salinity. Root growth showed almost the same trend as shoot growth, with minor exceptions. At low levels of salinity, proline accumulated more in S. dendroides plant tissues than in the tissues of the other two species. These results suggest that the proline accumulation is a good index for salinity tolerance. Soluble sugars also increased as a result of salinity.  相似文献   

11.
The growth and biomass production of six acacia species were studied in the field for 4 years. The species used were Acacia asak, A. negrii, A. seyal, A. karroo, A. ampliceps, and A. stenophylla. The first three species are indigenous while the others are exotic. The results showed both A. ampliceps and A. asak with 100% survival while all A. negrii died. Acacia ampliceps attained the greatest height, diameter, relative growth rate and above-ground biomass while A. asak had the least. Height and diameter growth of acacia species decreased between warm and cold periods of the year.  相似文献   

12.
The distribution and density of Agave salmiana ssp. crassispina within the state of Zacatecas, Mexico in the period from May 2001 to October 2002 is reported here for the first time. A field sampling was conducted based on a stratified random design. The resulting sample size was 154 plots, which were distributed randomly in three strata: high, medium, and low density. In each plot the following parameters were determined; latitude, longitude and number of agave plants that were classified into the following stages: juvenile; pre-reproductive; reproductive; and mature. The spatial data analysed using GIS showed that Agave salmiana ssp. crassispina is distributed over approximately 59,905 ha. Out of this total area, about 1142 ha were classified as high density, 51,529 ha as medium density, and 7234 ha as low density. The estimated density of agave plants in high-density strata was an average of 3125 individuals per hectare in comparison with 788 and 652 individuals per hectare for medium, and low density, respectively. It is recommended to protect the areas with higher density and to establish plantations in those with low density, but with the necessary conditions for the development and sustainability of this specie.  相似文献   

13.
Acacia senegal, Guiera senegalensis and Pterocarpus lucens, browse species important in the Sahelian zone of Burkina Faso were studied by the estimation of their phenological variation over time and the evaluation of edible biomass production, total and accessible directly to animals. Biomass production was also estimated using dendrometric parameters. All the three species started the foliation phase as soon as the rains started. A. senegal and P. lucens flowered before G. senegalensis and A. senegal lost leaves earlier. The fruiting phase lasted 6–7 months for all species. Accessible edible biomass varied according to the animal species, the plant species and the height of plants. G. senegalensis showed the highest proportion of accessible biomass, but P. lucens had higher total edible biomass. Goats browsing at higher height had more edible biomass at their disposal. The accessible edible biomass was weakly correlated with tree parameters, while crown diameter was the best parameter to predict total edible biomass production, with R2 varying from 90% (G. senegalensis) to 98% (P. lucens) in log10 transformation of dependent and independent variables. The single species models developed could be applied in similar agro-ecological zones, taking into account the height stratification of plants. Further investigations on others species are needed to be able to estimate total biomass available for browsing.  相似文献   

14.
The aim of this study was to determine the water requirements for germination and early seedling establishment of four African savanna tree species, namelyAcacia karroo, A. nilotica, A. tortilisandMundulea sericea. The acacias are characteristic of nutrient-rich, andM. sericeaof nutrient-poor savannas. Imbibition times of scarified seeds ofA. karroo(4 h),M. sericea(6 h) andA. tortilis(8 h) were rapid relative toA. nilotica(28 h) and were inversely correlated with seed size. Imbibed water is lost in about 2 h after drying at 25°C for all species exceptA. nilotica(only 70% moisture loss). Seeds ofA. karrooandM. sericeakept at 40°C dried to below their original moisture contents within 2 h. Seeds ofA. niloticaandA. tortilisdried at 40°C lost viability relative to (undried) control seeds, while there was no significant loss of viability forA. karrooandM. sericea. For fully imbibed seeds to germinate in sandy savanna soils, all four species required at least the equivalent of 3 mm rainfall every 2 days under mild greenhouse conditions. However, most ungerminated seeds were still viable despite drying-out from a fully imbibed state. Maintenance of soil at 50% field capacity (FC), or watering to FC every 9th day is the maintenance requirements for 2-week-old seedlings ofA. niloticaandM. sericeato continue growth for a further 5 weeks under greenhouse conditions, althoughA. niloticamostly survived 25% FC with one seedling surviving 12·5% FC. Root penetration was rapid in sandy soils, withA. niloticaandM. sericeaattaining a depth of 40 cm within 15 days. Frequent, but not necessarily high, rainfall appears to be essential for germination and seedling survival over the first 7 weeks.  相似文献   

15.
We quantified soil nutrients and biological crust cover (bryophytes and lichens) under the canopies of three species of Mojave Desert shrubs and in interspaces between shrubs at three elevations to determine the effects of shrub species, soil crust, and elevation on islands of soil fertility. Means of pH, organic matter, total Kjeldahl nitrogen, nitrogen mineralization, and gravimetric soil moisture are significantly greater in soils under Ambrosia dumosa (Gray) Payne, Larrea tridentata Cov., and Coleogyne ramosissima Torr. than soils from adjacent interspace microhabitats. Although soil moisture and soil organic matter increase by a factor of 1.5 from the low elevation to the high elevation site, the ratio of shrub to interspace concentrations, or the difference in mean soil variables between shrubs and interspaces, is effectively constant and independent of elevation. Total bryophyte and lichen cover is relatively low (24.5%), however, there are 11 species of bryophytes and two species of lichens distributed across three elevations with the highest species richness and cover at the low-elevation site. Bryophyte and lichen cover is correlated with silt but is not related, consistently, to soil nutrients. Overall, the balance of processes controlling spatial aggregation of soil nutrients under shrubs is remarkably insensitive to potential differences in organic inputs among elevations, shrub species, and soil crust surfaces.  相似文献   

16.
In the Dzhungarian Alatau, a large Asian mountain range, 33 species from the polymorphic genusAlliumL. have been found. They belong to the subgeneraRhizirideum,AlliumandMelanocrommyumand are distributed from the foothills to alpine belts. The geographical and genesis analysis of these species is given. Five species can be ascribed to the category of autochtonous of the region, among them one being endemic to the Dzhungarian Alatau.  相似文献   

17.
In the southern region of the southern Chihuahuan Desert three common species of arborescent cacti are distributed over a north-west to south-east climatic gradient; Opuntia leucotricha, O. streptacantha, and Myrtillocactus geometrizans. In general, O. leucotricha is more abundant in the colder north-west section; M. geometrizans in the warmer south-east zone, not occurring in the north-west; and O. streptacantha reaches its greatest abundance in the centre of the region. We studied the potential replacement process between the three species due to canopy interference as well as the effect of a disturbance, freezing temperature, on their survivorship. Canopy interference between adjacent individuals of M. geometrizans/O. streptacantha and O. streptacantha/O. leucotricha indicated a potential replacement sequence of O. leucotricha replaced by O. streptacantha which, in turn, is replaced by M. geometrizans. In contrast, the damage caused by an extreme low-temperature event hardly affected O. leucotricha. It did however cause severe damage to individuals of O. streptacantha in the north-west of its distribution with little or no damage to individuals in the more south-eastern populations studied. M. geometrizans had a similar pattern of damage to O. streptacantha over its range in the region but at each site where the two species occurred together, that damage was more severe. Our observations suggest that disturbance in the form of extreme freezing temperatures is the mechanism that limits the distribution of these three arborescent cacti in the southern Chihuahuan Desert and allows their co-existence regionally.  相似文献   

18.
The contents of regurgitated Long-eared Owls (Asio otus) pellets collected in Minqin Desert Experimental Research Station of northwestern China were analysed. A total of 303 individuals representing five species of rodents and one of bird were identified in the pellets. By frequency, the most common species taken by Long-eared Owls was Meriones meridianus, followed by Cricetulus barabensis and Phodopus roborovskii. By biomass, Meriones meridianus was the most important species taken, followed by C. barabensis and Rhombomys opimus. Our results suggest that the Long-eared Owls were nocturnal hunters and fed on a wide range of animals with respect to their habitats.  相似文献   

19.
The ecological consequences of grassland afforestation in arid/semiarid sandy regions are not well known with respect to tree species and stand age. The present study quantifies the changes in above- and belowground carbon (C) stocks following afforestation in the southeastern Keerqin Sandy Lands with species of Mongolian pine and poplar. We studied 15-, 24-, and 30-year-old Mongolian pine plantations, 7-, 11-, and 15-year-old poplar plantations, and adjacent grasslands. The results show that total ecosystem C stocks increased following grassland afforestation. Aboveground C stocks increased at a rate of 2.75 Mg C ha−1 yr−1 in the poplar plantations, and 1.06 Mg C ha−1 yr−1 in the Mongolian pine plantations. Mineral soil C stocks decreased during the early stage of forest establishment, but recovered with increasing stand age. Root C stock increased significantly in the Mongolian pine plantations, but the poplar plantations showed no such increase relative to the grassland. Our results indicate that afforestation of the grassland in the southeastern Keerqin Sandy Lands would sequester more C than would continuous grassland. Tree species selection and stand developmental age should be considered in planning future afforestation projects.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号