首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
A sequence of prograde isograds is recognized within the Dalradian Inzie Head gneisses where pelitic compositions have undergone variable degrees of partial melting via incongruent melting reactions consuming biotite. Three leucosome types are identified. At the lowest grades, granitic leucosomes containing porphyroblasts of cordierite (CRD‐melt) are abundant. At intermediate grades, CRD‐melt mingles with garnetiferous leucosomes (GT‐melt). At the highest grades, CRD‐melt coexists with orthopyroxene‐bearing leucosomes (OPX‐melt), while garnet is conspicuously absent. The prograde metamorphic field gradient is constrained to pressures of 2–3 kbar below the CRD‐melt isograd, and no greater than 4.5 kbar at the highest grade around Inzie Head. A petrogenetic grid, calculated using thermocalc , is presented for the K2O–FeO–MgO–Al2O3–SiO2–H2O (KFMASH) system for the phases orthopyroxene, garnet, cordierite, biotite, sillimanite, H2O and melt with quartz and K‐feldspar in excess. For the implied field gradient, the reaction sequence predicted by the grid is consistent with the successive prograde development of each leucosome type. Compatibility diagrams suggest that, as anatexis proceeded, bulk compositions may have been displaced towards higher MgO content by the removal of (relatively) ferroan granitic leucosome. An isobaric (P = 4 kbar) TaH2O diagram shows that premigmatization fluids must have been water‐rich (aH2O > 0.85) and suggests that, following the formation of small volumes of CRD‐melt, the system became fluid‐absent and melting reactions buffered aH2O to lower values as temperatures rose. GT‐ and OPX‐melt formed by fluid‐absent melting reactions, but a maximum of 7–11% CRD‐melt fraction can be generated under fluid‐absent conditions, much less than the large volumes observed in the field. There is strong evidence that the CRD‐melt leucosomes could not have been derived by buoyantly aided upwards migration from levels beneath the migmatites. Their formation therefore required a significant influx of H2O‐rich fluid, but in a quantity insufficient to have exhausted the buffering capacity of the solid assemblage plus melt. Fluid : rock ratios cannot have exceeded 1 : 30. The fluid was channelled through a regionally extensive shear zone network following melt‐induced failure. Such an influx of fluid at such depths has obvious consequences for localized crustal magma production and possibly for cordierite‐bearing granitoids in general.  相似文献   

2.
A petrogenetic grid for metapelites in the system NKFMASH is presented. The P–T range is investigated in three sections: (1) The high‐ and ultrahigh‐pressure range is discussed in the system NFMASH because phengite is the only stable potassic phase. (2) The transition region is characterised by four NKFMASH‐invariant points that separate high‐pressure glaucophane‐bearing from medium‐pressure biotite‐bearing metapelites. (3) The medium‐pressure range contains the fifth NKFMASH‐invariant point. The univariant reactions of this point terminate the stability range of paragonite, which breaks down to form staurolite or kyanite and plagioclase during decompression and/or heating. As the growth of albitic plagioclase by decomposition of paragonite via continuous reactions may be conspicuous already before these staurolite‐ or kyanite‐producing reactions are reached, such albite porphyroblast schists are typical indicators of a former high‐pressure metamorphic history. Considering the preservation of high‐pressure metapelitic assemblages, those crossing the NKFMASH‐transition region during exhumation commonly dehydrate and preservation is unlikely. Three types of metapelites have a fairly good survival potential: (1) low‐temperature metapelites (up to c. 540 °C) with an exhumation path back into the chlorite + albite stability field, (2) assemblages with chloritoid + glaucophane, and (3) the relatively high‐temperature glaucophane + kyanite and jadeite + kyanite bearing parageneses, that are relatively dry at the onset of exhumation. A comparison with data from the literature shows that these rock types are the most abundant in nature.  相似文献   

3.
Xenoliths of quartz‐absent Fe‐rich aluminous metapelite are common within the platinum group element‐rich mafic/ultramafic magmatic rocks of the Platreef. Relative to well‐characterized protoliths, the xenoliths are strongly depleted in K2O and H2O, and have lost a substantial amount of melt (>50 vol.%). Mineral equilibria calculations in the NCKFMASHTO system yield results that are consistent with observations in natural samples. Lower‐grade rocks that lack staurolite constrain peak pressures to ~2.5 kbar in the southern Platreef. Smaller xenoliths and the margins of larger xenoliths comprise micro‐diatexite rich in coarse acicular corundum and spinel, which record evidence for the metastable persistence of lower‐grade hydrous phases and rapid melting consequent on a temperature overstep of several hundred degrees following their incorporation in the mafic/ultramafic magmas. In the cores of larger xenoliths, temperatures increased more slowly enabling progressive metamorphism by continuous prograde equilibration and the loss of H2O by subsolidus dehydration; the H2O migrated to xenolith margins where it may have promoted increased melting. According to variations in the original compositional layering, layers became aluminosilicate‐ and/or cordierite‐rich, commonly with spinel but only rarely with corundum. The differing mineralogical and microstructural evolution of the xenoliths depends on heating rates (governed by their size and, therefore, proximity to the Platreef magmas) and the pre‐intrusive metamorphic grade of the protoliths. The presence or absence of certain phases, particularly corundum, is strongly influenced by the degree of metastable retention of lower‐grade hydrates in otherwise identical protolith bulk compositions. The preservation of fine‐scale compositional layering that is inferred to be relict bedding in xenolith cores implies that melt loss by compaction was extremely efficient.  相似文献   

4.
A petrogenetic grid is presented for the system KFMASH (K2O-FeO-MgO-Al2O3-SiO2-H2O), including biotite, muscovite, K-feldspar, chlorite, chloritoid, staurolite, cordierite, garnet, orthoamphibole, orthopyroxene, spinel, andalusite, sillimanite, kyanite, quartz and corundum with H2O in excess, which was calculated using the computer program THERMOCALC and the Powell and Holland internally consistent thermodynamic dataset. By removing the normal constraint of having quartz in excess, both quartz-bearing and quartz-absent equilibria are shown. Quartz-absent equilibria are particularly relevant at high- T and low- P conditions, because of their common occurrence at these conditions. The calculated mineral assemblage and mineral compositional variations in terms of FeMg-1 and (Fe, Mg)SiAl-2 exchange vectors are broadly compatible with observations on natural rocks, particularly when non-KFMASH components are taken into account.  相似文献   

5.
新疆福海县蒙库地区早二叠世侵入岩序列主要侵位于中元古界苏普特岩群、震旦系富蕴群与上石炭统喀喇额尔齐斯组地层中,延伸不连续,呈单个岩体出露,出露面积均较小,总体上呈北西-南东向、条带状分布,与区域构造线方向一致,反映了区域构造对侵入体的的控制作用。岩体平面上呈平行舌状,岩体与围岩发生较强的交代作用,其边缘附近发育大量大小不一的围岩捕虏体,并见岩枝贯入围岩。文章就蒙库地区早二叠世侵入岩成因与成岩方式进行了探讨。  相似文献   

6.
深俯冲碳酸盐化泥质岩的部分熔融行为研究是探索地球深部碳循环必不可少的方向之一,对地球深部物质循环、岩浆形成以及地幔化学成分不均一等过程起着不容忽视的作用。本文利用多顶砧大压机探索了6.0 GPa、800~1 600℃下碳酸盐化泥质岩的部分熔融行为,实验产物主要包括石榴子石、单斜辉石、柯石英、蓝晶石、碳酸盐矿物、多硅白云母以及熔体。碳酸盐矿物为方解石和菱镁矿,存在于6.0 GPa固相线以下的实验产物中。相对于同等压力下其它碳酸盐化体系,本文实验体系具有最低的固相线。部分熔融产生的熔体为硅酸盐熔体,且随着温度的升高,熔体比例逐渐增加,熔体成分也发生了明显的变化。  相似文献   

7.
Abstract Spinel-quartz-cordierite and spinel-quartz are found as relic prograde assemblages in Fe-rich granulites from the Araku area, Eastern Ghats belt, India. Subsequent reactions produced orthopyroxene + sillimanite in the former association and garnet + sillimanite in the latter. The first reaction is univariant in the FMAS system, but is trivariant in the present case because of the presence of Zn and Fe3+ in spinel. The second reaction also has high variance because of Zn and Fe3+, but also because of the presence of Ca in garnet. Thermobarometry shows that the metamorphic conditions were approximately 950° C and 8.5 kbar and the fo 2 was near the NNO buffer. In Fe-rich bulk compositions and low- P -high- T conditions of metamorphism, two of the univariant reactions around the invariant point [Sa], namely (Sa, Hy) and (Sa, Cd), change topology due to reverse partitioning of Fe-Mg between coexisting garnet and spinel. An alternative partial petrogenetic grid in the system FMAS is constructed for such conditions and is applied satisfactorily to several sapphirine-free spinel granulites. It is shown that bulk composition ( X Fe and Zn) exerts greater control on the stability of spinel + quartz than fo 2. The effect of the presence of Zn and Fe3+ in spinel on the proposed grid is evaluated. Reaction textures in the Araku spinel granulites can be explained from the petrogenetic grid as due to near-isobaric cooling.  相似文献   

8.
Migmatitic cordierite gneisses within the Achankovil Zone (AZ) of southern Pan‐African India record melt‐producing and subsequent melt‐consuming mineral reactions. Early mineral assemblages Bt‐Sil‐Qtz and Bt‐Sil‐Spl, deduced from inclusion textures in garnet prophyroblasts, break down via successive dehydration melting reactions to high‐T phase assemblages (e.g. Grt‐Crd‐Liq, Opx‐Liq, Spl‐Crd‐Liq). Later back reactions between the restite and the in situ crystallizing melt resulted in thin cordierite coronas separating garnet from the leucosome, and partial resorption of garnet to Opx‐Crd or Crd‐Bt‐Qtz symplectites. Leucosomes generally display a moderate (low‐strain gneisses) to strong (high‐strain gneisses) depletion of alkali feldspar attributed to mineral‐melt back reactions partly controlled by the degree of melt segregation. Using a KFMASH partial petrogenetic grid that includes a melt phase, and qualitative pseudosections for microdomains of high and low Al/Si ratios, the successive phase assemblages and reaction textures are interpreted in terms of a clockwise P–T path culminating at about 6–7 kbar and 900–950 °C. This P–T path is consistent with, but more detailed than published results, which suggests that taking a melt phase into account is not only a valid, but also a useful approach. Comparing P–T data and lithological and isotopic data for the AZ with adjacent East Gondwana fragments, suggests the presence of a coherent metasedimentary unit exposed from southern Madagascar via South India (AZ) and Sri Lanka (Wanni Complex) to the Lützow–Holm Bay in Eastern Antarctica.  相似文献   

9.
Melt infiltration into quartzite took place due to generation and migration of partial melts within the high‐grade metamorphic rocks of the Big Cottonwood (BC) formation in the Little Cottonwood contact aureole (UT, USA). Melt was produced by muscovite and biotite dehydration melting reactions in the BC formation, which contains pelite and quartzite interlayered on a centimetre to decimetre scale. In the migmatite zone, melt extraction from the pelites resulted in restitic schollen surrounded by K‐feldspar‐enriched quartzite. Melt accumulation occurred in extensional or transpressional domains such as boudin necks, veins and ductile shear zones, during intrusion‐related deformation in the contact aureole. The transition between the quartzofeldspathic segregations and quartzite shows a gradual change in texture. Here, thin K‐feldspar rims surround single, round quartz grains. The textures are interpreted as melt infiltration texture. Pervasive melt infiltration into the quartzite induced widening of the quartz–quartz grain boundaries, and led to progressive isolation of quartz grains. First as clusters of grains, and with increasing infiltration as single quartz grains in the K‐feldspar‐rich matrix of the melt segregation. A 3D–μCT reconstruction showed that melt formed an interconnected network in the quartzites. Despite abundant macroscopic evidence for deformation in the migmatite zone, individual quartz grains found in quartzofeldspathic segregations have a rounded crystal shape and lack quartz crystallographic orientation, as documented with electron backscatter diffraction (EBSD). Water‐rich melts, similar to pegmatitic melts documented in this field study, were able to infiltrate the quartz network and disaggregate grain coherency of the quartzites. The proposed mechanism can serve as a model to explain abundant xenocrysts found in magmatic systems.  相似文献   

10.
变质火山岩、火山碎屑岩的绿片岩相成岩格子可用阳起石—黑云母—方解石—绿泥石—绿帘石—白云母六相三元系和钠长石—阳起石—黑云母—方解石—绿泥石—绿帘石六相三元系成岩格子来表示,石英往往为过剩组分。在只讨论两个强度相同的变量前提下,每个六相三元系的成岩格子都只可能有一对成对的成岩格子,且这对成岩格子的非封闭双变区的分区相同、分区之间的边界斜率相同、相应的单变线的排列顺序也相同,因此,六相三元系的每个成岩格子中的不变点数、单变线数、和双变区数之间的关系可用数学式来表示。  相似文献   

11.
灵山花岗岩的长石特征及其成因意义   总被引:1,自引:0,他引:1  
灵山花岗岩为一复式岩体,由四期岩石组成。文中分别提出了四种花岗岩中长石的光学性质、化学成分、X光衍射分析的数据。这些数据说明四种岩石间存在分异演化关系。花岗岩中长石具有清楚的交代特征,晚期岩体中的钾长石的An和Ab组份十分低,斜长石中的An和O?组份也很低,说明钠长石化黑鳞云母花岗岩和钠长石化铁锂云母花岗岩为交代蚀变花岗岩。稀有元素花岗岩是岩浆分异和岩浆期后交代作用综合作用的结果。  相似文献   

12.
Voluminous platinum-group mineral(PGM) inclusions including erlichmanite(Os,Ru)S_2, laurite(Ru,Os)S_2, and irarsite(Ir,Os,Ru,Rh)As S, as well as native osmium Os(Ir) and inclusions of base metal sulphides(BMS), including millerite(NiS), heazlewoodite(Ni_3S_2), covellite(CuS) and digenite(Cu_3S_2), accompanied by native iron, have been identified in chromitites of the Zedang ophiolite, Tibet. The PGMs occur as both inclusions in magnesiochromite grains and as small interstitial granules between them; most are less than 10 μm in size and vary in shape from euhedral to anhedral. They occur either as single or composite(biphase or polyphase) grains composed solely of PGM, or PGM associated with silicate grains. Os-, Ir-, and Ru-rich PGMs are the common species and Pt-, Pd-, and Rh-rich varieties have not been identified. Sulfur fugacity and temperature appear to be the main factors that controlled the PGE mineralogy during crystallization of the host chromitite in the upper mantle. If the activity of chalcogenides(such as S, and As) is low, PGE clusters will remain suspended in the silicate melt until they can coalesce to form alloys. Under appropriate conditions of ?S_2 and ?O_2, PGE alloys might react with the melt to form sulfides-sulfarsenides. Thus, we suggest that the Os, Ir and Ru metallic clusters and alloys in the Zedang chromitites crystallized first under high temperature and low ?S_2, followed by crystallization of sulphides of the laurite-erlichmanite, solid-solution series as the magma cooled and ?S_2 increased. The abundance of primary BMS in the chromitites suggests that ?S_2 reached relatively high values during the final stages of magnesiochromite crystallization. The diversity of the PGE minerals, in combination with differences in the petrological characteristics of the magnesiochromites, suggest different degrees of partial melting, perhaps at different depths in the mantle. The estimated parental magma composition suggests formation in a suprasubduction zone environment, perhaps in a forearc.  相似文献   

13.
A petrogenetic grid in the model system CaO–FeO–MgO–Al2O3–SiO2–H2O is presented, illustrating the phase relationships among the minerals grunerite, hornblende, garnet, clinopyroxene, chlorite, olivine, anorthite, zoisite and aluminosilicates, with quartz and H2O in excess. The grid was calculated with the computer software thermocalc , using an upgraded version of the internally consistent thermodynamic dataset HP98 and non‐ideal mixing activity models for all solid solutions. From this grid, quantitative phase diagrams (PT pseudosections) are derived and employed to infer a PT path for grunerite–garnet‐bearing amphibolites from the Endora Klippe, part of the Venetia Klippen Complex within the Central Zone of the Limpopo Belt. Agreement between calculated and observed mineral assemblages and garnet zonation indicates that this part of the Central Zone underwent a prograde temperature and pressure increase from c. 540 °C/4.5 kbar to 650 °C/6.5 kbar, followed by a post‐peak metamorphic pressure decrease. The inferred PT path supports a geotectonic model suggesting that the area surrounding the Venetia kimberlite pipes represents the amphibolite‐facies roof zone of migmatitic gneisses and granulites that occur widely within the Central Zone. In addition, the PT path conforms to an interpretation that the Proterozoic evolution of the Central Zone was controlled by horizontal tectonics, causing stacking and differential heating at c. 2.0 Ga.  相似文献   

14.
Abstract Chemical analysis (including H2, F2, FeO, Fe2O3) of a Mg-vesuvianite from Georgetown, Calif., USA, yields a formula, Ca18.92Mg1.88Fe3+0.40Al10.97Si17.81- O69.0.1(OH)8.84F0.14, in good agreement on a cation basis with the analysis reported by Pabst (1936). X-ray and electron diffraction reveal sharp reflections violating the space group P4/nnc as consistent with domains having space groups P4/n and P4nc. Refinement of the average crystal structure in space group P4/nnc is consistent with occupancy of the A site with Al, of the half-occupied B site by 0.8 Mg and 0.2 Fe, of the half-occupied C site by Ca, of the Ca (1,2,3) sites by Ca, and the OH and O(10) sites by OH and O. We infer an idealized formula for Mg-vesuvianite to be Ca19Mg(MgAl7)Al4Si18O69(OH)9, which is related to Fe3+-vesuvianite by the substitutions Mg + OH = Fe3++ O in the B and O(10) sites and Fe3+= Al in the AlFe site. Thermodynamic calculations using this formula for Mg-vesuvianite are consistent with the phase equilibria of Hochella, Liou, Keskinen & Kim (1982) but inconsistent with those of Olesch (1978). Further work is needed in determining the composition and entropy of synthetic vs natural vesuvianite before quantitative phase equilibria can be dependably generated. A qualitative analysis of reactions in the system CaO-MgO-Al2O3-SiO2-H2O-CO2 shows that assemblages with Mg-vesuvianite are stable to high T in the absence of quartz and require water-rich conditions (XH2O > 0.8). In the presence of wollastonite, Mg-vesuvianite requires very water-rich conditions (XH2O > 0.97).  相似文献   

15.
Calc-silicate boudins within Proterozoic granulite facies gneisses of the northern Prince Charles Mountains, East Antarctica, preserve a number of reaction textures including garnet coronas between calcite and scapolite; garnet-quartz coronas between scapolite and wollastonite and between plagioclase and wollastonite; calcite-quartz intergrowths in wollastonite; and calcite-plagioclase symplectites in scapolite. These textures have been modelled using petrogenetic grids for reactions in the CaO-Al2,O3-SiO2-CO2 system, but with reduced mineral activities to account for additional components in real mineral compositions. Such fixed-composition reduced-activity grids are strictly valid only at the point in P-T-aCO2 space where an assemblage last equilibrated, and do not show the true positions of reactions away from this point because mineral compositions change with reaction progress. In this case, however, mineral compositions close to end-member values and low extents of reaction progress mean that compositional change was limited and the grids are good approximations to true pseudosections over the entire P-T-aco2 range of interest. The grids show that the textures are consistent with near-isobaric cooling from about 850 to 700d? C at 7 kbar, a P-T path compatible with thermobarometric studies of other lithologies from the area. Phase relationships indicate that CO2 activities were buffered by the local mineral assemblage during peak and retrograde metamorphism, either under fluid-absent conditions or within a non-pervasive fluid phase. Previous studies of garnet coronas in scapolite-wollastonite calc-silicates have used qualitative grids based on limited experimental data to invoke garnet growth during water infiltration at high temperature, but the grids used here show that garnet coronas can form on cooling, without any need for water influx.  相似文献   

16.
黄沙坪铅锌多金属矿成岩成矿年龄测定及地质意义   总被引:14,自引:0,他引:14  
黄沙坪铅锌多金属矿位于南岭多金属成矿带湘南矿集区.自危机矿山接替资源勘查项目执行以来,又探明资源量达大型的含铁钨锡多金属矿及达中型的铜多金属矿,为开展科学研究提供了丰富的资料.笔者在前人研究的基础上,通过采用锆石SHRIMP U-Pb和辉钼矿Re-Os等时线定年方法,对分别对矿区56 m中段的石英斑岩体以及矿石中共生的辉钼矿进行了精确定年,获得石英斑岩体锆石SHRIMP U-Pb年龄为152±3 Ma.三组同一中段不同位置的辉钼矿Re-Os等时线年龄为159.4±3.3 Ma,157.5±2.4 Ma和157.6±2.3Ma.测定结果为厘定黄沙坪铅锌多金属矿成岩成矿作用多期多阶段性特点提供了重要的依据.  相似文献   

17.
The reaction muscovite+cordierite→biotite+Al2SiO5 +quartz+H2O is of considerable importance in the low pressure metamorphism of pelitic rocks: (1) its operation is implied in the widespread assemblage Ms + Crd +And± Sil + Bt + Qtz, a common mineral assemblage in contact aureoles and low pressure regional terranes; (2) it is potentially an important equilibrium for pressure estimation in low pressure assemblages lacking garnet; and (3) it has been used to distinguish between clockwise and anticlockwise P–T paths in low pressure metamorphic settings. Experiments and thermodynamic databases provide conflicting constraints on the slope and position of the reaction, with most thermodynamic databases predicting a positive slope for the reaction. Evidence from mineral assemblages and microtextures from a large number of natural prograde sequences, in particular contact aureoles, is most consistent with a negative slope (andalusite and/or sillimanite occurs upgrade of, and may show evidence for replacement of, cordierite). Mineral compositional trends as a function of grade are variable but taken as a whole are more consistent with a negative slope than a positive slope. Thermodynamic modelling of reaction 1 and associated equilibria results in a low pressure metapelitic petrogenetic grid in the system K2O–FeO–MgO–Al2O3–SiO2–H2O (KFMASH) which satisfies most of the natural and experimental constraints. Contouring of the Fe–Mg divariant interval represented by reaction 1 allows for pressure estimation in garnet‐absent andalusite+cordierite‐bearing schists and hornfelses. The revised topology of reaction 1 allows for improved analysis of P–T paths from mineral assemblage sequences and microtextures in the same rocks.  相似文献   

18.
高喜马拉雅结晶岩系中广泛发育规模不等、形态各异的混合岩,是研究地壳部分熔融作用的天然实验室。尽管观察表明,藏南许多混合岩与淡色花岗岩具有一定的时空联系,但混合岩与淡色花岗岩是否具有成因联系还存在较大的争议。本文对藏南亚东地区的混合岩中进行了野外地质、岩相学、岩石地球化学和年代学等研究。研究结果表明,亚东混合岩主要是部分熔融作用的产物,具有(近)原地熔融的特征,熔融方式以白云母和黑云母脱水熔融为主,并叠加了分离结晶作用。亚东混合岩与淡色花岗岩在成因上具有紧密联系。相关认识为建立造山带构造演化模型提供新的信息。  相似文献   

19.
Metapelites containing muscovite, cordierite, staurolite and biotite (Ms+Crd+St+Bt) are relatively rare but have been reported from a number of low-pressure (andalusite–sillimanite) regional metamorphic terranes. Paradoxically, they do not occur in contact aureoles formed at the same low pressures, raising the question as to whether they represent a stable association. A stable Ms+Crd+St+Bt assemblage implies a stable Ms+Bt+Qtz+Crd+St+Al2SiO5+Chl+H2O invariant point (IP1), the latter which has precluded construction of a petrogenetic grid for metapelites that reconciles natural phase relations at high and low pressure. Petrogenetic grids calculated from internally consistent thermodynamic databases do not provide a reliable means to evaluate the problem because the grid topology is sensitive to small changes in the thermodynamic data. Topological analysis of invariant point IP1 places strict limits on possible phase equilibria and mineral compositions for metamorphic field gradients at higher and lower pressure than the invariant point. These constraints are then compared with natural data from contact aureoles and reported Ms+Crd+St+Bt occurrences. We find that there are numerous topological, textural and compositional incongruities in reported natural assemblages that lead us to argue that Ms+Crd+St+Bt is either not a stable association or is restricted to such low pressures and Fe-rich compositions that it is rarely if ever developed in natural rocks. Instead, we argue that reported Ms+Crd+St+Bt assemblages are products of polymetamorphism, and, from their textures, are useful indicators of P–T  paths and tectonothermal processes at low pressure. A number of well-known Ms+Crd+St+Bt occurrences are discussed within this framework, including south-central Maine, the Pyrenees and especially SW Nova Scotia.  相似文献   

20.
The High Himalayan Crystallines (HHC) of Bhutan were penetratively deformed, intruded by leucogranite and metamorphosed during the collision of the Indian and Asian plates. Metamorphic reaction textures in the HHC show that it experienced decompression while maintaining a laterally heterogeneous, and locally inverted, internal temperature range of c. 600–750  °C. This thermal structure was produced by thrusting hot, migmatitic rocks over lower-grade rocks within the HHC and by the advection of heat from the intrusion of leucogranite dykes and sills during decompression. A variable velocity field within the HHC during exhumation and extrusion between India and Tibet caused the inversion of top to the south sense of shear present throughout most of the HHC to top down to the north shear near its top.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号